Table 3.
The performances of machine learning classifiers.
| Classifiers | Sen | Spe | PPV | NPV | Acc |
|---|---|---|---|---|---|
| Decision tree | 0.432 | 0.970 | 0.879 | 0.773 | 0.790 |
| K-neighbors | 0.483 | 0.940 | 0.803 | 0.784 | 0.788 |
| XgBoost | 0.39 | 0.983 | 0.920 | 0.762 | 0.785 |
| Gradient boosting | 0.373 | 0.987 | 0.936 | 0.758 | 0.782 |
| Logistic regression | 0.364 | 0.987 | 0.935 | 0.756 | 0.779 |
| Support vector classifier | 0.356 | 0.987 | 0.933 | 0.753 | 0.776 |
| Light GBM | 0.322 | 0.979 | 0.884 | 0.742 | 0.759 |
| Random forest | 0.254 | 0.996 | 0.968 | 0.727 | 0.748 |
| AdaBoost | 0.237 | 0.996 | 0.966 | 0.722 | 0.742 |
| Bernoulli naïve Bayes | 0.331 | 0.902 | 0.629 | 0.729 | 0.711 |
Sen: sensitivity, Spe: specificity, PPV: positive predictive value, NPV: negative predictive value, and Acc: accuracy.