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Abstract
Globally, colorectal cancer (CRC) is one of the most typical lethal cancers. One of the main factors for better
outcomes in CRC management is the early detection of the disease. As an integral component of human
metabolism and homeostasis, gut microbiome has recently been a subject of extensive research for its role
in the pathogenesis, diagnosis, and treatment of CRC.

Microbial dysbiosis (the decrease in beneficial gut flora and the increase of detrimental populations) leads to
chronic inflammation and genetic alteration in the host cells, triggering and promoting CRC carcinogenesis.
Identifying these microbial changes in depth would potentially isolate the pathogenic microbiota species
and establish biomarker models for early detection of CRC. On the other hand, modifying these microbial
changes would help formulate preventative and therapeutic strategies for CRC, developing a more precise
CRC management plan according to each patient's microbial print. This essay explains gut microbiome
composition, microbial changes (dysbiosis) in CRC carcinogenesis, the probability of creating microbiome-
based CRC biomarkers, and potential microbiome-targeted treatment options.

Categories: Preventive Medicine, Gastroenterology, Oncology
Keywords: colorectal cancer, target therapy, diagnosis, biomarker, crc, cancer, colorectal, microbiome

Introduction And Background
Colorectal cancer (CRC) is the fourth most common cancer in the UK and accounts for 12% of all new cancer
cases [1]. Considered a "silent disease", early diagnosis of CRC is a chief factor that influences survival;
therefore, establishing reliable non-invasive CRC biomarkers is required [2].

Currently available CRC screening options include faecal occult blood tests (FOBTs), faecal immunochemical
tests (FITs), and subsequent colonoscopy if FOBT or FIT are positive [3]. FOBT's sensitivity is still limited
because CRCs do not always bleed or only bleed intermittently [4]. While colonoscopy represents the
standard gold method for diagnosing CRC, it is challenging to use it as a screening test due to its high cost
and invasiveness. Thus, there is a need to find other feasible CRC screening methods [5].

The intestinal microbiome, gut flora, had primarily been hidden in the blind spot of the medical research
community until the last 10 years [6]. There is a rapid proliferation of interest in studying this "forgotten
organ" and correlating its function to several human pathological changes, such as cancers, especially after
the advances in DNA/RNA sequencing [7]. Current evidence support that specific intestinal microbes drive
CRC development and progression, yet their pathogenic mechanisms are still unclear. Microbial analysis
can also identify some faecal microbial markers of CRC that could help in the early diagnosis [8].

This study aims to explore some information about the microbial community and how microbiota changes
could trigger CRC pathogenesis, the different techniques for microbial analysis, and the potential use of
microbiome as a biomarker to detect CRC and as an adjunct component of its treatment.

Review
Gut microbiota composition
Symbiotic Microbial Composition

Gut microbiota includes the microorganisms, such as bacteria, viruses, archaea, and eukaryotic organisms,
that inhabit the human gastrointestinal tract and manipulates several physiological functions [9].
Meanwhile, microbiome refers to the gut microbiota's collective genes, genomes, and metabolic products in
the host environment [10]. Holobiont refers to the biological entity involving a host and its inherited
symbiont microbiota, while hologenome describes the collective genomes of the host genome and associated
microbial genomes [11]. A healthy gut microbiota composition (symbiosis or eubiosis) is essential for
maintaining normal gut nutrition, metabolism, cell proliferation, immune system development, and
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protection against pathogenesis [12].

The microbial structure is affected by various factors, such as dietary carcinogens, smoking, alcohol, and
other environmental factors. Chief among factors affecting gut microbiome composition is the modern
western lifestyle (associated with increased fast food and stress levels) that leads to reduced beneficial
bacteria and enriched pathogenic species [13]. The high calorific content of the western diet (high fat and
carbohydrates) causes microbial structure changes (dysbiosis) and increases the risk of developing obesity
[14] and carcinogenesis [15]. On the other hand, fasting can increase the diversity of bacteria (symbiosis) in
your gut, which is essential for your immune and overall health [16]. Cignarella et al. have reported that
intermittent fasting, ideally 16 hours of fasting and 8 hours of diet, resulted in increased enrichment of
the Lactobacillaceae bacteria families (probiotic) that have beneficial effects on health, including the
exclusion of pathogens, immunomodulation, and the production of a healthy bacterial molecule [17,18].
Intermittent fasting also has potent immunomodulatory effects that are at least partially mediated by the
gut microbiome [19].

Microbial Dysbiosis

Microbial dysbiosis refers to pathological alterations of gut microbiota compositions, resulting in several
disease states [15]. Dysbiosis has been associated with a wide range of diseases, including type 1 diabetes
mellitus, inflammatory bowel disease (IBD), allergic disorders, metabolic syndrome, non-alcoholic fatty liver
disease, obesity, and CRC in both human and animal models [20-22]. One of the necessary consequences of
gut microbial dysregulation is cancer development due to an increased percentage of harmful bacterial
microbiota that produces pro-carcinogenic substances and destroys the gut barrier [23]. Microbiota-induced
inflammation and genotoxicity eventually induce carcinogenesis and the development of CRC [24].

Microbiome and CRC interplay
Correlation between gut microbial changes and CRC formation has been established in several studies
recently [25-28] because of up-to-date gene sequencing techniques [26]. Microbiota within tumour tissue has
a specific bacterial composition compared to normal healthy areas. Bacterial species such as Bacteroides
fragilis, Escherichia coli, and Fusobacterium nucleatum are more abundant in the CRC microenvironment [29-
31], and this potentially could drive using microbiota as CRC biomarkers [32].

Mechanism of CRC Development by Microbial Dysbiosis

Many recent studies have highlighted the link between CRC and gut microbiome alteration [29], with several
hypotheses as to the causal role of microbes in CRC development [33]. Yet, the exact pathogenic mechanisms
are still unclear [28]. Gut microbiota could influence colorectal carcinogenesis through various mechanisms
that are described below.

Microbial-induced inflammation: Some evidence suggests that gut microbiota induce chronic inflammation,
which might trigger carcinogenesis [34]. Zhang et al. reported that CRC-associated microbial changes and
subsequent gradual inflammation might gradually form a microenvironment that triggers CRC [35]. F.
nucleatum, a common oral bacterium, has also been associated with CRC progression, metastasis, and
chemoresistance [36]. As a pro-carcinogenic bacterium, F. nucleatum  codes a virulence factor, FadA, that can
activate the β-catenin pathway, which drives the initiation and progression of CRC. E. coli has also presented
abundance in CRC with a significant role in promoting neoplasia [37]. Figure 1 explains how the microbiome
could produce inflammatory changes that initiate CRC development.
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FIGURE 1: Dysbiosis-induced CRC development
CRC: colorectal cancer.

Nevertheless, there is not enough evidence to say that inflammation or the presence of bacteria or bacterial
metabolites alone is enough to promote tumour growth [38]. However, it is still an active area of inquiry to
determine which microbial species are most responsible for carcinogenesis.

Driver-passenger model: Two classes of the microbial community are involved in CRC pathogenesis, namely,
the "driver" community and the "passenger" community [39]. The "driver" community (pro-carcinogenic
indigenous bacteria) cause microenvironmental alterations that potentially initiate carcinogenesis by
producing carcinogenic toxins that damage DNA in colonic epithelial cells [17]. Enterococcus faecalis
represents an example of a driver microbiome as it releases extracellular superoxide that causes intracellular
DNA carcinogenic alterations within the colonic mucosa [17]. Subsequently, the "passenger" community
(opportunistic colonising bacteria) outcompetes the driver microbes and augments tumour progression and
growth. The commonest passenger bacteria to colonise in CRC tissue is Fusobacterium spp. [39].

Host-microbial genetic interaction: Traditional theories of cancer aetiology focus on the mechanism of
altering mammalian genetics by external risk factors such as smoking [9]. However, with advanced
computerised diagnostics, internal host-microbial genetic interactions have been of study interest [40].
There is evidence that host-to-microorganism interactions activate procarcinogenic signalling pathways
that trigger molecular alterations (genomic and epigenetic changes), stimulation of adenoma-carcinoma
sequence, and then CRC development and progression [41].

Recently, host-microbe interactions in CRC tumours have been studied to prove an association between
specific tumour mutations and distinct microbial, metabolic, and interaction profiles [42]. Burns et al. also
found statistically significant associations between loss-of-function mutations in tumour genes and shifts
in the abundances of specific bacterial taxa, suggesting a potential functional genetic interaction between
bacteria and tumour profiles [28].

These mechanistic components have the potential to be modulated for therapeutic or prophylactic purposes
in the context of CRC. Nevertheless, these studies only show correlations and cannot directly cause effects.
Thus, it is unclear whether the microbiome is altered before or after the appearance of specific mutations.

Microbial analysis techniques
Most human microbial bacteria are uncultivable, so microbiome studies on CRC patients have relied on
molecular-based methods [39]. Targeted genotyping (e.g. 16S ribosomal RNA (rRNA) based) and
metagenomics are the most widely utilised methods for microbial analysis.

Gene Amplicon Sequencing

Over the past few decades, gene amplicon sequencing has been the primary technique for studying
microbial-specific marker/target genes that function in evolutionary transitions and changes [43]. 16S rRNA
sequencing is the gold standard targeted gene sequencing approach for identifying microbial community
composition and assessing genetic diversity, especially for unculturable organisms [44]. Moreover, 16S rRNA
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gene sequencing analysis has assisted in correlating between alterations in microbial community (dysbiosis)
functions and certain diseases, including Crohn's disease, ulcerative colitis, diabetes, and gastrointestinal
cancers [45-47]. However, the 16S rRNA gene sequences approach does not target the whole genome
realistically. It is limited in assessing molecular host-microbiota and microbiome-microbiome interactions
that reflect the biological microbial community [48].

Metagenomics

Metagenomics comprehensively catalogues all microorganisms present (unculturable and culturable, known
and unknown) in complex environmental samples [49]. The metagenomic analysis provides a functional
analysis of microbial communities, such as polygenetic analysis and taxonomic classification. As a result,
metagenomics outperforms 16S rRNA target gene sequencing in defining microbiota ecosystems, which
gives a unimodal single-gene analysis [50].

Metagenomics is also reliable for studying the microbial community's genomic linkages between function
and phylogeny (evolutionary history and relationships among or within groups of organisms) [50].
Metagenomics, complementing metatranscriptomic or metaproteomic techniques, could describe more
expressed microbial activities [51].

Current studies focus mainly on the identification and profiling of microbial composition. Still, the microbial
community is more complex and requires including the molecular interactions with the host and in-between
microbiota to reflect the actual biological microenvironment [52].

Limitations of microbial analysis
Methodological Limitations

Current microbial analysis designs have some challenges. Amongst them is the absence of a gold-standard
unified methodology of studying. The sample size is usually tiny and variable from one centre to another,
which produces the most non-reliable and non-representative outcomes. Samples are mainly collected from
faecal content without mucosal biopsies, which partially reflect the gut microbiome community [53]. Other
challenges of getting an effective sample include handling (e.g. type (faecal or mucosal), collection,
contamination, transportation, storage, and time to analysis), and nucleic acid analysis (e.g. methods for
DNA extraction, selecting regions and depths of sequencing, varying polymerase chain reaction (PCR)
primers for 16S microbial analysis, and variable methods for assignment of taxonomy) [54].

Gut microorganisms are considered difficult to culture [55]. Non-bacterial microbial components (i.e.
virome, mycobiome, and protozoans) are less studied in current research due to a lack of facilities, despite
having an established role in CRC stage progression [54]. Faecal samples are a non-invasive approach for
screening tests; however, mucosal samples are more potent for identifying specific species of bacteria
associated with CRC initiation and growth [56].

The lack of unified metadata and high-processing computer equipment, for high-volume data and statistical
analysis, also affects the results' accuracy, reproducibility, and interpretability. Advanced computational
tools for functional analysis that consider host-microbial molecular interactions are required to get more
reliable results [57].

Exogenous and Endogenous Variability

Another challenge is that case-control studies are affected by the host (age, sex, and genotype) and
environmental (e.g. diet and lifestyle) factors that produce biased results [58]. The existing database also
focuses only on the western population that does not consider the heterogenicity of these variables.
Therefore, it is crucial to include these factors, such as diet, lifestyle, and smoking, when examining
microbiota's role in CRC and other diseases [59]. Therefore, some studies suggested a new strategy for
microbial analysis in CRC by using tumour and normal tissue samples from the same CRC patient [60,61].
Burns et al. [62], for example, have found different microbial communities with specific functional pathways
in CRC tissue compared to nearby healthy tissue. Therefore, it is essential to include these exogenous and
endogenous differences with personalised study patterns to set reliable human microbial datasets (Table 1)
[57].

2022 Alrahawy et al. Cureus 14(10): e30720. DOI 10.7759/cureus.30720 4 of 9



Methodology Limitation Development

Population
sample

Heterogenicity (i.e. geography and lifestyle); most
current studies include western populations [59].

Comprehensive and diverse studies for a better microbial
database [57].

Study design
Case-control: Controls are affected by host and
environmental factors (i.e. diet and genetics) [60].

Individualised approach (i.e. paired diseased-healthy tissue
samples, diet, and metabolic analysis) for a personalised
diagnosis and personalised therapy (i.e. pre/probiotics) [63].

Sample
collection

Faecal samples (partially reflect gut microbiome) [54].
Tissue (mucosal) samples for a better understanding of
environmental processes and biological interactions [64].

Microbial
sample

Non-bacterial microbial components (i.e. virome,
mycobiome, and protozoans). Non-bacterial microbial
dataset (limited): gut virome dysbiosis (differ in CRC
stages, patients - control) [54].

Taxonomy-based analysis: CRC-associated bacterial taxa +
less covered taxonomic groups (i.e. fungi and viruses) [23].
Distinct sequencing techniques (i.e. regions, depth, and PCR)
avoid heterogenicity bias [57].

Data analysis
Independent taxons analysis: Without considering
ecological correlation -> decretive host-microbial
interaction [65].

Functional-based analysis: Combined omics (i.e. metagenomic,
metatranscriptomics, metaproteomics, and metabolomics)
approaches of a mechanistic host-microbial interaction for direct
causal effect [23].

TABLE 1: Challenges and required developments for better microbial outcomes in CRC
CRC: colorectal cancer; PCR: polymerase chain reaction.

Future Challenges

To get more specific bioinformatics about CRC-related microbiota, studies should involve the environmental
functions and interactions within the microbial micro-environment along with the anatomical compositions
[62]. In recent research, omics datasets (genomics, transcriptomics, proteomics, metabolomics,
metagenomics, phenomics, etc.) have been included to describe microbial biological processes more
accurately. Metatranscriptomics assess microbiota communities' taxonomic signature and function;
meanwhile, metaproteomics analyses the microbiome-associated protein profiles to reflect the bodily
functions under different environmental conditions [66]. Multi-omics data analysis requires highly advanced
computational and technological resources with complex algorithms and software to process a high volume
of data and correlate multiple variables and interactions [67]. These data would explain specific biological
and environmental interactions that describe microbiomes' role in CRC development and create better
therapeutic and biotechnological applications.

Clinical applications of microbiota in CRC
Microbial Biomarkers

Several biomarkers (genetic, blood, molecular, and imaging biomarkers ) are crucial in early detection,
prognostication, and risk stratification in CRC [68]. Getting clinically reliable predictive biomarkers could
improve the accuracy of predicting clinical outcomes such as survival, tumour recurrence, and metastasis.
Personalised CRC treatment algorithms would be applied in clinical practice to get the best results for each
individual's disease characteristics [69]. Studying microbial changes, therefore, could provide a diagnostic
and predictive CRC biomarker soon [70].

Recent studies suggest that gut microbiome analysis of stool samples significantly differentiated between
healthy individuals and patients with adenoma vs. carcinoma samples by identifying either the enrichment
or depletion of specific bacterial populations within faecal samples [71]. Subsequently, the gut microbiome
could serve as a screening tool for CRC detection [72]. By combining microbial biomarker tests with the FITs,
sensitivity for CRC detection and accuracy of treatment outcomes prediction might increase [73].

The faecal metabolome is the metabolites, such as short-chain fatty acids, produced from microbial
interactions to maintain the homeostasis of host metabolism [74]. Metabolomic analysis of faecal samples
might also be potential clinical CRC biomarkers [36]. Xinhao et al. concluded that an increased abundance of
specific gut microbiota (e.g. B. fragilis) was significantly associated with increased levels of particular
metabolites (called metabolome), such as adrenic acid and decanoic acid, in CRC patients [75]. Faecal
metabolomic analysis has produced some identified biomarkers for CRC diagnosis and therapeutic
evaluation; however, more research studies are necessary to get more data on metabolomes [76].
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Local volatile organic compound (VOC) is another potential CRC biomarker that reflects gut microbial
compositions [77]. It is the gaseous molecules produced during bacterial fermentation in the gut and then
emitted from urine and faeces that have shown specific signatures that reflect gut microbial compositions
and functions [78]. With gas chromatography-mass spectrometry (GC-MS), faecal or urinary VOC analysis
could also serve as a novel screening tool for CRC detection [79-81]. Vernia et al., in a multicentric study,
recruited CRC patients screened with colonoscopy to analyse VOC in their breath. They reported that VOC
models could detect patients with CRC with an area under the curve (AUC) of 0.84 with 95% sensitivity and
64% specificity [82]. VOC analysis, therefore, represents a promising non-invasive tool for CRC screening
[82].

Gut Microbiome and CRC Precision Therapy

Modern microbial analytical techniques have improved our understanding of the mechanism of CRC
formation linked to dysbiosis [83]. It is hypothesised that using antibiotics may also result in microbial
dysbiosis and immune system issues, which speed up CRC progression [84]. Therefore, reversing these
dysbiotic changes may aid in preventing and treating them [85]. Potential therapeutic strategies include
dietary changes, pre/probiotics, faecal microbiota transplantation (FMT), and antibiotics [86].

Some studies suggest that dietary modifications, including ingesting more fibre, may reduce the incidence of
colon cancer and work in conjunction with traditional treatments [87-89]. Probiotics, live beneficial flora,
may treat CRC by combating CRC-driver microbiota, increasing gut microbial diversity [90], improving
immunity homoeostasis, reducing chronic inflammation, and decreasing carcinogenic metabolites [87].
Through gut microbiome reconstruction, FMT can improve bile acid metabolism and immunotherapy
efficacy and subsequently serve as a natural remedy for CRC [91]. A healthy environment, good food,
exercise, weight control, and avoiding or alleviating stress with relaxation techniques are also essential
preventative strategies against developing CRC (Figure 2) [85]. Obesity, diabetes, irritable bowel syndrome,
IBD, depression, and cardiovascular disease are also studied for microbiome-based therapy [92-97].

FIGURE 2: Microbiome modulation and CRC treatment
FMT: faecal microbiota transplantation; CRC: colorectal cancer.

Future studies will need to improve ways for modulating the microbiome and provide major unsolved
questions (e.g. CRC-microbiota causal link) that will be addressed in existing and future research [98].
Combining endogenous host variables (e.g. host genetics and the microbiome) with exogenous
environmental factors (e.g. nutrition and smoking) can significantly impact the treatment response of CRC
[9].

Conclusions
A substantial body of research has established a strong relationship between microbial alterations
(dysbiosis) and CRC carcinogenesis. However, the precise microbial-host interactions in CRC development
remain elusive and influenced by various cofactors (exogenous and endogenous).

Some studies have expressed that microbiome alterations can be modified to treat CRC. However, more
sophisticated molecular-based analysis and prospective interventional studies may yield more specific CRC
microbial biomarkers and personalized therapeutic techniques for CRC management.
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