Skip to main content
. 2022 Nov 7;9:907150. doi: 10.3389/fmolb.2022.907150

TABLE 2.

Various approaches of missing value imputation.

Approach Advantages Limitations Methods References
Global Optimal performance when data is homogeneous Poor performance when data is heterogeneous BPCA Jörnsten et al. (2005), Oba et al. (2003), Souto et al. (2015)
SVD Troyanskaya et al. (2001)
ANNImpute García-Laencina et al. (2008)
RNNImpute Bengio and Gingras (1995)
Local Optimal performance when data is heterogeneous Poor performance when data is homogeneous KNNImpute Dubey and Rasool (2021), McNicholas and Murphy (2010), Pan et al. (2011), Ryan et al. (2010)
LSImpute Bo et al. (2004)
SVRimpute Wang et al. (2006)
GMCImpute Ouyang et al. (2004)
Hybrid Optimal performance regardless of local or global correlation Sub-optimal performance when data is noisy and has high missing rates LinCmb Jörnsten et al. (2005)
EMDI Pan et al. (2011)
RMI Li et al. (2015)
VAE, DAPL Qiu et al. (2020), Qiu et al. (2018)
Knowledge-assisted Optimal performance in presence of noisy data Sub-optimal performance when data has high missing rates iMISS Hu et al. (2006)
GOImpute Tuikkala et al. (2006)
POCSimpute Gan et al. (2006)
HAIimpute Xiang et al. (2008)