Skip to main content
. 2022 Nov 21;2022:8670350. doi: 10.1155/2022/8670350

Table 3.

The performances of machine learning classifiers.

Classifiers Sen Spe PPV NPV Acc
Decision tree 0.432 0.970 0.879 0.773 0.790
K-neighbors 0.483 0.940 0.803 0.784 0.788
XgBoost 0.39 0.983 0.920 0.762 0.785
Gradient boosting 0.373 0.987 0.936 0.758 0.782
Logistic regression 0.364 0.987 0.935 0.756 0.779
Support vector classifier 0.356 0.987 0.933 0.753 0.776
Light GBM 0.322 0.979 0.884 0.742 0.759
Random forest 0.254 0.996 0.968 0.727 0.748
AdaBoost 0.237 0.996 0.966 0.722 0.742
Bernoulli naïve Bayes 0.331 0.902 0.629 0.729 0.711

Sen: sensitivity, Spe: specificity, PPV: positive predictive value, NPV: negative predictive value, and Acc: accuracy.