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Abstract
Objectives The aim of this study was to assess the texture of repair tissue and tissue adjacent to the repair site after matrix-
associated chondrocyte transplantation (MACT) of the knee using gray-level co-occurrence matrix (GLCM) texture analysis of
T2 quantitative maps.
Methods Twenty patients derived from the MRI sub-study of multicenter, single-arm phase III study underwent examination on
a 3 TMR scanner, including a T2mapping sequence 12 and 24months afterMACT. Changes between the time points in mean T2

values and 20 GLCM features were assessed for repair tissue, adjacent tissue, and reference cartilage. Differences in T2 values
and selected GLCM features between the three cartilage sites at two time points were analyzed using linear mixed-effect models.
Results A significant decrease in T2 values after MACT, between time points, was observed only in repair cartilage (p < 0.001).
Models showed significant differences in GLCM features between repair tissue and reference cartilage, namely, autocorrelation
(p < 0.001), correlation (p = 0.015), homogeneity (p = 0.002), contrast (p < 0.001), and difference entropy (p = 0.047). The effect
of time was significant in a majority of models with regard to GLCM features (except autocorrelation) (p ≤ 0.001). Values in
repair and adjacent tissue became similar to reference tissue over time.
Conclusions GLCM is a useful add-on to T2 mapping in the evaluation of knee cartilage after MACT by increasing the sensitivity to
changes in cartilage structure. The results suggest that cartilage tissue adjacent to the repair site heals along with the cartilage implant.
Key Points
•GLCM is a useful add-on to T2 mapping in the evaluation of knee cartilage after MACT by increasing the sensitivity to changes
in cartilage structure.

• Repair and adjacent tissue became similar to reference tissue over time.
• The results suggest that cartilage tissue adjacent to the repair site heals along with the cartilage implant.
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Introduction

The articular surfaces of the knee joint are covered by hyaline
cartilage, which can withstand high repeated pressure and
provides low-friction surfaces for joint motion [1, 2]. The
prevalence of cartilage defects in the knee is estimated to be
approximately 12% of the overall population [3]. In young
adults, these defects are mostly the result of sport injuries,
other trauma, or mechanical malalignment of the joint [4].
Subsequent damage to the chondrocytes leads to degeneration
and death of cells, cartilage matrix degradation, decreased
production of proteoglycans, increased water content, and loss
of zonal architecture [2]. In cases where conservative treat-
ment is not effective, bone marrow stimulating techniques
(MFx) and cartilage restoration techniques, such as matrix-
associated autologous chondrocyte transplantation (MACT),
are often used [5–8]. Previous studies have shown that the
outcome of cartilage repair surgery can vary from hyaline-
like tissue to mixed fibrous-hyaline tissue or fibrous tissue
with inferior biomechanical properties often seen after MFx
[9–11]. Furthermore, the tissue adjacent to the cartilage repair
site might be affected by degenerative changes in the
perilesional zone caused by insufficient defect preparation
[12] or suturing of articular cartilage [13].

Early stages of these changes in adjacent cartilage tissue are
often undetectable on routine morphological scans.
Quantitative MRI, especially T2 mapping, which is sensitive
to collagen matrix organization and water content [14, 15],
has been proven to be a reliable non-invasive diagnostic tech-
nique [16, 17], as degradation of cartilage matrix leads to in-
creased water mobility and subsequent T2 elevation [15].
Differences in T2 distributions are often visible on T2 maps,
which suggests that the analysis of spatial T2 distribution might
be a valuable tool for assessing changes of repair site and the
surrounding tissue during standard post procedure follow-ups.
Gray-level co-occurrence matrix (GLCM) texture analysis [18]
has been explored in recent years in the context of detecting
early osteoarthritic (OA) changes [19–24]. The GLCM deter-
mines the co-occurrence of different signal intensities in a spe-
cific offset in the image, creating a co-occurrence matrix from
which different quantitative features can be extracted. GLCM
features (second-order image statistics) provide information
about linear and quadratic relationships between pixel pairs.
There are various properties of the GLCM calculation. The
displacement distance (d) determines the distance between
neighboring pixels [18, 25], the angle (direction) at which
GLCM is calculated, and the number of gray levels.
However, in most cases, the quantization into 16 gray levels
is sufficient [25]. The angle (direction) at which GLCM is cal-
culated is an important property to consider, because the struc-
ture of cartilage is not homogenous in all directions. Since the
region of interest (ROI) might not be rectangular, ROI flatten-
ing was implemented in various studies to improve the

reproducibility of GLCM calculation [21, 26]. The aim of this
study was to assess the properties of the repair site after MACT
and its adjacent cartilage tissue and compare these to healthy
cartilage using quantitative MRI techniques (T2 mapping) and
advanced image texture analysis techniques, such as GLCM.

Method

Study design and patient baseline characteristics

The institutional review board or independent ethics commit-
tee at each site approved the study, and each participant gave
written, informed consent.

Our cohort consisted of a subgroup of patients who partic-
ipated in the MRI sub-study of a prospective, multicenter,
single-arm phase III study evaluating efficacy and safety of

Table 1 Patient demographic and defect characteristics

All patients (N = 25)

Sex, n (%)

Male 17 (68.0)

Female 8 (32.0)

Age (years), mean ± SD 39.6 ± 13.5 (15–60)

Number of defects per patient, n (%)

One defect 20 (80)

Two defects 5 (20)

Defect location, n defects (%)

Femoral condyle 22 (73.3)

Patellofemoral 7 (23.3)

Tibial plateau 1 (3.3)

ICRS grade, n defects (%)

3 24 (80.0)

4 4 (13.3)

Lesion etiology, n defects (%)

Traumatic 14 (46.7)

OCD 2 (6.7)

Focal degenerative 14 (46.7)

Defect size (cm2), mean ± SD

All lesions 5.5 ± 1.9 (1.0–9.0)

Larger lesion1,2 6.0 ± 1.6 (4.0–9.0)

Total3 6.6 ± 2.3 (4.0–12.5)

n, number of patients; n defects, number of defects; SD, standard devia-
tion; ICRS, International Cartilage Repair Society; OCD, osteochondritis
dissecans
1 Lesions were classified into larger and smaller lesions, i.e., in patients
with two lesions, the classification was based on the size of the respective
lesions, while in patients with one lesion only, this lesion was classified as
the larger lesion
2 Total number of larger lesions was 25
3All lesions per patient added to one single value
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MACT using NOVOCART® Inject (TETEC Tissue
Engineering Technologies AG). Males and females 18 to 65
years of age (or ≥ 14-year-old minors with a closed epiphyseal
growth plate) with focal cartilage defects of the femoral con-
dyle, trochlea, patella, or tibial plateau (ICRS grade III or IV)
were eligible for enrollment. Two defects and prior failed
cartilage repair of the index lesion were allowed.

Three study sites participated in MRI examination of pa-
tients, which was performed 12 and 24 months after MACT.

Patient demographic and baseline characteristics of the 25
patients (with overall 30 cartilage defects) who participated in
the MRI sub-study are summarized in Table 1. In terms of
lesion etiology, trauma and focal degeneration were reported
for 46.7% of the defects each, and 6.7% of the defects were
caused by osteochondritis dissecans (OCD). Five patients from
the MRI cohort were excluded, due to a small defect size,
resulting in 20 evaluable patients (with overall 23 lesions).
Detailed information about postoperative recovery and rehabil-
itation of all patients can be found in Niemeyer et al. [27].

MRI examination

MRI examinations consisted of morphological imaging
protocols (three-dimensional proton density-weighted
GRE sequence, and two-dimensional proton-density, T1-

and T2-weighted fast spin echo sequences) and T2 mapping
multi-echo spin-echo sequence. T2 maps were acquired
using the parameters listed in Table 2 for each MRI site.
T2 mapping was performed centrally in MATLAB 9.6
(MathWorks) using mono-exponential, two-parametric de-
cay fitting.

Image evaluation

Morphological images were assessed by an experienced radi-
ologist using the MOCART 1.0 score (Magnetic Resonance
Observation of Cartilage Repair Tissue) for semi-quantitative
assessment of the repair tissue [28].

Regions of interest (ROIs) were defined by an experienced
radiologist on two or three consecutive slices of the T2 map-
ping sequence based on morphological images using JiveX
(Visus). The number of slices depended on the size of the
lesion. For each slice, repair cartilage, adjacent cartilage, and
a reference cartilage were selected. Adjacent tissue was select-
ed immediately next to the repair tissue. Cartilage located at
least 10 mm from the edge of the repair tissue was selected as
a reference. ROIs were placed in the same location of the
cartilage at both time points. ROIs were subsequently trans-
ferred onto corresponding slices of T2 maps and processed in
MATLAB 9.6 (MathWorks) (Fig. 1). Mean T2 was calculated

Table 2 T2 mapping sequence parameters for each of the three sites participating in this study

Site 1 2 3

Scanner Achieva
(Philips)
3 T

Achieva
(Philips)
3 T

MAGNETOM Skyra (Siemens)
3 T

Coil 8-channel knee 16-channel knee 15-channel knee

Sequence Multi-echo spin-echo Multi-echo spin-echo Multi-echo spin-echo

Orientation plane Sagittal Sagittal Sagittal

Slice thickness (mm) 3 3 3

Slice spacing (mm) 3.3 3.6 3.3

Repetition time (ms) 2000 2000 2000

Echo times (ms)

Number 1 12.5 12.5 12.5

2 25 25 25

3 37.5 37.5 37.5

4 50 50 50

5 62.5 62.5 62.5

6 75 75 75

7 87.5 87.5 87.5

8 100 100 100

Averages 1 1 1

Acquisition matrix 268 × 320 268 × 320 320 × 256

Field-of-view (cm) 16 × 16 16 × 16 16 × 16

Total acquisition time 7 min 52 s 9 min 52 s 8 min 4 s
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and averaged through the slices, ROI-wise, resulting in three
T2 values per patient (one for repair cartilage, one for adjacent
cartilage, and one for reference cartilage).

GLCM analysis

Inclusion criterion for GLCM was the number of pixels in an
ROI greater than fifteen. Using an in-house-written script in
MATLAB, ROIs were rotated and flattened (MATLAB func-
tion “imrotate”), quantized into 16 gray levels, and consecu-
tive GLCM analysis was computed with an offset of 0° (di-
rection parallel to the cartilage surface) and a step of length 1
(considering a pixel and its immediate neighbor). Using the
GLCM_features1 function from the MATLAB Repository
[29], 20 quantitative features were extracted (autocorrelation,
cluster prominence, cluster shade, contrast, correlation, dif-
ference entropy, difference variance, dissimilarity, energy,
entropy, homogeneity, information measure, information
measure of correlation 2, inverse difference moment
normalized, inverse difference normalized INN, maximum
probability, sum average, sum entropy, sum of squares, sum
variance). GLCM feature values were averaged through the

slices, ROI-wise, resulting in three values (for each ROI) for
every feature per patient. Texture feature reproducibility and
optimization of GLCM setup (offset, number of gray levels,
and step) for focal cartilage lesions were performed prior to
this study and published elsewhere [30, 31].

Statistical methods

All statistical analyses were performed using R version 4.0.5
(R Foundation for Statistical Computing) in RStudio version
1.4.1106 (Rstudio, PBC). T2 and GLCM feature values were
averaged for every ROI type. The Shapiro-Wilk normality test
was used to assess the normality of the examined variables.
The Wilcoxon signed-rank test was used to determine the
significance of differences in mean T2 values and GLCM
features between 12 and 24 months separately for each ROI.
Spearman’s rank correlation coefficients were calculated.
Linear mixed models with a random slope and random inter-
cept were fitted using function lmer from the R package lme4
version 1.1-2 [32]. In all models, we considered time point
and ROI type as fixed effects and we allowed individual in-
tercepts for each patient with the slopes of the variable ROI

Fig. 1 ROI selection on T2-
weighted MR images at 12
months and 24 months (A and B,
respectively). ROIs were
transferred onto the T2 maps (red
delineation) at 12 and 24 months
(C and D, respectively). Yellow
arrows point toward the lesion site
boundaries, red arrows point
toward the adjacent tissue
boundaries and green arrows
point toward the reference tissue
boundaries
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type varying by patient. A fixed-effects structure was deter-
mined using likelihood ratio tests between models. The inter-
action between fixed effects was specified only in the model
that explored the variable mean T2. Final models were fitted
with restricted maximum likelihood (REML). The variables
correlation and contrast had to be transformed to meet model
assumptions. Repair tissue at 12 months was set as the base-
line in each model and we report fixed effects that describe the
course of T2 and GLCM features in time.

p–values lower than 0.05 were considered statistically
significant.

Results

The mean MOCART score increased from 74.6 ± 12.2 at 12
months to 88.7 ± 8.8 at 24 months (for details, see Table 3). A
significant decrease in mean T2 values between the two post-
surgical time points (12 and 24 months) was observed only for
repair cartilage (p < 0.001). In terms of GLCM, significant
changes (p < 0.05) over time were observed for repair cartilage

in the following features: contrast, correlation, difference
entropy, difference variance, dissimilarity, homogeneity, infor-
mation measure, information measure of correlation 2, inverse
difference moment normalized, and inverse difference
normalized. Similarly, significant changes (p < 0.05) from 12
to 24 months were found in the following GLCM features in
tissue adjacent to the repair site: contrast, correlation, differ-
ence entropy, difference variance, dissimilarity, homogeneity,
information measure, inverse difference moment normalized,
and inverse difference normalized. The changes in adjacent
cartilage were similar to those for repair cartilage. In reference
to cartilage, autocorrelation, sum average, sum of squares, and
sum variance were significantly different between 12 and 24
months (p < 0.05). Mean absolute values with standard devia-
tions and mean differences between time points are specified in
Table 4. We found a moderate correlation between MOCART
and autocorrelation (0.52), cluster shade (−0.53), sum of
squares (0.53), sum average (0.53), and sum variance (0.51).

The following variables were modelled by means of linear-
mixed effects models: mean T2, autocorrelation, correlation,
homogeneity, contrast, and difference entropy. Variables were
chosen based on results from paired test results and correla-
tions between features (Fig. 2). Because manyGLCM features
are highly correlated with each other, we analyzed only those
that were easily interpretable in the context of cartilage texture
and that satisfied model assumptions.

Our model confirmed a significant (p < 0.001) estimated
decrease of T2 of −5.82 (−8.23 to −3.41) ms from 12 to 24
months after surgery. The rate of decrease was different for
each ROI (significant interaction between adjacent tissue and
time, and reference tissue and time), showing a more stable
mean T2 value compared to repair cartilage (Fig. 3a).

The effect of time on autocorrelation was not significant (p
= 0.08). Adjacent tissue (p < 0.001) and reference tissue (p <
0.001) had significantly higher mean values compared to re-
pair tissue.

Homogeneity decrease in time was significant (p = 0.001).
Adjacent tissue (p = 0.027) and reference tissue (p = 0.002)
had significantly lower mean values compared to repair tissue.
(Fig. 3c).

Models of the cube of correlation, cube root of contrast,
and difference entropy showed a significant effect (p < 0.05)
of time and a significant difference (p < 0.05) between repair
and reference tissue. However, the difference between repair
and adjacent tissue was not significant.

Summary tables of all models and estimated values can be
found in the Supplementary material.

Discussion

The purpose of this study was to evaluate the T2 relaxation
time and GLCM texture features in knee cartilage treated with

Table 3 MOCART values at 12 and 24 months after surgery for each
repair site

Repair site # 12 months 24 months

1 70 90

2 80 80

3 65 80

4 75 90

5 85 90

6 75 80

7 100 100

8 85 90

9 65 100

10 65 85

11 90 95

12 85 95

13 60 95

14 70 90

15 90 100

16 65 85

17 85 95

18 65 80

19 85 90

20 55 75

21 55 65

22 80 95

23 65 95

Mean 74.6 88.7

Standard deviation 12.2 8.8
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MACT. We were specifically interested in MACT transplant
maturation and changes in cartilage tissue adjacent to the re-
pair site (Table 5).

Elevated T2 relaxation time in cartilage is associated with
degeneration or trauma and its decrease over time signals
changes in cartilage structure [19, 33]. It has been shown that
variation of T2 in healthy hyaline cartilage was highly corre-
lated with collagen anisotropy fibril angle [34]. Randomly
oriented collagen fibers (e.g., in the superficial cartilage zone)
allow more mobility of protons, and thus, higher T2 relaxation
times were found [35, 36]. Early in the maturation process, the
MACT graft might have a fluid-like appearance, because the
repair tissue is initially poorly organized and highly water-
permeable [35–37]. It has been hypothesized that a decrease
in T2 is connected to the reorganization of the matrix structure
and a decrease in free water [35].

In our study, the analysis showed a significant decrease in
mean T2 between 12 and 24 months only in repair cartilage (Δ
= 5.82 ± 6.48, p < 0.001). Decreased T2 values in combination
with a high morphological score (MOCART) indicated a fa-
vorable clinical outcome, which is in correspondence with the
clinical results of this study published by Niemeyer et al. [27].
A decrease in the mean T2 value of a selected ROI is very
general and represents only one mean quantitative value for
the whole area without providing information about changes
in cartilage texture; therefore, texture analysis might be a use-
ful add-on. GLCM features are statistical texture features that
describe relationships between individual pixels [18]—infor-
mation that is lost when comparing mean T2 values. These
features are highly correlated; hence, the selection of the most
fitting features must be considered. This can be done either
automatically using an algorithm, or manually, based on cor-
relation and cluster analysis and an understanding of the im-
age intended for analysis [38].

In our study, we used quantization, a process in which a
range of values is compressed to a single quantum [39]. If the
variance of T2 values is large, similar values fall into one
quantization bin, which results in larger areas of one gray
level. In tissues with a smaller variance of T2 values, quanti-
zation results in greater disparity in gray levels. This is the
reason the texture of reference cartilage is richer. Moreover,
the variability of T2 values at 12 months among patients is
high, which leads to high variability of features. Thus, the
specific feature values might not be as important as the direc-
tion of differences between ROIs and the two time points.
Since our cohort consisted of comparatively young individ-
uals with focal cartilage defects, we can consider our reference
to be healthy cartilage tissue.

We also found significant differences in autocorrelation,
sum average, sum of squares, and sum variance in reference
tissue between 12 and 24 months (Table 2). These features are
linked to gray-level dispersion, which is higher in reference
tissue. However, the features that are linked to the presence ofT
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edges or disorderliness were not significantly different com-
pared to the other two areas. A possible explanation could be a
subsidiary improvement of healthy cartilage, with the direc-
tion of change in these features the same as that in repair and
adjacent tissue, although not significant.

Our analysis of GLCM features showed that autocorrela-
tion [39] does not change between 12 and 24 months, but is
significantly higher in adjacent and reference tissue compared
to repair tissue, suggesting more prominent patterns and pos-
sibly the normal collagen fiber network in healthy reference
cartilage. Concerning correlation, adjacent tissue was more
similar to repair cartilage, but values approached those of the
reference tissue between 12 and 24 months. The linear rela-
tionship between pixels is more predictable in repair cartilage
and reveals a more uniform texture compared to healthy
cartilage.

Images with more uniform gray levels result in a higher
overall value of homogeneity [18]. Homogeneity was lower
in adjacent (p = 0.027) and reference tissue (p = 0.002) com-
pared to the repair site. In combination with contrast and dif-
ference entropy [18, 40], which both showed significant dif-
ferences only between repair and reference cartilage, we see
adjacent tissue might have been more similar to repair tissue
than to reference cartilage, or is between those two, texture-
wise.

After transforming contrast to −1/3, we expected lower
values in reference tissue (higher values before transforma-
tion). Because feature values in repair and adjacent tissue
approached the reference at 24 months, we assume that
GLCM analysis of T2 maps can show a positive effect of
MACT on surrounding tissue.

In recent years, several articles about GLCM analysis of
knee cartilage have been published. Although these articles
concern osteoarthritis (OA), there may be some similarities
between OA lesions and MACT grafts that have not fully
maturated, namely, in elevated T2.

Carballido-Gamio [22] reported elevated correlation, ho-
mogeneity, and entropy in osteoarthritic cartilage in the direc-
tion parallel to the cartilage surface between patient follow-
ups. Joseph et al [19] reported that contrast was elevated in
individuals with risk factors for OA. Schooler et al [21] per-
formed a study with similar GLCM parameters (offset = 1,
angle = 0° and 90°, flattened ROI) in patients with OA and
healthy volunteers and they found elevated contrast 1, 2, and 3
years after baseline measurement and elevated entropy in the

�Fig. 2 Cross-correlation matrix of GLCM features at 12 months in (a)
repair tissue, (b) adjacent tissue, and (c) reference tissue. Some features
are highly correlated. For example, contrast and dissimilarity are
calculated nearly identically, but contrast uses a weight of (i-j)2 and
dissimilarity uses a weight of (i-j), where i and j are gray levels in rows
and columns of the GLCM matrix, respectively [29, 40]. The two
measures contain essentially the same information, therefore analysis of
only one was sufficient
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direction parallel to the cartilage. Heilmeier et al [41] reported
an up to 40% higher risk for total knee replacement with a

one-SD increase in contrast. Blumenkrantz et al reported ele-
vated entropy in OA patients [24].

Fig. 3 Plot representing a change
of mean estimated values T2 and
GLCM features (bold lines).
Paired values for each case, color-
coded by ROI, are represented by
faded lines in the background.
Interaction between time and
tissue type in the case of T2 is
clearly visible (a). Similarity
between repair and adjacent tissue
is visible in the case of the
autocorrelation (b), cube of
correlation (d), cube root of
contrast (e), and difference
entropy (f) Lines representing
mean estimates are evenly spaced
in the case of the homogeneity (c),
representing difference in
homogeneity between all three
cartilage regions
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There are also few limitations that have to be considered.
The number of cases was relatively low (n = 23). The first
examination was done 12 months after MACT. At that time,
the MACT transplant is expected to be fully matured and
should not be as highly hydrated as it is less than six months
after surgery. Therefore, a more rapid change in texture that
could have occurred prior to the measurements in this study
would have beenmissed. Due to the relatively large size of the
repair tissue, reference cartilage was often chosen near the
magic angle, but the overall increase of signal should not have
affected the texture. The texture analysis was performed on
three consecutive slices and not in a 3D manner, because of
the non-zero slice distance used in multi-echo spin-echo T2

mapping.

Conclusion

In conclusion, GLCM texture analysis is a useful add-on to T2

mapping in the evaluation of knee cartilage after MACT by
increasing the sensitivity to changes in cartilage structure.
Some texture features, namely, correlation, homogeneity, con-
trast, and difference entropy, changed significantly in repair
tissue and adjacent tissue between 12 and 24 months after
surgery, indicating a sizable change in texture, and likely,
collagen structure. The results of this study, in accordance
with previous research, suggest that the use of texture analysis
provides additional information not only about the state and
maturation of the repair tissue but also about the texture and
composition of the repair cartilage and adjacent morphologi-
cally normal-appearing cartilage tissue.
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