
RESEARCH ARTICLE

Dosing time optimization of antihypertensive

medications by including the circadian rhythm

in pharmacokinetic-pharmacodynamic

models

Javiera Cortés-Rı́osID
1, Ramón C. HermidaID

2,3, Maria Rodriguez-FernandezID
1*

1 Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences,

Pontificia Universidad Católica de Chile, Chile, 2 Bioengineering & Chronobiology Laboratories, Atlantic

Research Center for Telecommunication Technologies (atlanTTic), Universidade de Vigo, Vigo, Spain,

3 Bioengineering & Chronobiology Research Group. Galicia Sur Health Research Institute (IIS Galicia Sur).

SERGAS-UVIGO, Vigo, Spain

* marodriguezf@uc.cl

Abstract

Blood pressure (BP) follows a circadian variation, increasing during active hours, showing a

small postprandial valley and a deeper decrease during sleep. Nighttime reduction of 10–

20% relative to daytime BP is defined as a dipper pattern, and a reduction of less than 10%,

as a non-dipper pattern. Despite this BP variability, hypertension’s diagnostic criteria and

therapeutic objectives are usually based on BP average values. Indeed, studies have

shown that chrono-pharmacological optimization significantly reduces long-term cardiovas-

cular risk if a BP dipper pattern is maintained. Changes in the effect of antihypertensive

medications can be explained by circadian variations in their pharmacokinetics (PK) and

pharmacodynamics (PD). Nevertheless, BP circadian variation has been scarcely included

in PK-PD models of antihypertensive medications to date. In this work, we developed PK-

PD models that include circadian rhythm to find the optimal dosing time (Ta) of first-line anti-

hypertensive medications for dipper and non-dipper patterns. The parameters of the PK-PD

models were estimated using global optimization, and models were selected according to

the lowest corrected Akaike information criterion value. Simultaneously, sensitivity and iden-

tifiability analysis were performed to determine the relevance of the parameters and estab-

lish those that can be estimated. Subsequently, Ta parameters were optimized to maximize

the effect on BP average, BP peaks, and sleep-time dip. As a result, all selected models

included at least one circadian PK component, and circadian parameters had the highest

sensitivity. Furthermore, Ta with which BP>130/80 mmHg and a dip of 10–20% are

achieved were proposed when possible. We show that the optimal Ta depends on the thera-

peutic objective, the medication, and the BP profile. Therefore, our results suggest making

chrono-pharmacological recommendations in a personalized way.
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Author summary

Blood pressure (BP) exhibits a circadian rhythm, with a rise during active hours, a small

postprandial valley, and a deeper drop during sleep. A low nocturnal decrease in BP is a

relevant cardiovascular risk factor, as are the average and peaks of BP in hypertensive

patients. Studies have shown that antihypertensive medications’ effect varies at different

dosing times (Ta). Indeed, hypertension chronotherapy significantly affects long-term

cardiovascular risk. Using mathematical modeling, we established that incorporating the

circadian rhythm on pharmacokinetic constants allows better prediction of the effect of

antihypertensive medicines on BP. In addition, we revealed that the optimal Ta for antihy-

pertensive medications is different when optimizing the nocturnal BP decrease, the aver-

age BP reduction, and the average BP peaks reduction, i.e., they are competitive

optimization objectives. Moreover, models allowed us to find optimal Ta parameters that

achieve the current therapeutic objective (BP<130/80mmHg), and, at the same time, opti-

mal percentages of nocturnal BP decrease for different BP profiles for most antihyperten-

sive medications studied, supporting personalized medicine for hypertension.

This is a PLOS Computational Biology Methods paper.

Introduction

Arterial hypertension (AH) is a chronic medical condition characterized by a persistent

increase in blood pressure (BP), and it is the modifiable risk factor that most affects mortality

in the world [1]. AH can be classified according to its etiology as primary (or essential), which

has an idiopathic origin, or secondary, associated with an identifiable cause. Regardless of the

origin of AH, the regulatory systems involved in this condition are the renin-angiotensin-aldo-

sterone system (RAAS), sympathetic nervous system, immune system, endothelium, and natri-

uretic peptides [1]. All the systems mentioned above are affected by circadian variation

components, such as plasma norepinephrine, the presence of Na+ transporters in nephrons,

renin activity, and the concentration of atrial natriuretic peptide angiotensin and plasma aldo-

sterone, among others [2,3]. Consequently, the physiological mechanisms of regulation and

external variables such as physical activity and feeding routine result in a circadian variation of

BP [4]. The circadian variation profile of BP is characterized by a morning increase, a small

postprandial valley, and a more profound decrease during night rest. A nocturnal reduction of

10–20% compared to daytime BP is defined as a dipper pattern, while a reduction of less than

10% is defined as a non-dipper pattern. The non-dipper pattern is associated with a higher car-

diovascular risk than the normal fall pattern (dipper pattern) [5]. Indeed, the average BP dur-

ing sleep is the most sensitive predictor of morbidity and mortality [6].

Generally, clinical guidelines recommend ambulatory BP monitoring using calibrated and

approved instruments for diagnosing and monitoring AH. Then, diagnostic criteria, treat-

ment, and therapeutic objectives are based on BP averages [7]. Although clinical guidelines

indicate diagnostic criteria for AH that consider BP averages during the day and night, BP cir-

cadian variation has not been considered a therapeutic objective. Hypertension therapy typi-

cally includes lifestyle changes, such as weight loss, reduced salt intake, increased physical

activity, change of diet, and reduced alcohol consumption. Often these changes are not enough

to achieve the therapeutic goal, so antihypertensive medications are incorporated into the
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treatment. The World Health Organization recommends thiazide diuretics, angiotensin-con-

verting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), and calcium chan-

nel blockers (CCBs) as first-line antihypertensive agents [8]. Some of these are

pharmacologically active drugs (non-prodrugs), and others require a metabolic step to carry

out their main pharmacological effect (prodrugs), which may be circadian-phase dependent.

Moreover, pharmacological targets are circadian phase-dependent; therefore, the effects of

antihypertensive medications may display a circadian time dependency [9].

Daily effect variations of antihypertensive medications can be explained due to pharmaco-

kinetics (PK) and pharmacodynamics (PD) changes. On the one hand, the variation of the dif-

ferent processes involved in the absorption, distribution, metabolism, and excretion (ADME)

of antihypertensive medications, generates changes in PK parameters that finally produce dif-

ferences in efficacy [10,11]. On the other hand, the variation of the therapeutic target during

the day, for example, the expression of an enzyme or receptor, produces a variation in response

to pharmacological treatment and consequently changes the dose-response curves [12]. Classi-

cal PK-PD models have been developed for β-blockers (BB), ARBs, CCBs, and ACE inhibitors

[13–16], and some of the PK-PD models of antihypertensive medications have included the

circadian variation of BP by coupling an indirect effect model with circadian variation

[15,17,18]. But the simultaneous estimation of the circadian BP and PD parameters can lead to

biased results due to the high correlation between some of them. Therefore, some BP profile

variations after treatment could be explained by the effect of antihypertensive medication

rather than by the intrinsic circadian variation of BP. Thus, in PD models that include BP cir-

cadian rhythm, a baseline BP function must be established prior to estimating PD parameters,

as was early described by Hempel et al. [18]. Moreover, previous works indicate that not only

the pharmacodynamics is altered by mechanisms of circadian variation but also the pharmaco-

kinetic processes, mainly those administered orally [19]. However, circadian variation has not

been included in PK models of antihypertensive medications. Although classic PK models do

not include the circadian effects, Véronneau-Veilleux et al. [20] proposed modeling circadian

fluctuations of pharmacokinetic parameters, representing each of the typical constants of a

two-compartment model by a periodic function. Other authors have included periodic func-

tions in PK models of some medications such as 5-fluorouracil, propofol, and levofloxacin

[21–23], and have even modeled the variability of pharmacokinetic parameters throughout the

day to optimize circadian drug infusion schedules in cancer chronotherapy [24].

Besides understanding the effect variations, according to the relevance of maintaining a

normal BP profile, the interest in the chronopharmacology of hypertension has increased. The

administration of antihypertensive medications is commonly recommended upon awakening

to reduce daytime BP surges. However, several studies have been conducted to evaluate the

effect of administering antihypertensive medications at different times of the day. Recent

reviews revealed that evening dosing of ACE inhibitors benazepril, captopril, enalapril, imida-

pril, lisinopril, perindopril, quinapril, ramipril, spirapril, trandolapril, zofenopril; ARBs irbe-

sartan, candesartan, olmesartan, telmisartan, valsartan; CCBs cilnidipine, isradipine,

nifedipine, nisoldipine, verapamil; diuretic torasemide; α-blocker doxazosine; BBs carvedilol

and nebivolol among others significantly reduce BP during night rest [9,19]. Better treatment

results, adverse effects and/or increased dipping were also shown for evening than for awaken-

ing dosing of combinations; captopril/hydrochlorothiazide, enalapril/hydrochlorothiazide,

trandolapril/verapamil valsartan/amlodipine, olmesartan/amlodipine, fosinopril/amlodipine,

valsartan/hydrochlorothiazide, amlodipine/hydrochlorothiazide, amiloride/hydrochlorothia-

zide, telmisartan/amlodipine, losartan/indapamide, perindopril/indapamide, azilsartan/inda-

pamide and valsartan/indapamide [25]. Furthermore, Hermida et al. [26] performed a

prospective endpoint trial with 19,084 hypertensive patients aged 60.5 ± 13.7 and
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demonstrated that bedtime hypertension treatment significantly reduces cardiovascular risk.

Moreover, having a non-dipper pattern is not the only risk factor associated with daily BP vari-

ability. High BP peaks, an exaggerated morning BP surge, and an elevated average BP have

also been considered cardiovascular risk factors [27,28]. In addition, establishing a differenti-

ated dosing time for extreme dippers, non-dippers, and dipper subjects have been sought to

improve therapeutic outcomes in a personalized way [29–31]. Therefore, dosing time optimi-

zation of antihypertensive medications should be carried out as a multi-objective optimization

problem for different starting BP profiles. Nevertheless, dosing time has not been optimized

using mathematical models so far.

In this work, we propose the inclusion of circadian rhythm in PK-PD models of first-line

antihypertensive medications, thereby optimizing their dosing time. We evaluated the rela-

tionship between the dosing time and dipper percentage, the effect on BP average, and the

impact on BP peaks (and increased morning surge) using starting profiles of dipper and non-

dipper subjects for each antihypertensive medication. Thus, we established that the optimal

administration time depends on the therapeutic objective, the initial BP profile, and the anti-

hypertensive medication. In addition, we propose administration times for each type of medi-

cation and profile (dipper or non-dipper) that allow the actual therapeutic goal BP<130/80

mmHg [8] and, at the same time, a dipper BP profile to be maintained. Therefore, we encour-

age personalized chrono-pharmacological recommendations for each patient.

Results

PK-PD models

A summary of the methodology used is depicted in Fig 1. First, BP and plasma concentration

data of first-line antihypertensive medications for at least two different dosing times were used

to fit the models (see details of data used in Materials and Methods section, subsection Data

search and selection). After finding the available data, the PK-PD models were developed (Eqs

4–13), and a preliminary sensitivity and identifiability analysis indicated the presence of highly

correlated parameters. Therefore, circadian BP parameters were estimated and set before fit-

ting the PK-PD models (Tables A and B in S1 Text), and literature PK-PD parameters were

established (Table C in S1 Text). The parameters that describe the circadian rhythm of BP

(parameters of Eqs 1–3 of the methodology section) were obtained using before-treatment BP

data for each medication in order to set the BP circadian variation baseline [18]. Subsequently,

the remaining parameters of each PK-PD model were estimated using literature data after

treatment, and the model with the lowest corrected Akaike information criterion (AICc)
among the different options (Hill coefficient n or not; incorporating none, only one or two

kinetic constants as periodic functions) was selected. The AICc and objective function values

(Fobj) for all non-prodrug and prodrug models tested are reported in Tables 1 and 2, respec-

tively. Fobj and AICc values of selected models are highlighted in bold.

Simulations of selected PK-PD models and 24-hours systolic blood pressure (SBP) and dia-

stolic blood pressure (DBP) data after treatment are shown for awakening and bedtime admin-

istration of non-prodrug models in Fig 2 and of prodrug models in Fig 3. All selected non-

prodrug models included circadian variation in absorption and elimination kinetic constants

through a one-component periodic function. In addition, AICc was lower for models with n 6¼
1 in the effect equation. Table D in S1 Text shows the estimated parameters of selected non-

prodrug models (parameters of Eqs 4–7 and 13) with their respective 95% confidence intervals

(CI); CI units are the same as the corresponding parameter. For the non-prodrug models, CI
values indicate that all parameters are statistically different from zero, except for n and Ke
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from the nifedipine model; therefore, it is not possible to determine whether these parameters

are relevant to describe the effect of nifedipine.

Given the different physicochemical properties, routes of metabolism/elimination, and oral

and tissue absorption between prodrug ACE inhibitors used in this work, it is not surprising

that the models selected for the different antihypertensive prodrugs were also different. The

model selected for ramipril included circadian variations in the kinetic constants Ka and Ke1,
with constant Km and Ke2. In contrast, enalapril and spirapril models showed a lower AICc
when including circadian Ka and Ke2. On the other hand, perindopril had a lower AICc when

Fig 1. Summary scheme of the methodology employed. Inclusion and exclusion criteria and PK-PD models developed are described in the methodology

section (data search and selection and PK-PD modeling sections, respectively). Preliminarily, local sensitivity and identifiability analyses of the developed

PK-PD models indicated the presence of highly correlated parameters, so the circadian rhythm parameters of BP were estimated, and available

pharmacokinetic parameters were also established; F (bioavailability), Vd (volume of distribution) and IC50 (50% inhibitory concentration). Thus, the

remaining parameters of each model were estimated later. Models that include and do not include circadian kinetic constants and Hill’s coefficient in the effect

equation were tested, and the model with the lowest corrected Akaike information criterion (AICc) was selected. Subsequently, the selected model parameters

were subjected to an analysis of local sensitivity and identifiability in order to understand their relevance. Finally, simulations at different administration times

(Ta) allowed establishing relationships between different optimization objectives and proposing optimal administration times for dipper and non-dipper

subjects.

https://doi.org/10.1371/journal.pcbi.1010711.g001

Table 1. Objective function (Fobj) and corrected Akaike information criterion (AICc) values for non-prodrug tested models.

Amlodipino Nifedipino Valsartan Olmesartan Telmisartan Lisinopril

Models Fobj AICc Fobj AICc Fobj AICc Fobj AICc Fobj AICc Fobj AICc
No Hill coefficient (n = 1) No circadian Kx 4.08 571.7 4.20 399.1 13.07 871.9 8.48 657.5 9.26 639.3 9.27 1161.1

Circadian Ka 3.17 532.8 3.84 392.2 6.90 580.1 7.09 595.3 8.29 597.4 8.18 1086.4

Circadian Ke 2.99 524.1 3.85 392.6 6.61 566.4 8.11 644.5 8.06 586.0 8.05 1077.4

Circadian Ka and Ke 2.93 525.8 3.38 382.6 4.65 476.7 6.71 581.7 7.31 554.8 7.83 1065.6

Hill coefficient (n6¼1) No circadian Kx 4.06 573.1 4.19 401.0 13.04 872.9 8.30 651.3 9.25 641.3 9.19 1157.5

Circadian Ka 3.14 533.5 3.74 391.6 6.20 549.0 7.07 596.7 8.16 593.5 8.15 1086.6

Circadian Ke 2.97 525.2 3.74 391.7 6.29 553.4 7.69 626.4 7.98 584.8 8.03 1078.3

Circadian Ka and Ke 2.71 517.6 3.28 382.0 4.32 463.3 6.48 573.2 7.03 543.6 7.75 1062.4

https://doi.org/10.1371/journal.pcbi.1010711.t001
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including only circadian Ke2. Notably, in all selected non-prodrug models, the elimination

constant that presented the lowest mean pharmacokinetic constant baseline (Ke1 or Ke2) was

the one dependent on circadian variation. Furthermore, all the medications except spirapril

showed a better AICc with n 6¼ 1 (see Table 2). Table E in S1 Text summarizes the estimated

parameters of selected prodrug models (parameters of Eqs 8–13) with their respective CI,
which units are the same as the corresponding parameters. In this case, the CI values indicate

that all parameters differ statistically from zero.

Simulations including the concentration variable for nifedipine and enalapril are depicted

in Figs A and B in S1 Text. The simulation for three administration times of lisinopril is also

shown (Fig C in S1 Text) since it is the only medication with data available for more than two

times.

Sensitivity and identifiability analysis

In order to evaluate the relevance of each parameter on the variables of prodrug and non-pro-

drug models, a local sensitivity analysis was carried out. Local analysis showed high sensitivity

of the absorption and elimination kinetic constants on the variables related to circadian behav-

ior. In contrast, parameters Imax and n have low sensitivity in all models (Fig 4). The parame-

ter Oa is the one with the highest sensitivity in all the non-prodrug models, followed by Oe, Ka
and Aa. Regarding prodrug models, Oa parameter showed the highest sensitivity for the mod-

els that include circadian variation of Ka (enalapril, ramipril, and spirapril). In contrast, the

highest sensitivity for the perindopril model is for Oe2. Other parameters that present high sen-

sitivity are Ka for enalapril, Oe1 for ramipril, and Oe2 for spirapril. In summary, higher

Table 2. Objective function (Fobj) and corrected Akaike information criterion (AICc) values for prodrug models tested.

Ramipril Enalapril Spirapril Perindopril

Models Fobj AICc Fobj AICc Fobj AICc Fobj AICc
No Hill coefficient (n = 1) No circadian Kx 12.08 834.5 4.80 2644.1 7.75 596.5 6.91 672.3

Circadian Ka 11.84 827.7 4.40 2570.2 6.68 549.7 2.95 487.0

Circadian Ke1 11.80 825.8 4.68 2621.5 6.65 548.2 2.82 480.7

Circadian Ke2 11.04 789.2 4.70 2628.9 6.62 546.5 2.59 469.5

Circadian Km 10.50 763.2 4.46 2578.6 6.57 544.1 3.24 500.5

Circadian Ka and Ke1 7.92 644.2 4.40 2571.7 6.29 535.5 2.58 473.9

Circadian Ka and Ke2 7.92 644.4 4.42 2575.2 6.15 529.2 2.41 465.9

Circadian Ka and Km 7.97 646.5 4.42 2577.7 6.23 532.6 2.85 486.9

Circadian Ke1 and Ke2 10.31 758.8 4.64 2617.7 6.54 547.6 2.41 465.9

Circadian Ke1 and Km 8.62 677.8 4.48 2588.8 6.55 548 2.66 477.4

Circadian Ke2 and Km 8.83 688.0 4.44 2580.0 6.37 539.3 2.59 474.2

Hill coefficient (n6¼1) No circadian Kx 11.97 831.2 4.52 2589.8 7.72 597.3 6.89 673.7

Circadian Ka 11.67 821.9 4.06 2505.5 6.68 552.1 2.52 468.3

Circadian Ke1 11.75 825.5 4.36 2564.3 6.65 550.5 2.57 471.0

Circadian Ke2 11.04 791.7 4.40 2571.6 6.59 547.8 2.43 464.0

Circadian Km 10.16 749.2 4.08 2507.4 6.41 538.9 2.88 486.0

Circadian Ka and Ke1 7.63 632.9 4.02 2501.4 6.20 533.8 2.42 468.6

Circadian Ka and Ke2 7.92 646.9 3.98 2493.6 6.11 529.4 2.41 468.4

Circadian Ka and Km 7.68 635.2 4.06 2507.0 6.23 535.1 2.49 471.9

Circadian Ke1 and Ke2 10.27 759.7 4.34 2564.8 6.38 542.4 2.39 467.0

Circadian Ke1 and Km 8.58 678.7 4.04 2503.4 6.29 538.1 2.55 474.9

Circadian Ke2 and Km 8.51 675.4 4.06 2510.3 6.28 537.5 2.40 467.7

https://doi.org/10.1371/journal.pcbi.1010711.t002
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Fig 2. Model fitting to the experimental data for non-prodrug models. The figures on the left correspond to awakening/morning administration and on the

right to bedtime/evening administration. Each figure shows data with their respective standard errors (SE) for SBP before treatment (light red dots) and DBP
(light blue dots), and for SBP after treatment (dark red dots), DBP (dark blue dots). The dotted line represents the model prediction before treatment, and the

solid line represents the model prediction of each model after the last dose. Fig 2A and 2B, amlodipine; Fig 2C and 2D, olmesartan; Fig 2E and 2F, telmisartan;

Fig 2G and 2H, valsartan; Fig 2I and 2J, lisinopril.

https://doi.org/10.1371/journal.pcbi.1010711.g002
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Fig 3. Model fitting to the experimental data for prodrug models. The figures on the left correspond to awakening/morning administration and on the right

to bedtime/evening administration. Each figure shows data with their respective standard errors (SE) for SBP before treatment (light red dots) and DBP (light

blue dots), and for SBP after treatment (dark red dots), DBP (dark blue dots). The dotted line represents the model prediction before treatment, and the solid

line represents the model prediction of each model after the last dose. Fig 3A and 3B, enalapril; Fig 3C and 3D, ramipril; Fig 3E and 3F, spirapril; Fig 3G and 3H,

perindopril.

https://doi.org/10.1371/journal.pcbi.1010711.g003
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sensitivities are observed for parameters related to circadian functions of pharmacokinetic

constants.

On the other hand, we performed an identifiability analysis for each model to determine if the

parameters present a low correlation between them. This analysis revealed different correlation

patterns between both non-prodrug and prodrug model parameters (Fig D in S1 Text). Correla-

tion matrices show a high correlation (>0.95) between n and Imax parameters for telmisartan,

olmesartan, lisinopril, and enalapril models. Furthermore, parameters Ke and Ae are highly corre-

lated in the telmisartan model, as well as parameters Ka and Aa, and Ke and Oe in the nifedipine

model. In the case of enalapril, there is also a high correlation between Ke1 and Km. The ramipril

model showed a high correlation between Ke1 and F/Vd, and spirapril between parameters Ke2
and Ae2 and between Km and Ae2. Finally, the correlation between all the parameters for the

amlodipine and valsartan models is less than 0.95. In summary, the highly correlated parameters

are n, Imax and periodic function parameters that describe the circadian rhythm of pharmacoki-

netic processes. The highly correlated parameters of the same non-prodrug model differed

between different antihypertensive drugs. That means that the high correlations found in the

non-prodrug model are not due to the lack of structural identifiability but to the fitted data. Prob-

ably, the same applies to highly correlated parameters of prodrug models. Therefore, to uniquely

determine these parameters, it is necessary to have more data, ideally including plasma concentra-

tions for each antihypertensive drug and evaluations at more than two dosing times.

Dosing time optimization

Using data from untreated dipper and non-dipper hypertensive subjects from Hermida et al.

[32], parameters that describe the circadian rhythm of BP (Eqs 1–3) were estimated (Table F

and Fig E in S1 Text). PK-PD models and BP parameters for dipper and non-dipper subjects

allowed to simulate BP profiles for administration times between 0 and 24 hours, thus calculat-

ing optimization objectives.

The relationship between administration time (Ta) and the three objectives (dipper per-

centage, average SBP reduction (SBPreduced), and average SBP peaks reduction (SBPpeaks)) is

represented in Figs 5 and 6. Note that in all figures and tables, the administration times (Ta)

Fig 4. Local sensitivity summaries for non-prodrug models (A) and prodrug models (B). Sensitivity values are shown stacked for each model variable (Xa:

drug available to be absorbed, C: drug concentration, Cm: metabolite concentration, SBP: systolic blood pressure, DBP: diastolic blood pressure).

https://doi.org/10.1371/journal.pcbi.1010711.g004
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Fig 5. Relationship between dosing time and SBP dipper percentage, average SBP reduction (SBPreduced), and average SBP peaks

reduction (SBPpeaks) for amlodipine, nifedipine, telmisartan, olmesartan, and valsartan. The figures on the left show the results for dipper

subjects and those on the right for non-dipper. Fig 5A and 5B, amlodipine; Fig 5C and 5D, nifedipine; Fig 5E and 5F, olmesartan; Fig 5G and

5H, telmisartan; Fig 5I and 5J, valsartan. Dosing time (Ta) is represented in colors from 0 to 24 hours after awakening (colorbar).

https://doi.org/10.1371/journal.pcbi.1010711.g005
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are reported as time after awakening (at awakening Ta = 0). This allows comparison between

studies that had different chronological times of activity/sleep (sleep time occurs between 15–

24 hours after awakening approximately). Left panels show simulations for dipper subjects and

right panels for non-dipper subjects. Moreover, each row corresponds to a different medica-

tion. In general, the patterns vary between different medications and also change between dip-

per vs. non-dipper profiles. Similar patterns are observed in the case of DBP, the main

difference with SBP being the amount of mmHg decreased of DBPreduced and DBPpeaks (see

Figs F and G in S1 Text).

Fig 6. Relationship between dosing time and SBP dipper percentage, average SBP reduction (SBPreduced), and

average SBP peaks reduction (SBPpeaks) for lisinopril, enalapril, ramipril, spirapril and perindopril. The figures on

the left show the results for dipper subjects and those on the right for non-dipper. Fig 6A and 6B, lisinopril; Fig 6C and

6D, enalapril; Fig 6E and 6F, ramipril; Fig 6G and 6H, spirapril; Fig 6I and 6J, perindopril. Dosing time (Ta) is

represented in colors from 0 to 24 hours after awakening (colorbar).

https://doi.org/10.1371/journal.pcbi.1010711.g006
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Dosing times (Ta) for maximum and minimum values of dipper percentage, average reduc-

tion (BPreduced), and average peaks reduction (BPpeaks) of SBP and DBP for dipper subjects are

shown in Tables G and H in S1 Text, respectively. The same results for non-dipper subjects are

shown in Tables I and J in S1 Text. Tables G-J in S1 Text summarize the difference between

the maximum and minimum values reached for each target metric (dipper percentage, ΔDip;

average reduction, ΔSBPreduced and ΔDBPreduced; and average peaks reduction, ΔSBPpeaks and
ΔDBPpeaks) by varying dosing times.

For dipper subjects, dipper percentages were optimal for all drug models; only ramipril and

valsartan presented values greater than 20% in a limited range of Ta. Meanwhile, for non-dip-

per subjects, models predicted low dipper values for amlodipine and enalapril for all Ta (maxi-

mum values reached: 3.6% and 4.9%, respectively). Suboptimal values of dipper percentage

(between 8.5% - 9.7%) were reached at specific administration times for nifedipine, spirapril,

telmisartan and olmesartan. However, optimal values within a particular range of Ta were

obtained for lisinopril, ramipril, perindopril and valsartan. For both dipper and non-dipper

patterns, minimum values of dipper percentage were obtained for administrations close to

waking time. Conversely, maximum values were obtained in the afternoon for enalapril and

perindopril (9–10 hours after awakening) and close to bedtime for the other medications

(12.5–14.5 hours after awakening). Higher ΔDip values were obtained for ramipril, spirapril

and valsartan for both dipper and non-dipper subjects.

Regarding the other objectives, BPreduced values were lowest for nifedipine and perindopril

(1.3–7 mmHg for SBP and 0.8–4.3 mmHg for DBP) and highest for olmesartan and enalapril

(13.8–16.1 mmHg for SBP and 8.7–10 mmHg for DBP). Lower BPreduced values for both dipper

and non-dipper subjects were obtained by administering ramipril and lisinopril after awaken-

ing (3–4 hours after awakening); spirapril, nifedipine, telmisartan, olmesartan, and valsartan

in the afternoon (5–9 hours after awakening); and amlodipine, perindopril, and enalapril dur-

ing sleep (16–21.5 hours after awakening). Higher BPreduced values were obtained before awak-

ening for spirapril, telmisartan, valsartan and olmesartan (17–21.5 hours after awakening

approximately); after awakening for amlodipine (1–2 hours after awakening); later times for

perindopril and enalapril (6–8 hours after awakening); and at bedtime for nifedipine, lisino-

pril, ramipril (14–15.5 hours after awakening). On the other hand, the reduction of the peaks

(BPpeaks) was lower for nifedipine and perindopril (0.9–5.7 mmHg for SBP and 0.5–3.6 mmHg

for DBP) and higher for enalapril and olmesartan (13–16.9 mmHg for SBP and 8.3–10.8

mmHg for DBP). Dipper subjects obtained minimum BPpeaks values in the afternoon for telmi-

sartan and ramipril (8–9 hours after awakening) and close to bedtime for the other medica-

tions (~11–15 hours after awakening). In contrast, minimum values of BPpeaks for non-dipper

subjects were obtained some hours after awakening for nifedipine, lisinopril, ramipril, telmi-

sartan and valsartan (4–5.5 hours after awakening); and close to bedtime for spirapril, olmesar-

tan, amlodipine, enalapril and perindopril (11.5–15.5 hours after awakening). Maximum

BPpeaks values were also reached at different times between dipper and non-dipper subjects.

For dipper subjects, maximum BPpeak values were obtained close to awakening for amlodipine,

nifedipine and enalapril; some hours after awakening for perindopril (~6 hours after awaken-

ing); and during the night rest for lisinopril, ramipril, spirapril, olmesartan, valsartan and tel-

misartan (16.5–23 hours after awakening). In comparison, non-dipper subjects had higher

BPpeaks when administering ramipril, lisinopril, telmisartan, spirapril, valsartan, olmesartan,

nifedipine and enalapril during the sleep time (16–22 hours after awakening); amlodipine

close to awakening; and perindopril later (~8 hours after awakening). Higher ΔSBPreduced and

ΔDBPreduced values were obtained for ramipril, perindopril and valsartan for both dipper and

non-dipper subjects. In contrast, higher ΔSBPpeaks and ΔDBPpeaks values were obtained for

ramipril, spirapril, olmesartan and valsartan for both dipper and non-dipper subjects.
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In order to find optimal administration times for each medication and BP profile type, the

results obtained for all possible Ta parameters were evaluated and those reaching the current

therapeutic goal of BP<130/80 and, at the same time, optimal values of dipper percentage

were selected. Ranges of maximum and minimum SBP values (SBPmin and SBPmax), DBP
(DBPmin and DBPmax), and dipper percentage, as well as the Ta in which the objectives

BP<130/80 mmHg and a dip of 10–20% are reached, are shown in Table 3 for dipper subjects

and Table 4 for non-dipper subjects. In addition, both tables show a column that indicates the

optimal administration time for each antihypertensive medication based on an activity/rest

cycle between 8 a.m. (upon awakening) and 11 p.m. (bedtime).

In the case of dipper subjects, predicted results show that lisinopril, enalapril, telmisartan,

valsartan and olmesartan allow reaching BP<130/80 mmHg and, at the same time, optimal

dipper percentage values. Optimal Ta parameters were obtained at awakening for lisinopril,

telmisartan, valsartan, and olmesartan (administration at bedtime is also optimal for olmesar-

tan), and at any Ta for enalapril. Amlodipine, ramipril and spirapril models predict a maxi-

mum DBP slightly higher than the limit of 80 mmHg, with optimal Ta upon awakening for

amlodipine and spirapril, and at bedtime for ramipril (but the optimal Ta of ramipril for SBP
was upon awakening). In contrast, nifedipine and perindopril show suboptimal results, not

obtaining a reduction in SBP and DBP enough to reach the therapeutic objective BP<130/80

mmHg at any Ta. Despite the latter, administration near awakening had a greater effect for

both nifedipine and perindopril in dipper subjects.

For non-dipper subjects, results showed that reaching both goals at the same time

(BP<130/80 and dipper percentage of 10–20%) is more difficult than for dipper subjects. Only

Table 3. Predicted results of BP and optimal dosing times (Ta) after awakening using PK-PD models at different dosing times for dipper subjects.

Medications SBPmin
(mmHg)

DBPmin
(mmHg)

SBPmax
(mmHg)

DBPmax
(mmHg)

Ta (hh:mm) for BP<130/

80 mmHg

%
Dipper

Ta (hh:mm) for Dip

10–20%

Optimal time of day
���

Amlodipine 101.6–102.1 64.0–64.3 128.1–128.6 81.6–81.9 00:04� 12.6–

13.2

0–24 morning (upon

waking)

Nifedipine 101.8–106.5 64.2–67.1 136.9–137.8 87.1–87.7 03:16�� and 02:54� 14.2–

18.9

0–24 ~ 3 h after

awakening

Lisinopril 91.6–96.7 57.7–60.9 125.0–129.6 79.5–82.5 18:16–00:49 15.3–

19.5

0–24 morning (upon

waking)

Enalapril 92.7–95.3 58.4–60.1 120.3–122.6 76.5–78.1 0–24 10.1–

12.5

0–24 any time

Ramipril 91.3–99.2 57.5–62.5 126.8–135.7 80.9–86.5 12:21–00:09Δ and 16:18� 13.8–

21.3

14:31–9:19 bedtime or upon

waking

Perindopril 96.0–101.6 60.5–64.1 133.4–137.3 84.8–87.4 01:44�� and 01:37� 15.2–

19.8

0–24 1–2 hours after

waking up

Spirapril 94.0–100 59.0–63.0 126.3–132.3 80.2–84.2 13:35–01:34Δ and 0:02� 14.0–

19.4

0–24 morning (upon

waking)

Telmisartan 93.8–97.1 59.0–61.2 125–131.3 79.6–83.7 16:59–00:28 15.1–

18.5

0–24 morning (upon

waking)

Olmesartan 91.3–94.0 57.4–59.3 122.4–129 78.0–82.3 14:36–01:48 15.4–19 0–24 bedtime or upon

waking

Valsartan 88.9–95.0 55.8–59.9 124.2–132.5 79.2–84.5 18:36–00:55 16.0–

22.3

17:18–8:31 morning (upon

waking)

� Ta after awakening in which the minimum DBPmax value is reached (values less than 80 mmHg are not obtained).

�� Ta after awakening in which the minimum SBPmax value is reached (values less than 130 mmHg are not obtained).
Δ Ta after awakening range in which SBP predicted values are less than 130 mmHg.

��� Optimal time of day assuming an activity/rest cycle between 8 am (upon awakening) and 11 pm (bedtime).

https://doi.org/10.1371/journal.pcbi.1010711.t003
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lisinopril, ramipril and valsartan models predicted optimal results. Optimal Ta for lisinopril is

in the range of 12.5–14.0 hours after awakening, for ramipril between 9–15 hours after awak-

ening and valsartan between 8–18 hours after awakening. Suboptimal values of dipper percent-

age (8.5–9.6%), but optimal values of BP were obtained when administering spirapril,

telmisartan and olmesartan some hours before bedtime (13–14 hours after awakening). Lower

dipper percentage values (3.5–4.9%), but optimal BP values were obtained when administering

enalapril and amlodipine ~9.5 and ~14.5 hours after awakening, respectively. Finally, nifedi-

pine and perindopril showed the worst results for dipper subjects. In the case of nifedipine,

neither of the two objectives was achieved; it showed the highest percentage of dipper (~ 8.9%)

at ~13.5 hours after awakening and greater effects on BP when administered after awakening.

On the other hand, perindopril achieved optimal dipper percentage values for Ta some hours

before bedtime (approximately 8.5–14.5 hours after awakening) but a greater effect on BP for

Ta upon awakening.

In summary, dipper subjects had better outcomes when taking antihypertensive medica-

tions at awakening, except for ramipril. At the same time, non-dipper subjects models pre-

dicted better results close to bedtime administration, except for enalapril and perindopril.

Perindopril and nifedipine had more difficulties achieving therapeutic goals, mainly in non-

dipper subjects. Therefore, optimal administration times differed between antihypertensive

medications and BP profiles.

Discussion

Usually, administration upon awakening of antihypertensive medications is recommended to

reduce daytime BP surges. However, in recent years, several studies have shown the benefits of

bedtime/evening administration of these medications [26,31,33,34], mainly due to a more sig-

nificant effect on BP during night rest and a possible greater effect on morning surge [35]. Var-

iations in the effect of antihypertensive medications when administered at different dosing

times have been explained by circadian pharmacokinetic and pharmacodynamic variations,

which result in non-intuitive variations in the effect of BP [12,33]. To understand these varia-

tions and find the optimal administration times (both to maintain a dipper profile and BP lev-

els<130/80 mmHg) we developed PK-PD models that include the circadian rhythm for

Table 4. Predicted results of BP and optimal dosing times (Ta) after awakening using PK-PD models at different dosing times for non-dipper subjects.

Medications SBPmin
(mmHg)

DBPmin
(mmHg)

SBPmax
(mmHg)

DBPmax
(mmHg)

Ta (hh:mm) for BP<130/

80 mmHg

%
Dipper

Ta (hh:mm) for Dip

10–20%

Optimal time of day
���

Amlodipine 116.8–117.3 72–72.3 128.5–129 79.6–79.9 0–24 3.1–3.6 14:24 for 3.6% late evening

Nifedipine 117.0–122.3 72.1–75.4 134.7–137.5 83.3–85.1 0:36�� and 0:20� 3.7–8.9 13:31 for 8.9% not recommended

Lisinopril 105.3–111.2 64.8–68.5 123–127.8 76.2–79.2 0–24 5.5–10.1 12:18–13:54 evening

Enalapril 106.5–109.4 65.6–67.4 119.6–122.6 74–76 0–24 2.4–4.9 9:30 for 4.9% late afternoon

Ramipril 104.9–113.9 64.6–70.2 126.4–135.2 78.5–83.8 11:56–18:29 3.2–11.7 9:13–14:48 late evening

Perindopril 110.3–116.9 67.9–72 131.4–136.3 81.3–84.6 0:10�� and 00:10� 5.9–11.0 8:49–14:24 late afternoon

Spirapril 108.0–114.7 66.3–70.7 124.4–131.1 77–81.2 10:04–23:55 3.5–9.6 13:37 for 9.6% late evening

Telmisartan 107.9–111.6 66.4–68.8 125–131.1 77.5–81.4 9:30–0:20 4.7–8.6 13:25 for 8.6% late evening

Olmesartan 104.9–108 64.5–66.6 120.8–127.3 74.8–78.9 0–24 5.0–9.1 13:25 for 9.1% late evening

Valsartan 102.1–109 62.7–67.2 122.9–131.2 76.3–81.5 10:51–0:59 5.8–12.9 8:07–17:42 late evening or

bedtime

�Ta after awakening in which the minimum DBPmax value is reached (values less than 80 mmHg are not obtained).

��Ta after awakening in which the minimum SBPmax value is reached (values less than 130 mmHg are not obtained).

���Optimal time of day assuming an activity/rest cycle between 8 am (upon awakening) and 11 pm (bedtime).

https://doi.org/10.1371/journal.pcbi.1010711.t004
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antihypertensive non-prodrugs and prodrugs. Using previously published data from healthy

subjects or subjects diagnosed with grade I or II AH, non-prodrug and prodrug PK-PD model

parameters were estimated. For each antihypertensive medication, models with and without

kinetic constants with circadian components were tested and selected based on the corrected

Akaike Information Criterion (AICc). The AICc was established as a selection criterion due to

its better ability to identify models with good prediction compared to Bayesian Information

Criterion (BIC) and at the same time less overfitting to the data compared to Akaike Informa-

tion Criterion [36]. Although there is a high correlation between some kinetic parameters

(mainly in non-prodrug models), the values of BIC indicate the selection of the same models

as AICc or models with the same circadian components but without the coefficient n on the

effect equation (BIC values, data and computational codes for each antihypertensive medica-

tion can be reached at https://www.synapse.org/#!Synapse:syn36744682/files/). In addition,

sensitivity analysis showed higher sensitivities of the circadian parameters for all the models.

Therefore, the incorporation of circadian components on kinetic constants in PK-PD models

is consistent and suggests considering these variations in the study of the effect of orally

administered antihypertensive medications.

Variations in the selected models, as well as in the sensitivity of the estimated PK parame-

ters of the prodrug models, can be explained by differences in tissue accumulation, elimina-

tion/metabolism routes, oral and tissue absorption, and penetration of these drugs [37]. The

only prodrug model that did not include the circadian rhythm of Ka was perindopril, which

has the highest bioavailability among the prodrugs studied (95% versus 50–60%, see Table C in

S1 Text). In contrast, enalapril, perindopril and spirapril models included the circadian

rhythm of Ke2 and only ramipril included that of Ke1, which is explained by their different

elimination routes and rates. Renal clearance and half-life times of enalapril, perindopril, and

spirapril indicate that their elimination rate is greater than their active metabolite, enalaprilat,

perindoprilat, and spiraprilat, respectively [38–41]. In contrast, ramiprilat is eliminated at a

greater rate than its parent drug, ramipril [42]. This supports the higher estimated values of

Ke1 relative to Ke2 for enalapril, perindopril, and spirapril, and the opposite for ramipril (Ke2
> Ke1). Consequently, elimination constants with the lowest estimated value, that is, those that

describe a slower process, are selected as dependent on the circadian rhythm for each prodrug.

Regarding PD parameters, a low sensitivity was obtained for n and Imax of selected models.

This can be explained by how the sensitivity was calculated since normalized sensitivity sum-

maries were estimated for each variable. Namely, since SBP and DBP profiles change in low

percentages with respect to their respective baseline values, normalized sensitivity values for

these variables are lower than the sensitivity of the C, Cm or Xa variable parameters. But, if we

analyze the effect on BP, parameters are relevant to achieve a good prediction, which is sup-

ported by the obtained AICc Value.

Although concentration data are not available for all antihypertensive medications, the

identifiability analysis shows that the PK parameters can be reasonably estimated in most

cases. This is because the PK-PD models assume that changes in the effect on BP can be

explained by changes in pharmacodynamics or pharmacokinetic processes. The SBP and DBP
equations show that the circadian changes in pharmacodynamics are directly related to the

input function kin(t) (Eq 3), which parameters are set before estimating the circadian pharma-

cokinetic parameters. Therefore, circadian changes in BP effect that are not explained by kin(t)
must necessarily be explained by circadian changes in pharmacokinetic parameters (i.e.,

changes in plasma concentration). In addition, we show that, for the same non-prodrug

model, highly correlated parameters were different for different antihypertensive medications

(Fig D in S1 Text), so the high correlation between some parameters is not due to structural

lack of identifiability but rather to the insufficient information provided by the adjusted data.
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However, in the case of prodrug models, estimating highly correlated pharmacokinetic param-

eters probably requires larger data sets, including concentrations of the drug and the active

metabolite for more than two dosing times. Therefore, future clinical studies of antihyperten-

sive medications that include plasma concentration data for more than two dosing times are

recommended to estimate these parameters. Moreover, a personalized clinical study would

make it possible to extend the subpopulation analysis of dipper and non-dipper subjects per-

formed in this work to individual-level information, considering both pharmacokinetic

parameters and individual BP profiles and thus estimating the optimal time and dose for each

patient.

Subsequently, the developed models were used to optimize the dosing time of dipper and

non-dipper subjects. The latter was carried out by replacing parameters of Eqs 1–3 with

parameters obtained by fitting data from untreated dipper and non-dipper subjects from Her-

mida et al [32]. Replacing previously estimated BP parameters and still using the same PK-PD

parameters could be questionable because underlying conditions or comorbidities such as dia-

betes or adrenal insufficiency and different lifestyles can generate different BP patterns with

altered regulatory mechanisms and, therefore, biased results of antihypertensive medication

responses. However, our methodology is supported by the fact that study subjects met the

same inclusion and exclusion criteria, so PK parameters should not be statistically different.

Furthermore, different doses and IC50 values between dipper and non-dipper subjects have

not been established so far. Nevertheless, a clinical study with personalized effect data from

dipper versus non-dipper patients for each antihypertensive medication could provide further

insight, mainly due to possible variations in dose-response curves between patients with differ-

ent BP profiles.

Maximum reduction on BP peaks (BPpeaks) was also reached at different times between dipper

and non-dipper subjects. For dipper subjects, maximum BPpeaks were obtained close to awakening

time for amlodipine, nifedipine and enalapril; some hours after awakening for perindopril (~6

hours after awakening); and during sleep for lisinopril, ramipril, spirapril, olmesartan, valsartan

and telmisartan (16.5–23 hours after awakening). In comparison, non-dipper subjects have a

higher reduction in BP peaks when administering ramipril, lisinopril, telmisartan, spirapril, val-

sartan, olmesartan, nifedipine, and enalapril during sleep time (16–22 hours after awakening);

amlodipine close to awakening; and perindopril later (~8 hours after awakening).

To understand the relationship between administration time and different therapeutic

goals (dipper percentage, BPreduced and BPpeaks), we evaluated the PK-PD models developed

with administration times from 0 to 24 hours. Results show that maximum values of dipper

percentage, BPreduced and BPpeaks occur at different dosing times (competing optimization

objectives). Furthermore, patterns of relationship between dipper percentage, BPreduced, and

BPpeaks differ between medications and predicted outcomes for dipper and non-dipper sub-

jects. Therefore, optimal Ta parameters are not the same for all cases. On the one hand, dipper

percentage is higher when AH medications are administered close to bedtime except for enala-

pril and perindopril. On the other hand, BPreduced is higher for administration times close to

awakening for olmesartan and amlodipine, later times for enalapril and perindopril, and

administration at bedtime for the other medications, both for dipper and non-dipper subjects.

Slight differences were found between dipper and non-dipper subjects regarding BPpeaks. This

is probably due to the greater distance between average BP values and BP peaks in dipper pat-

terns during the day. For dipper subjects, some medications obtain higher BPpeaks values when

administered close to awakening. In comparison, for non-dipper subjects, more medications

reach higher values when simulating bedtime or during sleep administration. Still, for both

types of subjects, the best results are obtained at administration times less feasible in practice

(during sleep).
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As mentioned in the introduction, the optimization of the therapeutic objectives evaluated

(dipper percentage, BPreduced and BPpeaks) has been associated with lower long- and short-term

cardiovascular risk [26–28]. Indeed, decreased BP during sleep is shown to have the greatest

impact on long-term cardiovascular risk [6]. However, there is no quantitative estimate of how

each of these therapeutic targets affects cardiovascular risk. Therefore, it is difficult to define

multi-objective optimization weights to find an optimal administration time for each type of

subject and drug. In addition, our results indicate that the times when higher dipper percent-

ages are obtained coincide with those in which a more significant BP decrease during sleep is

obtained (non-competitive optimization objectives); therefore, only the dipper percentage was

included in the analyses. That is why the criteria used in this study to obtain optimal adminis-

tration times are based on the therapeutic objective defined by the current American Clinical

Guidelines (<130/80 mmHg) and to obtain a dipper pattern (dip 10–20%).

The results indicate that for dipper subjects, better outcomes would be obtained by admin-

istering medications close to awakening, except for ramipril and olmesartan, which can be

taken either upon awakening or at bedtime, and enalapril at any time. Indeed, bedtime admin-

istration of ramipril and valsartan in dipper subjects could generate nocturnal hypotension, so

morning administration is recommended to avoid possible adverse effects during night rest.

Furthermore, administration in the morning is also recommended for subjects with nocturnal

hypotension to prevent significant complications.

For non-dipper subjects the best results are obtained for evening/bedtime dosing times,

except for enalapril and perindopril, which show better results when administered in the after-

noon, and only nifedipine failed to reach both dipper percentage and target BP. The greater

demand for the effect during night rest made finding optimal Ta parameters for these subjects

more challenging. This could be overcome by administering the antihypertensive medication

twice daily or by giving a combination of drugs, so both alternatives should be tested in a clini-

cal trial. The main difficulties were observed for perindopril and nifedipine. Perindopril allows

a greater nocturnal reduction in BP with administration at bedtime, as reported in [43]; how-

ever, the times when BP values<130/80 mmHg are reached do not coincide with the greater

nocturnal reduction in the case of non-dippers. Nifedipine even failed to achieve the therapeu-

tic objective for dipper subjects due to its immediate-release formulation, which is why it is

not usually used in the chronic treatment of arterial hypertension but rather in hypertensive

crises [44]. On the other hand, the drug that presented a smaller variation of effect on BP and

dipper percentage was amlodipine, which coincides with the nonsignificant differences

between different dosing times observed by other authors [45–48]. Finally, studies of lisinopril,

ramipril, enalapril, spirapril, valsartan, telmisartan and olmesartan showed a significant

improvement in the dipper percentage in bedtime administration, which is consistent with

our analyses [49–61].

In summary, we established different optimal administration times by evaluating the effect

on dipper percentage, BPreduced and BPpeaks and found time intervals when the dipper percent-

age lays in an optimal range and BP achieves the current therapeutic goal for most of the medi-

cations studied. However, a clinical study is necessary to verify the predictions and evaluate

the significance of optimizing the dosing time in a personalized way on the effect on BP and

the long-term cardiovascular risk.

Materials and methods

Data search and selection

A data search was performed to find BP and plasma concentration data of first-line antihyper-

tensive medications for at least two different dosing times. Selected data include healthy
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subjects or diagnosed subjects with grade I or II AH and people >18 years older. Moreover,

studies involving shift-workers, pregnant women, consumers of> 80 g/day of alcohol or > 20

cigarettes/day, high-performance athletes, subjects with severe AH (grade 3, BP�180 / 110

mm Hg), or secondary hypertension, and subjects with complex cardiovascular diseases were

excluded.

Only PK-PD publications with BP profiles were considered (data presenting only variations

or averages were discarded). In all selected studies, antihypertensive medications were admin-

istered once daily. PK and PD data were found for enalapril (10 mg at 7 a.m. or 7 p.m.) and

nifedipine (10 mg at 8 a.m. or 7 p.m.) from [55,62]. PD data for ramipril (5 mg either on awak-

ening or bedtime), spirapril (6 mg, either on awakening or bedtime), perindopril (4 mg at 9 a.

m. or 9 p.m.), lisinopril (20 mg at 8 a.m., 4 p.m. or 10 p.m.), amlodipine (5 mg at 8 a.m. or 8 p.

m.), valsartan (160 mg either on awakening or bedtime), olmesartan (20 mg either on awaken-

ing or bedtime) and telmisartan (80 mg either on awakening or bedtime) were extracted from

[43,47,49,51,52,54,58,63]. For published data in which no chronological time was indicated,

wake-up time was established at 8 a.m. and sleep time at 11 p.m., keeping the reported sleep

duration (9 hrs). Regarding activity/rest cycle and naps, the nifedipine and enalapril data were

obtained by establishing the same cycle of activity/rest, suggesting following the same routines;

the lisinopril study established chronological times for activity/rest cycle; the studies of amlodi-

pine, ramipril, spirapril, telmisartan, olmesartan and valsartan, suggested following the same

routines and avoiding daytime napping; and patients of the perindopril study were instructed

to report their times of going to bed and arising when the BP monitor was in use, and reported

times did not indicate naps.

Average experimental data of each antihypertensive medication study and their corre-

sponding standard errors were used both for the estimation of parameters and the subsequent

model selection. For BP data without standard error or standard deviation (SD), an approxi-

mation of 2% of the average values was used as SE, which is roughly the mean SE of the other

data sets. Subsequently, fixed parameters of the PK-PD models (volume of distribution (Vd),

bioavailability (F), and IC50) were set according to respective published information (see

Table C in S1 Text) [64–74].

PK-PD modeling

The PK-PD models were developed using differential equation systems that couple equations

from a one-compartment pharmacokinetic model and two indirect effect type I models with

periodic production rates for SBP and DBP, respectively [30].

Firstly, parameters for SBP and DBP equations were estimated using before-treatment data

for each medication (Eqs 1–2). BP differential equations include production (kin) and output

constants (kout). But, in order to incorporate the circadian rhythm of BP, the production con-

stant was included as a periodic function in both equations (Eq 3).

dSBP
dt
¼ kin tð Þ � kout1 � SBP ð1Þ

dDBP
dt
¼ kin tð Þ � kout2 � DBP ð2Þ

kinðtÞ ¼ M þ A12cosðW12ðt þ TaÞ þ O12Þ þ A24cosðW24ðt þ TaÞ þ O24Þ ð3Þ

Overall, Eqs 1–3 describe the baseline BP before treatment; where the periodic production

rate constant kin(t) describes the two-component circadian rhythm of BP and depends on the
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integration time (t, from 0 to 24 hours) and the parameters M (mean BP baseline or mesor),

A12 (amplitude for 12 hours component), A24 (amplitude for 24 hours component), W12

(angular frequency, 2π/12), W24 (angular frequency, 2π/24), O12 (BP peak time or acrophase

for 12 hours component), O24 (BP peak time or acrophase for 24 hours component) and

administration time (Ta).

Subsequently, pharmacokinetic differential equations and a Hill equation were incorpo-

rated on SBP and DBP differential equations to capture the treatment effect. In the case of

non-prodrugs, the models were composed of four ordinary differential equations (Eqs 4–7).

The first one describes the quantity available to be absorbed (Xa), which initial condition cor-

responds to the administered dose (ug); the second one represents the plasma concentration of

the drug (C); and the third and fourth equations to SBP and DBP after treatment. Thus, the

type I effect model of each antihypertensive medication was completed, and Hill coefficient n
6¼ 1 and n = 1 were tested (Eqs 6–7) [75].

dXa

dt
¼ � Ka tð Þ � Xa ð4Þ

dC
dt
¼

F
Vd
� Xa � Ka tð Þ � Ke tð Þ � C ð5Þ

dSBP
dt
¼ kin tð Þ � 1 �

Imax � Cn

ICn
50
þ Cn

� �

� kout1 � SBP ð6Þ

dDBP
dt
¼ kin tð Þ � 1 �

Imax � Cn

ICn
50
þ Cn

� �

� kout2 � DBP ð7Þ

Eq 4 describes the antihypertensive medication’s absorption rate, where Xa corresponds to

the amount available to be absorbed, and Ka(t) is the absorption constant. Eq 5, which

describes the change in plasma concentration over time, is defined by the parameters F (bio-

availability), Vd (volume of distribution), Ka(t) and Ke(t) that correspond to absorption and

elimination constants, respectively. In the SBP and DBP equations, n is the hill coefficient, IC50

is the concentration that produces 50% inhibition, and Imax is the maximum inhibitory effect

that can be achieved by the antihypertensive medication, which is defined between 0 and 1.

Imax should not be less than 0 because this would imply increases in BP after administering

the antihypertensive medication (opposite effect), and it should be less than 1, since if

Imax> 1, then high concentrations of the drug could generate BP values close to zero or even

negative, which is infeasible due to physiological compensation mechanisms. Moreover,

reported IC50 values correspond to the drug concentration that inhibits smooth muscle con-

traction by 50%, in the case of ARBs and CCBs, and the concentration that inhibits the activity

of the angiotensin converting enzyme by 50%, in the case of ACE inhibitors. Therefore, they

do not necessarily correspond to concentrations at which a 50% decrease in BP is achieved.

The non-prodrug model was fitted to the amlodipine, nifedipine, lisinopril, valsartan, tel-

misartan and olmesartan data (although olmesartan medoxomil is a prodrug, for modeling

purposes it was considered a non-prodrug due to its rapid bioactivation by hydrolysis [76]).

In the case of prodrugs (enalapril, ramipril, perindopril and spirapril), it was necessary to

include an equation for the concentration of the drug and its active metabolite. Therefore, the

model for prodrugs corresponds to a system of five ordinary differential equations (Eqs 8 –

12). The first one describes the quantity available to be absorbed (Xa), the second one is related

to the plasma concentration of the prodrug (C), the third one corresponds to the plasma
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concentration of the active metabolite (Cm), and the fourth and fifth equations to SBP and

DBP after treatment.

dXa

dt
¼ � Ka tð Þ � Xa ð8Þ

dC
dt
¼

F
Vd
� Xa � Ka tð Þ � ðKe1 tð Þ þ Km tð ÞÞ � C ð9Þ

dCm

dt
¼ Km tð Þ � C � Ke2 tð Þ � Cm ð10Þ

dSBP
dt
¼ kin tð Þ � 1 �

Imax � Cm
n

ICn
50
þ Cm

n

� �

� kout1 � SBP ð11Þ

dDBP
dt
¼ kin tð Þ � 1 �

Imax � Cm
n

ICn
50
þ Cm

n

� �

� kout2 � DBP ð12Þ

The prodrug model contains a larger number of pharmacokinetic constants than the non-

prodrug model. The equation that describes the plasma concentration of the prodrug (Eq 9)

depends on three constants: the absorption constant Ka(t), the elimination constant of the pro-

drug Ke1(t), and the metabolism constant of the prodrug Km(t). The equation that describes

the plasma concentration of the active metabolite (Eq 10) depends on the metabolism constant

Km(t) and the elimination constant of the active metabolite Ke2(t). Besides, in this case, the

SBP and DBP effect equations depend on the concentration of the active metabolite Cm.

In both cases, non-prodrug and prodrug models, the incorporation of the circadian rhythm

in the pharmacokinetic processes of each medication was performed by including circadian

periodic functions for each kinetic constant Kx(t) (such as Ka(t) and Ke(t)) and combinations

of them (Eq 13). However, to avoid overfitting, the decision to incorporate none, only one or

two kinetic constants as periodic functions was evaluated for each model.

KxðtÞ ¼ Kx þ AxcosðW24ðt þ TaÞ þ OxÞ ð13Þ

Thus, each kinetic constant Kx(t) that includes circadian rhythm has a component with a

period of 24 hours (angular frequency, W24 = 2π/24). Kx(t) depends on the integration time t
and it is determined by the parameters Kx (mean pharmacokinetic constant baseline), Ax

(amplitude of the pharmacokinetic periodic function), Ox (peak time or acrophase of the phar-

macokinetic periodic function) and the dosing time (Ta).

Parameter estimation and model selection

Parameter estimation for prodrug and non-prodrug models was performed through the global

optimization algorithm MEIGO [77] using Eq 14 as the objective function:

Fobj ¼
1

k � N

Xk

i¼1

XN

n¼1

yexp iðtnÞ � ymodel iðtnÞ
siðtnÞ

� �2

ð14Þ

Where N is the total number of mean experimental data per variable for each Ta, k is the

number of variables, and yexp i is the mean experimental value of the i variable, ymodel i is the

value predicted by the model and σi is the standard error from the data of the i variable.

PLOS COMPUTATIONAL BIOLOGY Optimization of the dosing time of antihypertensive medication through mathematical models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010711 November 14, 2022 20 / 27

https://doi.org/10.1371/journal.pcbi.1010711


PK-PD models of antihypertensive medications were set by calculating the Log-Likelihood

(LogL) and AICc values (Eqs 15 and 16) and selecting those with the smallest AICc [36].

LogL ¼ �
N
2
logð2pÞ �

Xk

i¼1

XN

n¼1

logðsiðtnÞÞ �
1

2

Xk

i¼1

XN

n¼1

yexp iðtnÞ � ymodel iðtnÞ
siðtnÞ

� �2

ð15Þ

AICc ¼ 2npars � 2LogLþ 2npars

npars þ 1

N � npars � 1

 !

ð16Þ

Where, npars corresponds to the number of estimated parameters of the selected model.

Finally, estimation of BP parameters before treatment and BP of dipper and non-dipper

patients was the same as described for the estimation of the PK-PD model parameters, using

least squares as the objective function. All calculations and analyses were implemented in

MATLAB 2021.

Sensitivity and identifiability analysis

Sensitivity and identifiability analyses were performed for each model using the SENS_SYS

third-party MATLAB function, which allows calculating the local sensitivity trajectory (Sij(tn))

for each variable i and parameter j at the time point (tn) described in Eq 17 [35]. According

to the methodology described by Cortés-Rı́os and Rodriguez-Fernandez [78], normalized

local sensitivity trajectories (Srelij(tn)) of each predicted variable ymodel i with respect to each

parameter pj for the best parameter sets at the time point (tn) were obtained using the Eqs 17

and 18.

Sij tnð Þ ¼
dymodel iðtnÞ

dpj
ð17Þ

Srelij tnð Þ ¼
dymodel iðtnÞ

dpj
�

pj

ymodel iðtnÞ
ð18Þ

In order to summarize the large number of sensitivity values (for each time and variable), δj
was calculated for each parameter using Eq 19 [79].

dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k � N

Xk

i¼1

XN

n¼1

Srel2ijðtnÞ

v
u
u
t ð19Þ

Then, local identifiability analysis was carried out using the Fisher information matrix

(FIM), obtained from the local sensitivity matrices S(tn) (Eq 17) and the covariance matrix (Q)

(see Eq 20) [80].

FIM ¼
XN

n¼1

SðtnÞ � QðtnÞ � SðtnÞ
T

ð20Þ

where Q(tn) is a square diagonal matrix calculated using the standard error of the data for each

variable at each time point (tn). Since, the inverse of the FIM represents an approximation of

the parameter estimation error covariance between the parameters j and h (s2
jh ¼ ðFIM

� 1Þjh),

the diagonal of the inverse of the FIM ðs2
jjÞ is an approximation of the variance of the parame-

ters [4,80]. Thus, assuming a normal distribution, the 95% confidence intervals (CI) of a

PLOS COMPUTATIONAL BIOLOGY Optimization of the dosing time of antihypertensive medication through mathematical models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010711 November 14, 2022 21 / 27

https://doi.org/10.1371/journal.pcbi.1010711


parameter can be approximated by p±1.96 σjj [81].

kjh ¼
s2
jh

shh � sjj
ð21Þ

Finally, the correlation between parameters j and h (κjh) can be calculated using the Eq 21

described by Ljung et al. [80].

Dosing time optimization

Once the model parameters for each medication were estimated, simulations of BP profiles

after treatment for dipper and non-dipper patterns were obtained for dosing times (Ta)

between 0–24 hours. Data for dipper and non-dipper patterns were obtained from Hermida

et al. [32] and were used to estimate the parameters of Eqs 1 and 2. These parameters were

used in the previously calibrated models for each antihypertensive medication—Eqs 6 and 7 in

the case of non-prodrug models and Eqs 7 and 8 for prodrug models. Then, BP profiles

allowed calculating dipper percentages (Eq 22), reduced BP averages in mmHg (BPreduced) (Eq

23) and average peaks reduction in mmHg (BPpeaks) (Eq 24) at different dosing times for SBP
and DBP.

Dipper ð%Þ ¼
BPawake � BPsleep

BPawake

� �

� 100 ð22Þ

BPreduced ¼
1

N

XN

n¼1

ðBPbeforeðtnÞ � BPafterðtnÞÞ ð23Þ

BPpeaks ¼
1

P

XP

p¼1

ðBPbeforeðtpÞ � BPafterðtpÞÞ ð24Þ

BPawake is the average BP during the day (mmHg), BPsleep is the average BP during the night

rest (mmHg), BPbefore(t) is the average BP value before treatment at time t, BPafter(t) is the aver-

age BP value after treatment at time t, N is the number of experimental data, and P is the num-

ber of experimental data that exceed the average BP value before treatment (BPbefore(t)>mean
(BPbefore)).

Simulations allowed finding the dosing times that reach the therapeutic target BP<130/80

mmHg. Therefore, optimal dosing times were established by comparing the time in which dip-

per percentages were between 10–20% and the BP remained <130/80 mmHg (therapeutic

objective set by ACC / AHA and WHO guidelines [8,82]). When optimal dipper percentage is

not achieved (dipper percentage <10 or >20%), the dosing time at which the maximum/mini-

mum dipper percentage was obtained is reported. Moreover, when SBP or DBP optimal values

are not obtained, the Ta at which the minimum value of SBPmax or DBPmax is obtained (i.e.,

the lowest BP of the maximum BP values of the profiles) is reported. In the same way, optimal

dosing time results for a different target BP can be obtained by modifying the Target_BP vari-

able of the OptimBP function, available in the developed MATLAB codes (https://www.

synapse.org/#!Synapse:syn36744682/files/).
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