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The main mathematical result in this paper is that change of variables in the ordinary
differential equation (ODE) for the competition of two infections in a Susceptible–
Infected–Removed (SIR) model shows that the fraction of cases due to the new variant
satisfies the logistic differential equation, which models selective sweeps. Fitting the
logistic to data from the Global Initiative on Sharing All Influenza Data (GISAID)
shows that this correctly predicts the rapid turnover from one dominant variant to
another. In addition, our fitting gives sensible estimates of the increase in infectivity.
These arguments are applicable to any epidemic modeled by SIR equations.
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As most readers know, the COVID-19 pandemic began in China in December 2019, then
slowly spread around the world. By early 2022, there had been more than 400 million
infections worldwide and almost 6 million deaths. The first confirmed case of COVID-19
in the United States was diagnosed in Washington state on January 21, 2020. On February
11, 2020, the disease was officially named “severe acute respiratory syndrome coronavirus
2” (SARS-CoV-2) because the virus is genetically related to the coronavirus responsible for
the SARS outbreak of 2003. The early spread of the virus is an interesting topic. Work done
by Alessandro Vespignani’s group (1) suggested that on March 1, 2020, when New York
recorded its first case and there were only 23 confirmed cases in the United States, there
could have actually been about 28,000 infections nationwide and 10,700 in New York.
Many papers have been written on the effects of interventions such as masking, lockdowns,
and social distancing to control the spread of the disease. Here, we will concentrate on the
evolution of the virus, primarily focusing on the changes in the spike protein, which the
virus uses to gain entry into cells through binding to the ACE2 surface protein. (For a
detailed description of this process, see refs. 2 and 3.) Figure 1 shows the rise and fall of
variants over time. Figure 2 indicates their phylogenetic relationship.

Early Evolution

The article by Koelle et al. (4) gives a nice account of the evolution of the virus up to
the end of February 2022. An early mutation in the spike protein was a glycine residue,
G, replacing an aspartic acid residue, D, at position 614, or G614D for short. (There are
20 amino acids, each abbreviated to a single letter, but the exact coding is not important
for our purposes.) This dramatically increased the ability of the original Wuhan strain to
infect cells.

The Alpha variant (named B.1.1.7 for its position in the phylogenetic tree of samples)
was identified in the United Kingdom in September 2020. It had enhanced binding
to ACE2 and spread 50% faster than circulating lineages. Around the same time, Beta
(B.1.351) was found in South Africa, and a highly transmissible variant, Gamma, arose
in the Amazonas state in Brazil.

The Delta variant was identified in India’s Maharashtra state in Spring 2021. It had
additional mutations that increased the ability of the spike protein to infect cells, resulting
in increased transmissibility, disease severity, and breakthrough infections in vaccinated
individuals (5, 6). A notable example is the P681R mutation, located at a furin cleavage
site that separates the spike protein into S1 and S2 subunits (7). A second is the L452R
mutation in the receptor binding domain of the spike protein (8), which is involved in
evasion from neutralizing antibodies. Once Delta arrived in the United Kingdom, it spread
quickly, and epidemiologists determined that it was about 60% more transmissible than
Alpha. In vitro, it is 6 times less sensitive to serum-neutralizing antibodies from recovered
individuals compared to the wild-type Wuhan-1 bearing D614G. It swept through India
and Great Britain before reaching the United States, where it surged from being 1.3% of
variants on May 2, 2021, to 94.4% on July 31.

Omicron Subvariants

Two articles by Ewen Callaway (9, 10) give an excellent account of this phase of the
epidemic. Omicron (B.1.1.529) was first reported in South Africa in November 2021.
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Fig. 1. Epidemic waves in the SARS-CoV-2 pandemic. From left to right: Beta,
Delta, early Omicron variants, and Omicron BA.4/BA.5. Graphic is from The
New York Times, July 18, 2002.

It has 37 mutations in the spike protein relative to the original
Wuhan strain. Among these mutations, 15 were in the receptor
binding domain, increasing its binding efficiency to ACE2 (11).
An early article (12) suggested that the most recent common
ancestor of Delta and Omicron went back to the beginning of the
pandemic, but the picture changed when Omicron was realized to
be a close relative of Gamma.

After a period of using Greek letters to mark significant changes
in the virus, the system broke down when a large number of
Omicron variants started appearing. See ref. 13 for the story
behind the names. The initial variant, now referred to as BA.1,
has continued to evolve, creating two sublineages: BA.1.1 = BA.1
with an R346K mutation and BA.2. The BA.2 subvariant spreads
more quickly than BA.1. Two laboratory studies have shown that
antibodies against BA.1 can protect against BA.2 infection, but
they have similar abilities to resist neutralizing antibodies in the
blood of individuals that have been vaccinated or infected (10,
14). For the reader who is interested in the mutations found in the
early Omicron variants, see ref. 15 for an analysis of 6.4 million
sequenced genomes.

Studies by virologists Michael Chan at the University of Hong
Kong and Wendy Barclay at Imperial College London have shown

Fig. 2. SARS-CoV-2 variant phylogeny from ref. 4.

that BA.1 and BA.2 create a higher concentration of viral particles
in the nose. In earlier variants, after SARS-CoV-2 binds to ACE2,
it relies on a cellular enzyme, TMPRSS2, to cleave the spike
protein, granting the virus entry into the cell, but Omicron has
largely abandoned this route. This could give Omicron an edge,
since many cells in the nose do not make this enzyme, which is
more widely expressed in the lung and other organs (16).

Omicron Subvariants
BA.4 and BA.5. The earliest samples of variants BA.4 and BA.5
were collected in January 2022 in South Africa. Generally, they
cause mild disease, but spread in large numbers potentially be-
cause, unlike the Wuhan strain, which settles in the lungs, these
new variants seem to attach to the more benign upper nasal
passage. The incubation time of these new variants is significantly
shorter (2 to 3 d), and they seem to undergo mutational sprints,
mutating as much as 4 times faster than normal Omicron. Like
earlier Omicron variants, they have a remarkable ability to evade
immunity from vaccines, previous infection, or both (17–19).
Figure 3 shows the rise and fall of Omicron variants over time.

Results

We use a traditional Susceptible–Infected–Removed (SIR) epi-
demic model in a homogeneously mixing population. In many
models, 1) an Exposed phase is included, in which individuals
have the disease, but are not yet infectious; and 2) the population is
divided into a half-dozen groups according to age (20–22). How-
ever, we choose the simplicity of the SIR model in order to easily
make clear mathematical statements that reveal the dependence of
the observed phenomena on underlying parameters.

To get rid of the population size from the SIR equations, we
rewrite them in terms of the scaled variables s = S/N , ij =
Ij/N , and r = R/N . Generalizing the basic model to the compe-
tition of two infections, we can write the differential equations as

ds

dt
=−β1si1 − β2si2

di1
dt

= β1si1 − γi1

di2
dt

= β2(s + θr1)i2 − γi2 [1]

dr1
dt

= γi1 − θr1i2

dr2
dt

= γi2.

Here, infecteds of type i at rate βi attempt to infect a randomly
chosen individual from the population. Individuals recovered
from infection by strain i are immune to further infection by that
strain. θ is the reduction in the infection rate by strain 2 of an
individual immune to strain 1.

In Materials and Methods, we will show that the fraction of
individuals infected with strain 2, x (t) = i2(t)/(i1(t) + i2(t)),
satisfies a logistic differential equation,

x ′(t) =λ(t)x (t)(1− x (t))

λ=(β2 − β1)s(t) + θβ2r1(t). [2]

When λ(t) is constant, this models a selective sweep, in which
an advantageous mutation increases in frequency and eventually
takes over the population (23). To simplify the formulas, we
assume that the recovery rates are equal for the two strains. If they
are different, then γ1 − γ2 is added to the formula for λ(t).
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Fig. 3. Weekly Omicron variant frequencies in North Carolina during June 26
through July 9, 2022. Data are from the North Carolina COVID-19 Dashboard.

To test this prediction, we used SARS-CoV-2 variant data from
the Global Initiative on Sharing All Influenza Data (GISAID)
to fit our model (24). These data consisted of biweekly SARS-
CoV-2 variant cases in the United States from the period between
December 12, 2021, and June 13, 2022. For each transition—
Beta to Delta, Delta to Omicron, and Omicron to BA.4/BA.5—
we fit the logistic differential equation to data points at the
beginning and end of each selective sweep curve (Table 1).

The increase in infectivity in the Delta to Omicron transition
is much larger than Beta to Delta due to breakthrough infections.
The increase from Omicron to BA.4/BA.5 is the smallest, since
the Omicron subvariants are more similar than Beta and Delta.
Another contributing factor is that the size of the susceptible
population was decreased by the first Omicron wave.

In fitting the data, we have assumed that λ(t) is constant. The
selective sweeps pictured in the top three panels of Fig. 4 took
from 6 to 10 wk, so the values of s(t)/s(0) and r1(t)/r1(0)
should not have changed by much over the course of the sweep,
but perhaps this is the source of the departure from linearity seen
in the bottom panel.

Discussion

Our results in Fig. 4 show that the rapid turnover from one variant
to another follows the solution to the logistic differential equation.
The formula for the fitness advantage λ given in Eq. 2 has two
terms:

• (β2 − β1)s(t) is the increased infection rate of strain 2;
• θβ2r1(t) is the contribution of breakthrough infections.

There have been a number of mutations that have significantly
improved the ability of SARS-CoV-2 to infect humans. It is
natural to expect that, as time goes on, such gains will become
even smaller, since the spike protein has explored the space of

Table 1. Estimates of λ

Transition λ

Beta to Delta 0.0745
Delta to Omicron 0.1798
Omicron to BA.4/BA.5 0.0506

Fig. 4. The top three panels show logistic fits to COVID variant transitions.
If the fraction of cases due to the new variant, x(t), was the solution of
a logistic equation, then log(x(t)/(1 − x(t)) would be linear. In the bottom
panel, we plot this transformation of the three curves. The resulting plots are
approximately linear with R2 values 0.98, 0.97, and 0.98, respectively.

possibilities. Thus, given our formula for λ(t), strains that become
dominant will need to evade existing immunity. Experts agree
with this conclusion (9). Sarah Cobey, an evolutionary biologist
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at the University of Chicago, stated: “As gains in infectivity start to
slow, the virus will have to maintain its fitness by overcoming im-
munity.” Kristian Andersen of Scripps Research stated: “Variants
such as Omicron that gain much of their transmission advantage
from evading immune response may become the norm, as is the
case for seasonal influenza.”

Given the similarities (and differences) with the flu, it is an
important problem to understand the mechanisms of immune
evasion in SARS-CoV-2 in order to predict its future evolu-
tion. Readers who want to tackle this problem should look at
the excellent work of Dushoff, Levin, and Plotkin (25, 26) on
influenza.

Materials and Methods

Here, we derive the result given in Eq. 2. Let x(t) = i2(t)/(i1(t) + i2(t)). To
prepare for the change of variables, we note that

(
i2

i1 + i2

)′
=

i′2(i1 + i2)− i2(i′1 + i′2)
(i1 + i2)2 =

i′2i1 − i2i′1
(i1 + i2)2 .

Using this in Eq. 1, we get

x′(t) =
i2

i1 + i2
· i1

i1 + i2
·
(

i′2
i2
− i′1

i1

)

=
i2

i1 + i2
· i1

i1 + i2
· [(β2 − β1)s + θr1(t)],

writing λ(t) = (β2 − β1)s(t) + θβ2r1(t). This is a logistic differential equa-
tion, with carrying capacity K = 1 and a temporally varying growth rate:

x′(t) = λ(t)x(t)(1 − x(t)).

Data Availability. Previously published data were used for this work (GISAID
database) (https://gisaid.org/).
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