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Application of second‑generation 
sequencing in congenital 
pulmonary airway malformations
Gang Zhang 1, Chun Cai 1, Xiao Li 1, Lei Lou 1, Bin Zhou 1, Huiyi Zeng 1, Xiangang Yan 1, 
Dandan Liu 2* & Gang Yu 1*

To investigate the differential expression of genes in whole transcripts of congenital pulmonary 
airway malformation (CPAM) using second-generation sequencing (also known as next-generation 
sequencing, NGS) technology. Children with CPAM were strictly screened after setting the criteria, 
and grouped by taking CPAM parietal tissue and CPAM lesion tissue respectively, and RNA-Seq 
libraries were established separately using second-generation sequencing technology, followed by 
differential expression analysis and GO (gene ontology) functional enrichment analysis, KEGG (Kyoto 
encyclopedia of genes and genomes, a database) pathway analysis and GSEA (Gene Set Enrichment 
Analysis) analysis. Five cases were screened from 36 children with CPAM, and high-throughput 
sequencing was performed to obtain 10 whole transcripts of samples with acceptable sequence quality 
and balanced gene coverage. One aberrantly expressed sample (3b) was found by analysis of principal 
components, which was excluded and then subjected to differential expression analysis, and 860 
up-regulated genes and 203 down-regulated genes. GO functional enrichment analysis of differentially 
expressed genes demonstrates the functional class and cellular localization of target genes. The whole 
transcript of CPAM shows obvious gene up and down-regulation, differentially expressed genes are 
located in specific cells and belong to different functional categories, and NGS can provide an effective 
means to study the transcriptional regulation of CPAM from the overall transcriptional level.

Congenital pulmonary airway malformation (CPAM) is the most common type of congenital respiratory mal-
formation, accounting for 30% to 40% of all cases1. The prevalence of CPAM ranges from 1/35,000 to 1/7,200, 
and with the advancement of prenatal diagnosis technology, more and more children with CPAM are being 
diagnosed prenatally2,3. CPAMs are characterized histologically with the presence of multiple cysts in the lung 
tissue, absence of normal alveoli due to hyperplasia and dilatation of the terminal bronchi. CPAM was first 
described in 19494 and the now widely used Stoker classification, which classifies CPAM into five types based 
on histopathology5.

The pathogenesis of CPAM is undetermined, but some genes are thought to be possibly linked. L858R point 
mutation in exon 21 of EGFR (epidermal growth factor receptor) was detected in an 80-year-old case with 
CPAM6. Mutation of thyroglobulin (TG) and its receptor, megalin (LRP2) were found in CPAM patients7. Fibro-
blast growth factor receptor 2 (FGFR2) has been demonstrated by immunohistochemistry in human CPAM 
cases8. Variety of genes have also been implicated in this process of CPAM such as sex-determining region 
Y- box 2 gene (Sox2), hyroid transcription factor gene (Nkx2), Hox gene (Hoxb-5), fatty acid-binding protein-7 
gene (FABP-7) and Ying Yang 1 gene (Yy1)1,9,10. In another study, all type 4-CPAM patients possessed the muta-
tion of Dicer 111. In addition, KRAS mutation was demonstrated in the mucinous proliferations and adjacent 
nonmucinous CPAM tissue12. Although many mutations have been identified in CPAM, more unknown genetic 
alterations exist, and a high-throughput method for detecting genetic alterations in CPAM is particularly urgent.

Second-generation sequencing (SGS), also known as next-generation sequencing (NGS), is a technology 
which has been widely used to analyze genes for clinical diseases with unprecedented speed and lower price 
compared to traditional Sanger sequencing13,14. NGS technology was developed in 2005 and enables the sequenc-
ing of thousands to millions of templates at a time15. Therefore, this technology provides the ability to analyze 
exon mutations and copy number alterations, thereby allowing for the detection of abnormal gene expression 

OPEN

1Department of Pediatric Surgery, The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao 
Road, Liwan District, Guangzhou City 510150, Guangdong Province, China. 2Department of Ultrasound Medicine, 
The Third Affiliated Hospital of Guangzhou Medical University, No. 63, Duobao Road, Liwan District, Guangzhou 
City 510150, Guangdong Province, China. *email: utopia21cn@126.com; 415371975@qq.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-24858-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20459  | https://doi.org/10.1038/s41598-022-24858-3

www.nature.com/scientificreports/

in different diseases. NGS analysis identifies COL4A1 and COL4A2 as strong candidates for susceptibility genes 
in visceral aneurysms16. Sivakumar Gowrisankar et al. identified insertion and deletion mutations in 19 genes 
in Dilated Cardiomyopathy by NGS17. NGS has been applied in kidney disease18, neurological disease19 and 
several cancers20. Although some studies have identified genes associated with congenital pulmonary airway 
malformations by NGS, the results are not consistent11,12, implying that research in this area is still insufficient.

In this study, we aim to find genes and pathways closely related to CPAM by NGS for RNA-seq to provide 
support for possible subsequent therapeutic options.

Materials and methods
Materials.  The pediatric surgery department of our hospital admitted a total of 36 children with CPAM in 
the first quarter of 2020, and the case samples were strictly selected according to the following criteria:

1.	 The prenatal examination, preoperative CT, intraoperative diagnosis, and postoperative pathological exami-
nation of the child were determined to be type 1 CPAM, this type of cyst is usually multicentric and located 
within a lung lobe with a lining of pseudostratified columnar epithelium, accounts for approximately 70% of 
all CPAM. This type has an excellent prognosis after resection and rarely undergoes malignant transforma-
tion.

2.	 The children were 0.5–1 years old, with a lesion diameter of 5–10 cm, no edema before birth, no preoperative 
infection, no chemotherapy or radiation treatment, and no clear combined chromosomal abnormalities.

3.	 The children were treated with minimally invasive thoracoscopic surgery, the procedure was smooth, no 
chest tube was left in place after surgery, no infection, bleeding, reoperation, etc. No retention, recurrence, 
reoccurrence, secondary infection, pneumothorax, etc. were seen at 1 year of follow-up.

4.	 The study protocol was approved by the Ethics Committee of our hospital (Yi Lun Hui Shen [2020] No. 030). 
The child guardians signed the informed consent form, clarified the situation of the study and agreed to this 
study.

Clinic sample collection.  The study protocol was approved by the Ethics Committee of our hospital (Yi 
Lun Hui Shen [2020] No. 030). All participants received written and oral information prior to giving written 
consent, and the study was performed in accordance with the Helsinki II declaration. CPAM samples (n = 4), and 
matched tissue adjacent to CPAM (n = 4) were acquired at the time of surgical resection in the Third Affiliated 
Hospital of Guangzhou Medical University. All samples were taken from the distal parenchyma away from the 
hilum. Samples were frozen in liquid nitrogen within 120 s after the sample is isolated and stored at − 80 °C for 
further analysis. CPAM samples were verified by the Third Affiliated Hospital of Guangzhou Medical University 
Department of Pathology. More details can be seen in Supplementary Fig. 1.

RNA isolation and sequencing.  Total RNA was isolated from samples using a TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA). We checked the concentration and purity of RNA by a Nanodrop ND-2000 spectropho-
tometer (Thermo Fisher Scientific, Wilmington, DE, USA). The standard of RNA is that quantity > 5 µg and 
concentration ≥ 200 ng/µL. The RNA integrity number (RIN) value (RIN > 7) was tested by an Agilent 2100 Bio-
analyzer (Agilent, Palo Alto, CA, USA). Then remove rRNA from total RNA by Ribo-Zero Gold rRNA removal 
kit (Illumina). After that, RNA was fragmented into size of 200 bp by total RNA SEQ (H/M/R) library prep kit 
(Illumina, San Diego, CA, USA). The complementary DNA (cDNA) was then synthesized by fragmented RNA. 
After purification, end repairing and adapter ligation, A-tail adding, connecting product purifying, fragment 
size sorting and library amplification were performed. After amplification, the RNA SEQ library was obtained 
purification and recovery with magnetic beads. After inspection of the constructed library, the qualified library 
was pooled according to the data size and effective cDNA concentration and target data. The library sequenced 
using the Illumina NovaSeq 6000 platform in paired-end 150-bp mode with a data volume of 10G.

Raw data were filtered to remove low quality reads, and reads containing adapter or Poly-N sequences. The 
obtained clean reads were mapped to the Ribosomal Database Project with Bowtie (Langmead et al., 2009), and 
the reads that belonged to ribosomal DNA (rRNA) were removed. Mapping reads to the reference sequence 
were used for mapping, sequence prediction, expression value calculation and expression difference analysis.

RNA expression analyses.  Principal component analysis (PCA) was done on gene counts to determine 
the variability in the data set. P < 0.05 with a false discovery rate (FDR) q < 0.05 (5%) and a family-wise error rate 
(FWER) P < 0.05 were considered to be statistically significant.

Gene‑set enrichment analysis.  For GSEA analysis the online version of the GSEA tool was used. GO 
functional analysis of DEGs were subdivided into three groups: biological process (BP), molecular function 
(MF) and cellular component (CC). A P-value of less than 0.05 and gene count > 5 was set as the cutoff. A nomi-
nal P < 0.05 was considered significant.

Results
Gene set enrichment analysis.  To identify characteristics specific for the CPAM, we first performed gene 
set enrichment analysis (GSEA: http://​www.​broad​insti​tute.​org/​gsea/​index.​jsp), the results showed that genes 
related to primary cilium development, ciliopathies, and cilium assembly were upregulated in CPAM (Fig. 1), 
which highlights that the appearance of primary cilium in the airway of CPAM. The analysis also showed the 
significant enrichment in eukaryotic translation elongation, ribosomal proteins, starch and sucrose metabo-
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lism pathways, which might associate with energy supplies for cell activation and proliferation. Remarkably, 
the genes involved in the antigen processing and presentation, mhc pathway, IL-12pathway, interferon gamma 
response and natural killer cell mediated cytotoxicity were all downregulated (Fig. 1), implying a suppressed 
innate immune response.

Identification of DEGs (differently expressed genes).  Differently expressed genes analysis was per-
formed in succession with the p < 0.05, FC > 1.5 and FDR < 1. 742 genes were dysregulated, among them, 130 
genes were downregulated and 612 genes were upregulated (Fig. 2). The result showed that H3F3A is the most 
up-regulated gene, which is not expressed in the control sample. H3F3A regulates chromatin epigenetic modi-
fication, and it means that epigenetic modification plays an important part in occurrence and development 
of CPAM. More interestingly, some epithelial cell marker genes were also increased in CPAM sample such as 
SCGB1A1, SCGB3A1 (airway secretory cell marker gene)21,22; TP63, KRT5, KRT15 (the basal-like cell marker 
gene)23; MUC5B(goblet/cup cell marker gene), and CCNO(the mother centriole) which is important for multi-
ciliated cells assembly24,25.

Functional enrichment analysis of DEGs.  GO analysis results showed that changes in DEGs were 
enriched for terms related to cilia. Changes in CC (cell component) of DEGs were mainly enriched in the 
basal body and the axoneme, as well as the transition zone, compartmentalization for signaling and motility 
functions26. Changes in BP (biological processes) of DEGs were mainly enriched in cilium assembly, cilium 
movement, axoneme assembly. Changes in MF were significantly enriched in ATP-dependent motor activity and 
dynein chain binding. (Fig. 3). KEGG pathway analysis showed that DEGs were mainly enriched in Neuroactive 
ligand–receptor interaction and Cytokine–cytokine receptor interaction (Fig. 3). Neuroactive ligand–receptor 
interaction especially refers to neuropeptide with their receptors, like adrenaline and Calcitonin with the corre-
sponding receptor ADRA1B and CALCRL. Cytokine–cytokine receptor interaction mainly refer to chemokine 
like CCL11/CCL14/CCL16/CCL19.

PPI network construction of DEGs.  To deep excavate the key genes involved in the development of 
CPAM, we estimate the interaction relationship between DEGs by STRING website. The PPI network was con-
structed by Cytoscape involved in all the DEGs. The hub cluster was filtered to further analysis (Fig. 4). The 
down-regulated cluster included BMP6, the receptor BMPR2 and ACVRL1, the signal molecular smad6 and 
smad7, the auxiliary molecular for BMP like Chrd and BMPER. This cluster shows an integrated suppression of 
the BMP signaling pathway. WNT2 and WNT2b are also downregulated. WNT signaling maintains prolifera-

Figure 1.   GSEA analys in CPAM parietal tissue vs CPAM lesion tissue.
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tion, while the BMP pathway regulates the differentiation. Additionally, the ECM modeling pathway comprise 
diverse collagen and the metalloproteinase ADAMTS7 which has been reported to fuel BMP2-dependent osteo-
genic differentiation27.

The up-regulated cluster also emphasizes the significance of cilium. The cilium axoneme is maintained by 
the intraflagellar transport (IFT) machinery which comprises several subcomplexes, including heterotrimeric 
kinesin and dynein to move IFT complex between the tip and the base25. And the hub cluster include DYNC2H1, 
IFT81, TTC26 associated with IFT complexes and some other genes26. Also, DNAH9, CCDC103, DNAI2 and 
DRC1 are members of multiprotein complex associated with the outer dynein arm complex of motile cilia26. 
Meanwhile, FOXJ1 is a key transcription factor in the development of cilla.

Figure 2.   Heatmap and Volcano plot of the differencited expression genes.

Figure 3.   GO and KEGG analyse of DEGS. Left: GO functional analysis for DEGs were grouped into different 
functional categories: biological process (BF), cellular component (CC) and molecular function (MF). Right: 
Representative dot plot of top 10 significantly (P < 0.05) enriched KEGG pathways for DEGs.
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Moreover, some established genes regulating CPAM have also been found in the hub cluster, such as SOX2.
SOX2 has been reported as an up-regulated gene leading to CPAM28. From the network, the mechanism for 
SOX2 controlling CPAM might be associated with the stem cell maintenance because the stem cell marker 
PROM1 concurrently upregulated29. Surprisingly,Gata3, a critical regulator for Innate lymphoid cells (ILCs)30, 
was down-regulated in the network, and the same with other immune regulators like PRF1, TBX21, IL7R. This 
indicates the suppressed development of immune cells residing in CPAM sample. Finally, the up-regulated genes 
CCL19, CXCL13 and CXCL1 were in accordance with the KEGG enrichment in Cytokine–cytokine receptor 
interaction pathway.

Discussion
The etiology of CPAM is not yet well understood, and 2 main hypotheses have been proposed31: One of the 
hypotheses is the obstructive hypothesis, which was proposed by Stocker J32. The autopsy performed by Moerman 
P provides evidence for this hypothesis33, they believed that functional or organic obstruction of the bronchi 
leads to abnormal cell proliferation and apoptosis during lung development. Among the 36 children admitted to 
our clinic this quarter, 2 had focal obstructions due to combined bronchial cysts. The other is the environmental 
Hypothesis, which suggests that genetic defects or microenvironmental changes lead to abnormal expression 
of regulatory factors that result in abnormal lung development. Molecular expression and signaling pathways 
in endodermal epithelial and mesenchymal cells play a key role during lung development, such as Nkx2-1, the 
gene encoding thyroid transcription factor (TTF1) in the ventral epithelium of the foregut, Y-box2, a gene in 
the sex-determining region of the dorsal foregut, and other genes such as Sox2 and Hoxb-534. Instead, BMPs 
and their antagonists Noggin, FGF10, and Wnt act in mesenchymal cells. When the signaling communication 
between epithelial cells and mesenchymal cells is disturbed, it leads to impaired alveolar formation in the lung 
parenchyma and excessive hyperplasia and dilatation of the terminal fine bronchioles, forming single-room, 
multiroom or cellular misshapen tumor-like CPAM1.

With the development of genomics, the occurrence of many diseases has been confirmed to be closely related 
to genes, and more scholars agree with the view that genes regulate diseases, and how to find the genes that 
change in diseases has become the basis of studying diseases. Currently, NGS technology can rapidly obtain 

Figure 4.   PPI network for DEGs in CPAM. Genes in orange circles indicate upregulation, while genes in green 
circles indicate downregulation.
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sequence information of almost all transcripts of a specific organ or tissue of a species in a certain state, and 
perform differential gene expression analysis, variable shear and fusion gene analysis between disease and normal 
samples, and then search for disease-causing genes and explore pathogenesis. In the experiment, we success-
fully obtained 10 sample sequences with balanced gene coverage from 5 pairs of samples in this group using this 
technique, and successfully constructed RNA-Seq libraries and compared them to the genome. Finally, 860 up-
regulated genes and 203 down-regulated genes were obtained. The sequence information of this whole transcript 
suggested that Nkx2-1 was normally expressed, Hoxb-5 was normally expressed and Sox2 was highly expressed, 
and the results were the same as those of other scholars35. BMPs belong to the TGF-β family, and several BMPs 
and their receptor BMPR play regulatory roles in lung development1,35. In our group, we found that BMP8A and 
BMPR1B expression was upregulated, BMP6, BMPR2 and BMPER (Homo sapiens BMP binding endothelial 
regulator, mRNA.) expression was downregulated, and BMPR1A expression was unchanged.

To clarify the functions of differentially expressed genes, pathway enrichment analysis can be performed 
using the R software clusterProfiler with functional gene collections36. In this paper, we choose the Gene Ontol-
ogy (GO) collection, which can be divided into three parts: molecular function, biological process and cellular 
component. In functional enrichment analysis, high expression of DNAAF4, FOXJ1, LRP2, MNS1, and WT1 
was found, suggesting a close relationship between CPAM and abnormal lung development37, while SOX2, a 
transcriptional regulator, was involved in BCAS1, CDH2, COMMD3-BMI1, CYP2J2, FBXO15, KIF19, KRT17, 
PROM1, TNR and other regulators35. Rawlins EL38 found that FOXJ1 is progressively expressed in ciliated cells 
during lung development and that when FOXJ1 is fully expressed in ciliated cell precursors, the cells stop pro-
liferating or have a significantly longer division cycle. Differential expression analysis in this group of samples 
revealed high FOXJ1 expression (P = 0.00024), and GO functional enrichment analysis suggested that FOXJ1 is 
involved in various aspects of respiratory differentiation, respiratory epithelial cells, ciliary cell differentiation, 
cilia assembly and motility39.

Of course, there are limitations in our study. After all, NGS has two major drawbacks40: shorter reads and 
lower accuracy compared to Sanger sequencing, so it would be better if genes abnormally expressed in NGS 
sequencing could be validated by transcription or translation test. Moreover, if we get a larger sample size, the 
results may be more reliable.

In summary, whole transcriptome sequencing using NGS technology can obtain stable and reliable RNA-Seq 
libraries of CPAM patients, and differential expression analysis suggests significant gene differences between 
lesioned and paralesional tissues, with significant gene up- and down-regulation in lesioned tissues. GO-func-
tional analysis of the differentially expressed gene collection could initially locate the functional class and cellular 
localization of each gene. Thus, NGS provides an effective means to study the transcriptional regulatory network 
and to screen molecular biological markers of CPAM.

Data availability
The datasets generated and/or analysed during the current study are available in GEO website with the accession 
number: GSE190620.
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