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Abstract
Objectives To investigate the feasibility of automatically identifying normal scans in ultrafast breast MRI with artificial intelli-
gence (AI) to increase efficiency and reduce workload.
Methods In this retrospective analysis, 837 breastMRI examinations performed on 438 women fromApril 2016 to October 2019
were included. The left and right breasts in each examination were labelled normal (without suspicious lesions) or abnormal (with
suspicious lesions) based on final interpretation. Maximum intensity projection (MIP) images of each breast were then used to
train a deep learning model. A high sensitivity threshold was calculated based on the detection trade - off (DET) curve on the
validation set. The performance of the model was evaluated by receiver operating characteristic analysis of the independent test
set. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with the high sensitivity
threshold were calculated.
Results The independent test set consisted of 178 examinations of 149 patients (mean age, 44 years ± 14 [standard deviation]).
The trained model achieved an AUC of 0.81 (95% CI: 0.75–0.88) on the independent test set. Applying a threshold of 0.25
yielded a sensitivity of 98% (95%CI: 90%; 100%), an NPV of 98% (95%CI: 89%; 100%), a workload reduction of 15.7%, and a
scan time reduction of 16.6%.
Conclusion This deep learningmodel has a high potential to help identify normal scans in ultrafast breastMRI and thereby reduce
radiologists’ workload and scan time.
Key Points
• Deep learning in TWIST may eliminate the necessity of additional sequences for identifying normal breasts during MRI
screening.

•Workload and scanning time reductions of 15.7% and 16.6%, respectively, could be achieved with the cost of 1 (1 of 55) false
negative prediction.
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Abbreviations
AI Artificial intelligence
DCE-MRI Dynamic contrast-enhanced MRI
DET Detection error trade-off
Grad-CAM Gradient-weighted class activation mapping
MIP Maximum intensity projections
NPV Negative predictive value
PPV Positive predictive value
TWIST Time-resolved angiography with stochastic

trajectories

Introduction

Dynamic contrast-enhanced MRI (DCE-MRI) of the breast
has been widely used as a supplementary screening tool for
breast cancer. Breast MRI can not only detect more breast
cancer cases than mammography but also detect cancers at
an earlier stage [1]. Especially for women with extremely
dense breasts, screening with supplemental MRI has the po-
tential to reduce interval cancers [2]. These advantages have
led to a renewed interest in using breast MRI to screen a larger
population [3]. However, cost-effectiveness is still the most
substantial obstacle for the wider application of this sensitive
modality [4].

The most promising approaches to reducing the cost of
breast MRI are to improve the throughput of the MRI scanner
by shortening the acquisition time [5–8] and reducing radiol-
ogists’ workload by shortening the interpretation time [9].
Current diagnostic breast MRI protocols require up to 20
min. Several abbreviated protocols have been proposed to
replace the standard protocol for screening [10, 11]. A recent
multicenter, multireader study [12] found that time-resolved
angiography with stochastic trajectories (TWIST) [13] alone
can achieve a comparable sensitivity (84% vs. 86%) and
higher specificity (82% vs. 76%) than the full diagnostic pro-
tocol when interpreted by radiologists. This TWIST-alone
protocol, requiring less than 2 min of magnet time, can thus
minimize the time needed for the scanning process.

Image interpretation is another bottleneck in breast cancer
screening with MRI. The average interpretation time in differ-
ent studies varied from 25 to 178 s [11]. It is worth noting that
the cancer rate in a screening study may be only 15.5 per 1000
[14], which suggests that radiologists spend most of their time
reading normal scans without suspicious lesions. On the other
hand, reading quality is also related to the total number of
examinations and the position of the examination in the queue
[15]. Short reading batches and risk-based reading queues
may help further improve radiologists’ performance.

The combination of artificial intelligence (AI) and ultrafast
MRI could help improve the efficiency of breast MRI screen-
ing by automatically excluding scans without lesions.
Identifying suspicious lesions from numerous screening scans

and prioritizing a scan according to risk could help reduce the
workload and improve efficiency. In addition, an early stop
strategy could also be applied to scans without suspicious
lesions. Since malignant lesions are more likely to enhance
rapidly at the early stage of DCE-MRI [16, 17], cancellation or
adjustment of further sequences based on the output of ultra-
fast MRI could help reduce scanning time and thus improve
the throughput. Moreover, based on the real-time analysis of
the ultrafast sequences, additional scanning (e.g., T2, DWI) or
even a full diagnostic protocol could still be performed if any
abnormalities were detected.

We hypothesized that a deep learning model, with only
TWIST sequences as input, might be able to identify normal
MRI exams without human intervention. Integrating this deep
learning system in the screening workflow could improve the
throughput and reduce the radiologist’s workload. Therefore,
the aim of this study was to develop and evaluate a deep
learning model for automated abnormality prediction with on-
ly TWIST sequences as input.

Materials and methods

The institutional review board approved the study and waived
the requirement to obtain informed consent for our retrospec-
tive study, which used fully anonymized reports and MRI
examinations.

Study population

The initial population included 1447 breastMRI examinations
from 809 consecutive patients who underwent breast MRI
examinations between April 2016 and October 2019 at our
institution. Of the 1447 examinations, the following MRI
scans were excluded: 287 due to inconsistent protocols, 156
due to incomplete data, and 159 due to another indication for
scanning (34 to measure response to chemotherapy, 94 for
surgery follow-up, and 31 to evaluate prosthesis rupture).
Furthermore, 8 examinations were excluded due to failed
scans. The final dataset for deep learning model development
and evaluation consisted of 837 examinations from 488 pa-
tients. Among the 837 examinations, 178 examinations from
149 patients were obtained after deep learning model devel-
opment, and those data were used as an independent test set
since they were not involved in the model development. The
remaining 659 examinations from 339 patients were randomly
divided into training and validation sets as follows: 494 ex-
aminations from 214 patients in the training set and 165 ex-
aminations from 125 patients in the validation set. It should be
noted that the data were divided on the patient level; thus,
there was no overlap in patients in the training and test sets.
Figure 1 summarizes this process.
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MRI scanner and imaging technique

Examinations were performed with a full diagnostic protocol
(Fig. 2) on either a 3.0-T or 1.5-T scanner (MAGNETOM
Skyra or MAGNETOM Avantofit, Siemens Healthineers) in
the prone position. For 3.0-T and 1.5-T scanners, the full
protocol requires 17.95 and 19.61 min, respectively, while
the 15 TWIST acquisitions require 1.3 and 1.46 min. The
acquisition parameters for ultrafast breast MRI are summa-
rized in Table 1.

Reference standard

Classification of the MRI examinations was based on the as-
sessments and conclusions in the radiology reports, supple-
mented with pathology reports, biopsy, and ultrasound results.
For each patient, the left and right breasts were evaluated
independently. Breasts with one or more visible enhanced
lesions were classified as abnormal, while breasts with

unenhanced lesions or without suspicious lesions were classi-
fied as normal. Then, all the labels were further examined by a
senior radiologist to ensure that they were consistent with the
visibility in TWIST. Examples of classified breasts are shown
in Electronic supplementary material Fig. S1.

Development of the MIP-based deep learning system

The proposed deep learning system had three main stages:
breast region segmentation, MIP generation, and abnormality
prediction (Fig. 3).

For breast segmentation, a previously reported 3D U-Net
[18] was used to generate the mask of the breast region. The
segmentation was performed on a T1-weighted fat-suppressed
sequence acquired before contrast agent injection. The obtain-
ed masks were then mapped onto TWIST sequences by shape
resizing and FOV (field of view) alignment. Then, the breast
area was divided into left and right segments from the middle
of the mask.

At the stage of MIP generation, only the last four TWIST
acquisitions out of the fourteen postcontrast phases were used.
Previous research shows that the time of arrival of benign
lesions may be much longer than that of malignant lesions
[19, 20]; thus, most of the early MIPs contained no enhancing
lesions. Therefore, to identify as many lesions as possible and
reduce computational burden, in this study, the generated MIP
images were then used to train the deep learning model.

A ResNet-34 model [21], which was pretrained on the
ImageNet dataset, was modified and retrained for abnormality
prediction. The output of the last fully connected layer of the
model was changed to 2 to fit the task. The training data were
then used for transfer learning, and validation data were used
for hyperparameter tuning. The tasks used for training were
the presence or absence of visible lesions in the MIP image.
During the training process, image augmentation was applied
with random horizontal flipping, random rotation within 10°,
and random scaling within 10%. The batch size was set to 4,
and the Adam optimizer was used. The final model was

Fig. 1 Flowchart of the data collection and selection procedure. BI-
RADS, Breast Imaging Reporting and Data System

Fig. 2 Schematic diagrams of the timing of dynamic contrast-enhanced
protocols used in this study. The full diagnostic protocol consists of a fat-
saturated T2-weighted sequence, 2 diffusion-weighted imaging

sequences with b-values of 0 and 1000 s/mm2, 5 dynamic fat-saturated
gradient echo T1-weighted sequences, and a time-resolved angiography
with stochastic trajectories (TWIST) sequence
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obtained by 60 epochs of training with an initial learning rate
of 10−4. During inference, each of the 4 MIP images from a
single breast was input into the deep learning model; if any of
these images was predicted to be positive, the breast was then
categorized as abnormal. The breast was only categorized as
lesion free when all 4 MIP images were predicted to be
negative.

Model calibration and evaluation

To leverage the trained model to identify as many abnormal
MRI exams as possible, a probability threshold that ensures a
lower false negative rate (FNR) is preferable. On the other
hand, the effect of the false-positive rate (FPR) on the work-
load in the screening workflow should also be considered. To
illustrate the relationship between FNR and FPR, the detection
error trade-off (DET) curve for the validation set was gener-
ated. Thresholds that corresponded to a sensitivity of 100% or
95% and a negative predictive value (NPV) above 98% on the
validation set were then selected as high sensitivity thresholds.

To evaluate the prediction performance of the proposed
deep learning system, receiver operating characteristic
(ROC) curves on the independent test set were generated
and the area under the receiver operating curve (AUC) was
calculated. Sensitivity, specificity, positive predictive value
(PPV), and NPV were also calculated for the default and high

sensitivity thresholds, respectively. Furthermore, to help ex-
plain the decision-making of the classification model,
Gradient-weighted Class Activation Mapping (Grad-CAM)
was used to produce a coarse localization map, highlighting
class-discriminative regions in each MIP image.

Strong background parenchymal enhancement (BPE) has
been reported to be associated with higher abnormal interpre-
tation rates and lead to higher rates of unnecessary biopsies
[22]. The percentage of each category of BPE in false positive
and false negative predictions was examined to illustrate the
effect of BPE on the model output.

To evaluate the effect of the deep learning system on the
clinical workflow, we simulated the scenario in which nega-
tive results from the TWIST sequences did not require patients
to undergo further work-up or require radiologists to interpret
those examinations. The reduced acquisition time and percent-
age of excluded MRI examinations were calculated based on
this scenario.

Statistical analysis

Medcalc (version 19.6.1 Medcalc Software Ltd) and scikit-
learn (version 0.24.1; https://scikit-learn.org) were used for
statistical analyses. The 95% confidence intervals (CI) for
the AUCs were computed with DeLong’s method [23], 95%
Clopper-Pearson CI for sensitivity and specificity, and 95%
standard logit CI [24] for PPV and NPV were also reported.

Results

Patients and lesions

The training and validation sets consisted of 339 patients (me-
dian age ± standard deviation, 44 ± 11 years; range, 22–80
years) who underwent 659 breast screening MRI examina-
tions. Among these, 494 examinations were used for model
training, and 165 were used for validation. The left and right

Fig. 3 Schematic flowchart of the
proposed breast DCE-MRI clas-
sification system. TWISTPre,
precontrast TWIST sequence;
TWISTN, Nth postcontrast se-
quence; MIP, maximum intensity
projection; T1-wPre, precontrast
T1-weighted sequence

Table 1 Acquisition Parameters for ultrafast MRI

Parameter 1.5 T 3.0 T

TR/TE, ms 2.50/0.90 4.12/2.08

Flip angle (°) 20 20

Voxel size (mm3) 0.68 × 0.68 × 3.0 0.91 × 0.91 × 3.0

Temporal resolution (s) 5.2 4.3

FOV (mm) 350 350

Fat suppression No No

TR repetition time, TE echo time, FOV field of view

European Radiology (2022) 32:8706–8715 8709
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breasts in each examination were classified separately, which
resulted in the identification of 118 abnormal breasts (lesion
size ± standard deviation, 17.9 ± 17.4 mm; range, 5.0–110.0
mm) and 1200 normal breasts. Eighty-four of the abnormal
breasts contained benign lesions (lesion size ± standard devi-
ation, 13.7 ± 12.8 mm; range, 5.0–81.0 mm), while the other
34 contained malignant lesions (lesion size ± standard devia-
tion, 25.1 ± 19.8 mm; range, 6.0–110.0 mm).

The independent test set consisted of 149 patients (median
age ± standard deviation, 44 ± 15 years; range, 24–76 years)
who underwent 178 breast screening MRI examinations.
Fifty-five breasts were classified as abnormal (lesion size ±
standard deviation, 24.0 ± 19.8 mm; range, 5.0–76.0 mm),
and 301 were classified as normal. Twenty-five of the 55
abnormal breasts contained benign lesions (lesion size ± stan-
dard deviation, 15.0 ± 16.1 mm; range, 5.0–75.0 mm), and 30
contained malignant lesions (lesion size ± standard deviation,

31.0 ± 19.4 mm; range, 6.0–76.0 mm). Detailed patient and
lesion characteristics are provided in Tables 2 and 3.

Model calibration

The DET curve on the validation set, which illustrates the
trade-off between FPR and FNR with the threshold ranging
from 0 to 1, is shown in Fig. 4. Two cutoff thresholds were
selected based on the DET curve. With a threshold of 0.37, a
sensitivity of 97% (30 of 31, 95% CI: 83%; 100%) and NPV
of 98% (123 of 124, 95%CI: 95%; 99%) were achieved. With
this threshold, one breast with a benign lesion (chronic active
inflammation with fat necrosis, 38 mm) was misclassified in
the validation set, and nomalignant lesions were missed. With
a threshold of 0.25, a sensitivity of 100% (31 of 31, 95% CI:
89; 100) and NPV of 100% (74 of 74) were achieved with no
lesion missed.

Table 2 Patient and examinations
characteristics Characteristic Training and

validation
Independent test

No. of patients 339 149

No. of examinations 659 178

No. of single breasts 1318 356

Mean age of patients 44 ± 11 44 ± 15

BI-RADS assessment

BI-RADS 1 161 (24.4) 34 (19.1)

BI-RADS 2 434 (65.9) 105 (59.0)

BI-RADS 3 27 (4.0) 6 (3.4)

BI-RADS 4 6 (1.0) 7 (3.9)

BI-RADS 5 4 (0.6) 2 (1.1)

BI-RADS 6 27 (4.0) 24 (13.5)

Magnetic field strength

1.5 T 273 (41.4) 59 (33.1)

3.0 T 386 (58.6) 119 (66.9)

Background enhancement

Minimal 263 (39.9) 66 (37.1)

Mild 204 (31.0) 55 (30.9)

Moderate 168 (25.5) 48 (27.0)

Marked 24 (3.6) 9 (5.0)

Fibroglandular tissue

Almost entirely fat 106 (16.1) 32 (18.0)

Scattered 244 (37.0) 58 (32.6)

Heterogeneous 240 (36.4) 67 (37.6)

Extreme 69 (10.5) 21 (11.8)

Gene mutation

Yes 218 (64.3) 56 (37.6)

No 107 (31.6) 88 (59.0)

Possible 14 (4.1) 5 (3.4)

Data in parentheses are percentage.

BI-RADS Breast imaging-reporting and data system.

8710 European Radiology (2022) 32:8706–8715



Independent test

On the independent test set, the model achieved an AUC of
0.81 (95% CI: 0.75; 0.88) (Fig. 5). With the threshold of 0.37,
a sensitivity of 95% (52 of 55, 95% CI: 85%; 99%) and NPV
of 97% (106 of 109, 95% CI: 92%; 99%) were achieved,
while with the threshold of 0.25, a sensitivity of 98% (54 of
55, 95% CI: 90%; 100%) and NPV of 98% (55 of 56, 95% CI:
89%; 100%) were achieved. The classification performance
with each threshold is summarized in Table 4.

Heatmaps generated with Grad-CAM indicate that, for pos-
itive predictions, the model made the decision mainly based
on the enhanced regions in the breast parenchyma, while for
negative predictions, the model’s focus was outside of the
breast parenchyma. Examples are shown in Fig. 6.

The percentage of each BPE level in the false predictions of
the independent test set was also investigated. For false nega-
tive predictions, 1 had minimal BPE and 2 had moderate BPE;
meanwhile for false positive predictions, 35.9% were minimal
BPE, 30.7 % were mild BPE, 25.6% were moderate BPE, and
5.1% were marked BPE.

Standard workflow vs. triage

When applying a threshold of 0.37 on the independent test set,
3 breast lesions were misclassified by the model; one
contained a malignant lesion (mucinous carcinoma, 8 mm,
BI-RADS 6), while the other two contained benign lesions
(one with fibroadenoma, 9 mm, BI-RADS 4 and one not

biopsied, 6 mm, BI-RADS 2).With the threshold of 0.25, only
the one with fibroadenoma was misclassified as normal; no
breasts with malignant lesions were missed.

Despite the possible risk of misclassifying breast lesions,
with a threshold of 0.37, 109 breasts were triaged as normal
and 247 as abnormal, resulting in a workload reduction of
30.6% (109 of 356) at the breast level or 15.7% (28 of 178)
at the examination level. If the threshold was further lowered
to 0.25, 56 breasts were triaged as normal, while 300 were
triaged as abnormal, resulting in a workload reduction of
15.7% (56 of 356) at the breast level and 6.2% (11 of 178)
at the examination level. Furthermore, 30.2% (982.2 of
3253.8 min) or 16.6% (538.8 of 3253.8 min) of scanner time
could be saved over 178 examinations under different settings

Table 3 Description of lesions in
the abnormal breasts Lesion type Training and

validation
Independent test

Benign lesions 84 (71.2) 25 (45.5)

Adenosis 21 (17.8) 3 (5.5)

Fibroadenoma 12 (10.2) 7 (12.7)

Other* 51 (43.2) 15 (27.2)

Malignant lesions 34 (28.8) 30 (54.5)

Invasive ductal carcinoma 26 (22.0) 25 (45.5)

Invasivelobular carcinoma 3 (2.5) 1 (01.8)

Ductal carcinoma in situ 2 (1.7) 2 (3.6)

Micropapillary carcinoma 1 (0.8) 1 (1.8)

Apocrine carcinoma 1 (0.8) 0

Mucinous carcinoma 1 (0.8) 1 (1.8)

Lesion size (mm) †

Overall 17.9 ± 17.4 (5.0–110.0) 24.0 ± 19.8 (5.0–76.0)

Malignant 25.1 ± 19.8 (6.0–110.0) 31.1 ± 19.4 (6.0–76.0)

Benign 13.7 ± 12.8 (5.0–81.0) 15.0 ± 16.1 (5.0–75.0)

Unless otherwise indicated, data in parentheses are percentage.

*The “Other” category included enhancement around fat necrosis, scar tissue, hyperplasia, atheroma cyst, re-
gional background enhancement, and other benign-appearing enhancement not specified.

†Data are ± standard deviation; data in parentheses are range of size.

Fig. 4 Detection error trade-off curve on the validation set. FPR, false-
positive rate; FNR, false negative rate; DET, detection error trade-off
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if scanning was only continued when an abnormality was
detected by ultrafast MRI.

Discussion

In this study, we combined clinical experience with artificial
intelligence for the purpose of improving the efficiency and ac-
cessibility of breast MRI screening. A deep learning model was
developed to identify normal ultrafast breast MRI examinations.

The model achieved an AUC of 0.81 (95% CI: 0.75; 0.88)
on an independent test set. High sensitivity (95% and 98%)
and negative predicted values (97% and 98%) were obtained
by applying different thresholds (0.37 and 0.25). When inte-
grated into the workflow, the model has the potential to reduce
radiologists’ workload by excluding normal scans and

improving throughput by reducing scanning time. Moreover,
the heatmap generated with Grad-CAM could also support
radiologists’ image interpretation by identifying possible le-
sions in the MIP image.

Although a conservative strategy was adopted, there were
still false negative predictions. All the missed lesions were
smaller than 10 mm, and the relatively small size may be the
main reason that the deep learning model did not detect them.
One malignant lesion (a mucinous carcinoma) was missed
when using the threshold of 0.37. However, it should be noted
that there was only one mucinous carcinoma in the training
dataset, and the scarcity of this rare cancer might have caused
the model to be insufficiently trained to identify it. For false
positive predictions, the percentages of minimal, mild, mod-
erate, and marked BPE were 35.9%, 30.7%, 25.6%m and
5.1%, respectively. Compared with the BPE distribution in
Table 2 (37.1% minimal, 30.9% mild, 27.0% moderated,
and 5% marked), it is hard to make a conclusion that BPE
had a negative impact on the classification of MIPs in
TWIST. Meanwhile, 134 of the 195 false positive prediction
were BI-RADS 2, and 113 were assessed within heteroge-
neous and extreme FGT. This finding indicates that proper
handling of dense and BI-RADS 2 breasts may be the key to
reducing false positives in the future.

Similar models have been developed or evaluated in
other studies on screening [25, 26]. Verburg et al [27]
developed a classification model with 4581 MRI examina-
tions of extremely dense breasts; the model could help
exclude 39.7% of the MRI examinations without lesions
and preserve 90.7% with lesions for radiologic review.
Rodriguez-Ruiz et al [28] and Yala et al [9] showed that
AI could help reduce mammogram screening workload by
17% or 19.3% with a sensitivity of 90.6% or 90.1%, re-
spectively. Raya-Povedano et al [29] also reported a 29.7%

Table 4 Performance of the model on validation and independent test set for different threshold setting

Validation Independent test

Threshold Sensitivity (%) Specificity (%) PPV (%) NPV (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

0.25 100 25 12 100 98 18 18 98

(31/31) (74/298) (31/255) (74/74) (54/55) (55/301) (54/300) (55/56)

[89, 100] [20, 30] [11, 13] N/A [90, 100] [14, 23] [17, 19] [89, 100]

0.37 97 41 15 98 95 35 21 97

(30/31) (123/298) (30/205) (123/124) (52/55) 106/301) (52/247) (106/109)

[83, 100] [36, 47] [13, 16] [95,100] [85, 99] [30, 40] [19, 23] [92, 99]

0.50 90 61 20 98 91 52 26 97

(28/31) (183/298) (28/143) (183 / 186) (50/55) (158/301) (50/193) (158/163)

[74, 98] [56, 67] [15, 21] [95, 99] [80, 97] [47, 58] [23, 29] [93, 99]

Numbers in parentheses are the numbers of single breasts. Numbers in brackets are 95% confidence intervals.

PPV positive predictive value, NPV negative predictive value, N/A not available

Fig. 5 Receiver operating characteristic curves on the validation and
independent test sets. The area under the receiver operator characteristic
curve on the validation set and independent test set was 0.82 (95%
confidence interval: 0.74; 0.88) and 0.81 (95% confidence interval:
0.75; 0.88), respectively
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workload reduction for tomosynthesis screening with a
sensitivity of 84.1%. Even though the modality is different,
the challenge of using AI in triaging is the same: a lower
threshold is safer but less efficient, and the trade-off

between the risk of missing breast cancer and the reduction
of workload makes the threshold difficult to determine.

One of the limitations in our study is that the model was
developed with a high-risk population dataset collected from a

European Radiology (2022) 32:8706–8715 8713

Fig. 6 True positive, true negative, false positive, and false negative examples from the independent test set and corresponding heatmaps generated with
gradient-weighted class activation mapping (Grad-CAM)



single institution. This may affect the generalizability of this
study. External validation with diverse populations is necessary
before clinical implementation. Another limitation of this study
is that the cancer rates in the independent test set and the train-
ing and validation sets were not equal. These two subsets of
data were downloaded separately from the same picture archiv-
ing and communication system via a time-consuming acquisi-
tion process. This ensured independence but may have intro-
duced discrepancies in the reported results. In addition, this
study was limited in exploring the real effect of the deep learn-
ing model in the triage workflow. A double-blind, randomized
clinical trial may be necessary to further evaluate the perfor-
mance of the model. Moreover, the proposed method used the
3D mask derived from T1-weighted fat-suppressed sequences,
which may introduce systematic error. Developing a TWIST-
based segmentation method might help further improve its per-
formance. Furthermore, the MIP images used in this study are
only generated in the axial plane, and potential masking effects
may hinder the deep learning model from achieving better per-
formance. Evaluation of multiplanar MIPs may be a potential
solution to address MIP masking effects.

In conclusion, the classification of ultrafast breast MRI
examinations with a deep learning model in the workflow
may be a promising method to improve the efficiency and
accessibility of breast MRI screening. Reduced scanning and
interpretation time could result in significantly lower breast
MRI screening costs, making it possible to provide MRI
screening for a wider population.
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