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ABSTRACT

Health(span)-related gene clusters/modules were re-
cently identified based on knowledge about the
cross-species genetic basis of health, to interpret
transcriptomic datasets describing health-related in-
terventions. However, the cross-species compari-
son of health-related observations reveals a lot
of heterogeneity, not least due to widely vary-
ing health(span) definitions and study designs,
posing a challenge for the exploration of con-
served healthspan modules and, specifically, their
transfer across species. To improve the identifi-
cation and exploration of conserved/transferable
healthspan modules, here we apply an established
workflow based on gene co-expression network
analyses employing GEO/ArrayExpress data for hu-
man and animal models, and perform a comprehen-
sive meta-study of the resulting modules related to
health(span), yielding a small set of literature backed
health(span) candidate genes. For each experiment,
WGCNA (weighted gene correlation network analy-
sis) was used to infer modules of genes which cor-
relate in their expression with a ‘health phenotype
score’ and to determine the most-connected (hub)
genes (and their interactions) for each such mod-
ule. After mapping these hub genes to their human
orthologs, 12 health(span) genes were identified in
at least two species (ACTN3, ANK1, MRPL18, MYL1,
PAXIP1, PPP1CA, SCN3B, SDCBP, SKIV2L, TUBG1,
TYROBP, WIPF1), for which enrichment analysis by
g:profiler found an association with actin filament-
based movement and associated organelles, as well
as muscular structures. We conclude that a meta-
study of hub genes from co-expression network anal-

yses for the complex phenotype health(span), across
multiple species, can yield molecular-mechanistic in-
sights and can direct experimentalists to further in-
vestigate the contribution of individual genes and
their interactions to health(span).

INTRODUCTION

Health and healthspan are gaining acceptance as central
concepts in medicine, with a focus on (multi-)morbidity,
aiming to delay the onset of disease and dysfunction for as
long as possible. Health is difficult to describe and has dif-
ferent meanings to different people. Aging, and the deterio-
ration of health that comes with it, affects nearly all species.
But tissues that enable the systematic study of the underly-
ing molecular processes are more easily available for animal
models, especially for invertebrates, coming with further ad-
vantages such as controlled genetics and environments, and
a much shorter lifespan. Thus, aging and health are fre-
quently studied in animal models.

To support aging research, many databases are now avail-
able (1). Gene expression profiles across tissues of aging
mice were already presented, e.g. by the AGEMAP (2)
project in 2007 and recently by the Aging Atlas Consortium
(3), but there is a lack of such data for health. Adding the
dimension of health may amend the identification of molec-
ular markers for aging and further support the identification
of health-modulatory compounds (4).

An increasing number of transcriptomic data sets that
can be used to compare young and old individuals are avail-
able on public repositories. The concept to derive aging-
associated patterns from transcriptome repositories across
species (5) already led to central elements of aging-related
knowledge bases (1,6). Comprehensive analyses of tran-
scriptome repositories were also expanded towards diseases
in the context of aging (7). Yet, for expression profiles per
se, there is a lack of gene expression co-regulation anal-
yses across species with a focus on health(span). A ma-
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Figure 1. Workflow to determine cross-species consensus gene correlation networks, and subsequent analyses. WGCNA is applied independently for each
selected experiment in ArrayExpress/GEO, defining modules and gene interactions. Gene interactions are filtered by experiment-specific thresholds. For
each module, hub genes are retrieved and those with an ortholog found as a hub gene in another species are reported in Table 1. For each module, Table 2
lists the genes that correlate the most with its ‘eigengene’, i.e. that best represent the module’s expression pattern across samples.

jor challenge for polygenic phenotypes in general is the
heterogeneity of the underlying gene regulatory landscape
(8), impeding the use of network-based methods for post-
processing, i.e. smoothing, aggregating, and unifying, tran-
scriptomic results (9,10). However, the power of the cross-
species derivation of conserved co-regulation modules is be-
coming apparent, see, e.g. the CoCoCoNet database (11).

For prominent cellular characteristics of aging, such
as cellular senescence, Avelar and coworkers (12) demon-
strated how to integrate static data from public databases
with insights from gene co-expression (https://coxpresdb.
jp/) (13). Attempts have also been made to use known
gene/protein interactions to describe age-induced expres-
sion profiles (14). The integration of co-expression data,
also across species, could similarly be performed with Gene-
Friends (15) (for human and mouse) for RNA-seq or, for
microarray data also with MIM (16). The latter also pro-
vides provenance information, i.e. the experimental context
in which the correlation was found, to plan follow-up exper-
iments.

We recently proposed an operational definition of health
(17) and suggested that it may be applied across species. We
then collected data on molecular contributions to health
(18), with a focus on genetics. With the support of Gene-
Mania (19) and the associated tool AutoAnnotate (20) we
then constructed a map of network modules by clustering
a functional interaction network of the genes implicated in
health. Naturally, aging and health are complex phenotypes
for which we still lack the means to single-out and investi-
gate the contribution of individual genes. A detailed analy-
sis is therefore expected to dissect a list of health-associated
genes into gene sets that, in turn, can be understood as
parts of the whole (that is, health), and these parts are dis-
tributed across diseases & dysfunctions, tissues, organs and
species. The idea of identifying health-associated molec-
ular patterns is at the root of molecular health research.
Our efforts strived for a consensus across the species bar-
rier between worms (Caenorhabditis elegans) and humans,
and we investigated the transfer of findings from worms as a
short-lived animal model of health to humans. A consensus

in network modules of worm and human was thus deter-
mined (18), but it was small in relation to the much larger
functional interaction networks that were the starting point
for each species. However, functional interaction databases,
upon which GeneMania is based, are woefully incomplete.
Further, these databases do not usually consider the specific
biological context of an interaction, but instead merge in-
teraction data from very heterogeneous sets of experiments
(8,21).

To harness the power of diverse transcriptomic exper-
iments in the context of health(span), here we present a
WGCNA-based meta-study for the exploration and char-
acterization of health(span) related modules (Figure 1).
WGCNA co-expression analyses have recently been used in
aging research (22) to identify differences in old vs young
and gene expression asymmetries in the brain that develop
over time. In our study we integrated a highly diverse set of
health(span) expression data across species from many dif-
ferent tissues. We manually derived a scoring for all the tran-
scriptome samples we considered, based on a score com-
bining quantitative and qualitative factors that the authors
of the experiments provided, and refer to it as their ‘health
phenotype score’. WGCNA was found to be a competi-
tive tool to find network modules reflecting such kinds of
scores (23). This allows the filtering for health-associated
modules generated by the WGCNA correlation analysis
across tissues (or cell lines) and multiple species, and thus,
the meta-study of health-associated most-connected genes
(hubs) and their interactions, as presented here. We also
collected the evidence for the implication of these genes in
health(span) from the literature.

MATERIALS AND METHODS

External databases

All sets of transcriptomics experiments in the Gene Expres-
sion Omnibus (GEO) (24) and ArrayExpress (25) databases
that mention ‘healthspan’ in the title or the description were
included, if they featured more than six samples and a scale-

https://coxpresdb.jp/


NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 4 3

free network could be derived from their correlation matrix
(for the latter, see below). Experiments performed on C. el-
egans were added when these were alternatively annotated
with the term ‘health’, to increase the number of datasets
for the worm, since ”healthspan and ‘Caenorhabditis ele-
gans’ only finds the single entry E-GEOD-54853. We did
not include non-worm experiments with ‘health’ in the title
or the description, since the number of matches (specifically
for human) turned out to be excessively large.

Log-transformation of expression levels was performed if
not already performed for the data we retrieved. Suppl. Ta-
ble 1 describes the experimental data and metadata which
form the input to the following analyses. Our scripts relied
directly on expression data provided by the individual up-
loader. Information on the way the data was normalized is
made available in the description of the protocol. A trans-
formation to Z scores made no difference to the analysis. We
also tried out a quantile normalization (26) for each exper-
iment. Genes still found significant with quantile normal-
ization applied are indicated as such in Tables 1 and 2.

Data on gene essentiality was retrieved from the Online
GEne Essentiality (OGEE) database (27). OGEE describes
for several large initiatives what fraction of cell-culture ex-
periments per tissue were inhibited in growth if a gene was
disabled. If available, the minimal and maximal fractions
are presented for the many human tissues of the ‘avana’ set
of experiments, ‘broad’ or ‘sanger’ were alternatives. There
was no gene for which OGEE did not have data provided
by one of the sources.

Each experiment’s metadata was inspected to manually
derive a health(span) phenotype score designed to reflect
the health status of the individual(s) from which the sam-
ple(s) were taken. This ‘health phenotype score’ was manu-
ally tailored for each experiment by a custom formula that
takes the experiment’s factor annotation as an input and
thus consistently annotates each sample: For our analysis,
if an experiment provides phenotype scores that reflect the
health of the individual samples, then these scores are taken.
If such a score is not available for an experiment, it is de-
rived by a minimal number of operations from the pheno-
types or from the experimental factors describing the ex-
periment. Such a minimal operation could be the inversion
of a factor describing accumulated damage. If multiple fac-
tors are given (like a combination of treatments), then we in-
spected the paper in detail to derive a combined score. Gene
knock-downs, knock-outs, gene transfers or natural genetic
variations are all interpreted as if they were a treatment.
The young untreated wildtype individual was assigned a
health phenotype score of 1. If a treatment was reported
in the paper to improve or reduce health, by default we
added or subtracted 0.2, for example yielding a score of
1.2 for the healthier individual. Importantly, only the scores
of the individuals providing the samples within one exper-
iment must be comparable to each other and we never re-
late the scores in one experiment to the scores in another
experiment. This allows us to use a rather arbitrary score-
card that has to be consistent only within one experiment.
Within such an experiment, scores may be adjusted fur-
ther considering the relative strengths of the effects reported
in the paper. Samples from old individuals are assigned a
healthspan phenotype score of 0, which may be increased

or decreased by 0.2 as before. The details can be inspected
in the ‘Data parameters’ folder (see Availability).

RNA-seq data re-analysis

Gene expression levels were typically not available for the
RNA-seq data. Therefore, the RNA-seq datasets were all
reanalyzed based on the raw data by the following proto-
col. All target RNA-seq datasets were retrieved from the
European Nucleotide Archive (28), and the corresponding
FASTQ files were filtered for Illumina adapters, phage PhiX
sequences and quality (Phred score over 25) using BBTools
version 38.49 (29). Gene expression was then quantified for
each RNA-seq run. To this end, the filtered outputs were
mapped against the corresponding target genomes from the
Ensembl database release 98 (30), using the STAR program
version 2.7.3a (31). This program also enabled us to assign
uniquely mapped reads to individual genes from the short
read alignments. Finally, the mapped read counts were nor-
malized as transcripts per million (32).

Network analysis

In WGCNA, the network construction is independent from
the separation of genes into modules: The modules are a
means to perform a gene selection and prioritization with
respect to an observed association with the phenotype. The
interaction network is defined via a threshold on a score on
pairs of genes, which is not the Pearson correlation itself.
Instead, it is a score that indicates to what degree a pair of
genes correlates in the same fashion (in terms of direction
and magnitude) with other genes (33,34). The scored gene
pairs are filtered for a minimum interaction score of 0.2.

The WGCNA analysis was performed for undirected
interactions. Parameters were set as instructed by the
WGCNA standard protocol, as follows. For every exper-
iment the cutHeight was manually set to remove outliers
and the exponent/power was manually determined to en-
sure that the network is a scale-free network (see below).
An experiment is skipped if that is not possible and then
marked with ‘no modules found’ in Supplementary Table
S1. For RNA-seq, prior to the removal of outliers, low-
count genes were removed by a manual setting of the pa-
rameter cutHeight so that the separation of the samples re-
flects their phenotypes and could no longer be improved,
based on the clustering of the genes by expression data with
the R function hclust as performed as part of the WGCNA
protocol.

The WGCNA protocol proposes to apply an experiment-
specific exponent to the correlation coefficients (WGCNA
calls it ‘power’) to strengthen the differences in the correla-
tion data. This power is set, for each experiment, just large
enough so that in the derived correlation network, the frac-
tion of genes that have k-many interactions with other genes
is proportional to k−� with � being a small positive param-
eter. Networks with that property are called scale-free; the
parameter � describes how quickly this fraction gets smaller
when the number of connections increases. Genes with a
high number of connections are rare in scale-free networks,
but they exist, and these ‘hub’ genes are considered highly
influential on the expression levels of genes in that module.
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Table 1. Hub genes in health-associated WGCNA network modules, found in at least two species. Orthologs were mapped to the human gene name using
Ensembl. The human gene names also correspond to the names in mouse and rat, whereas the names of the orthologs in worms based on the Ensembl
database are given in brackets. The last column summarizes the report by the OGEE database labeling the gene as essential. If available, it presents what
fraction of cell-culture experiments showed the gene to be essential across the many human tissues of the avana set of experiments. PPP1CA and SDCBP
(marked by an asterisk) have also been found as hub genes when starting with quantile-normalized data, see Supplement Table S3, which also lists other
members of the MRPL and SCN families

Gene human
(worm) Human Mouse Rat Worm Description in context of healthspan Essential (OGEE)

ACTN3 (atn-1) x x Expressed in muscle, known marker for healthspan and
athletes’ muscle phenotypes (36). Localized to Z-discs,
anchoring to actin filaments.

no

ANK1 (unc-44) x x Ankyrin 1 (ANK1) is associated genetically with Diabetes
type 2 (37), spherocytosis (38) and epigenetically with
neurological diseases, likely triggered by ApoE with effect
on TNFalpha and Akt (39).

conditional (mouse)

MRPL18
(mrpl-18)

x x The mitochondrial ribosomal protein L18 (MRPL18) is
involved in the cytosolic stress response and promotes the
translation of Hsp70 (40).

10–27%

MYL1 (mlc-6 &
mlc-5)

x x MYL1 encodes the myosin light chain 1 expressed in
fast-twitch skeletal muscle fibers (41). Human ageing is
associated with lower MYL1 content and higher MYL3
content (42).

4–38% (broad)

PAXIP1 (pis-1) x x The PAX interacting protein 1 (PAXIP1) contributes to
DNA repair and correlates with breast cancer staging (43).

2–18%

PPP1CA*
(C06A1.3 & 26
others)

x x PPP1CA is one of three catalytic subunits of the
serine/threonine specific protein phosphatase 1 (PP1),
which is known to be involved in the regulation of glycogen
metabolism, cell division, muscle contractility and protein
synthesis (44). PPP1CA itself is linked to diverse tumor
entities and is involved in ERK/MAPK signaling (45, 46),
TGF� signaling (47), Ras signaling and Ras-induced
senescence (48), spermatogenesis (49) as well as in tau
hyperphosphorylation leading to Alzheimer’s disease (50).

1–21%

SCN3B (-) x x The sodium voltage-gated channel beta subunit 3 (SCN3B)
controls electrolytes and contributes to the pacemaking in
the heart and has an effect on intracellular trafficking (51).
It also suppresses senescence and apoptosis via its
interaction with p53 and thus, is considered to be an
oncogenic factor (52).

no

SDCBP* (lin-10) x x Syntenin-1 (formerly Syndecan(SDC)-binding protein)
regulates autophagy (53) and together with Syndecan
contributes to exosome formation (54) also in cancer cells
(55).

3–21%

SKIV2L (skih-2) x x The Ski2-like RNA helicase (SKIV2L) is part of the Super
killer (SKI) complex and involved in mRNA degradation,
DNA-RNA hybrid control, and telomere stability (56).
SKIV2L is also known to contribute to inflammatory
bowel disease (57) and macular degeneration (58).
Furthermore, SKIV2L features antiviral capacities and
plays a role in innate immunity (59) associated with RNA
exosomes (60).

no

TUBG1 (-) x x TUBG1 encodes the tubulin gamma 1 protein, which,
when mutated, can lead to brain malformations (61) with
clinical features such as motor and intellectual disabilities
and epilepsy. Moreover, TUBG1 is involved in tumor
diseases, as shown for breast cancer (62), lung cancer (63)
and medulloblastomas (64).

common 60–100%

TYROBP (-) x x The transmembrane immune signaling adaptor TYROBP
is considered to be involved in Alzheimer’s disease (65,66)
and as a target of TERC in inflammatory processes (67). In
addition, TYROBP is suggested as a prognostic marker for
gastric cancer and renal cell carcinoma (68, 69).

9–20%

WIPF1 (wip-1) x x The WAS/WASL interacting protein family member 1
(WIPF1) regulates actin, phagocytosis, and
neurotransmission and is among the top-3 genes
upregulated by caloric restriction in the hypothalamus of
wild-type mice (70). Furthermore, overexpression of
WIPF1, triggered by BRAF-mutation activated MAP
kinase pathway, promotes aggressiveness of thyroid cancer
and thus acts like an oncoprotein (71). Its oncoprotein
character was also described for pancreatic
adenocarcinoma (72) as well as breast cancer, glioma and
colorectal cancer (73).

no
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Table 2. Genes correlating the strongest with the module’s eigengene (quantifying module membership) in at least two species. Genes in this table are
among the top-30 of the module membership and found in experiments of at least two species. The gene name is marked in bold if that gene was listed
as a hub gene in Table 1. The column ‘Correlation’ flags ‘positive’ (or ‘negative’) to refer to an observed positive (or negative) correlation with the ‘health
phenotype score’ when the gene is upregulated. ‘mixed’ indicates that the experiments did not yield a consensus direction of correlation. Supplement Table
2 extends this list to all genes that appear in the top 30 of modules of two or more experiments. The ‘#Experiments’ column indicates the number of
experiments with a module for which the gene was identified as a member. The last column summarizes the report by the OGEE database labeling the
gene as essential as in Table 1. *PPP1CA and SQSTM1 (marked by an asterisk) have also been found as hub genes when starting with quantile-normalized
data, see Supplement Table S3, which also lists other members of the MRPL and SCN families. +CEBPB, PAXIP1 and PPP1CA (marked by a plus sign)
are confirmed by the same analysis on quantile-normalized data presented in Supplement Table S4

Correlation with healthspan phenotype

Gene #Experiments All species Human Mouse Rat Worm Essential (OGEE)

AC068831.7 vps-33.2 2 negative negative negative conditional (worm)
ADAM10 sup-17 2 mixed negative positive no
APBB1IP mig-10 2 mixed negative positive no
CEBPB+ cebp-1 2 mixed negative positive no
CREBBP cbp-1 3 negative negative negative 2–11%
EIF3F eif-3.F 2 positive positive positive yes (sanger)
INTS12 F53H1.4 2 mixed negative positive 1–21%
KPNA3 ima-3 2 mixed negative positive 11–25%
MEX3C mex-3 2 negative negative negative no
MRPL19 mrpl-19 2 mixed positive negative 2–26% (broad)
MYL1 mlc-6 2 positive positive positive 4–38% (broad)
PAXIP1+ pis-1 2 positive positive positive 1–21%
PCNX2 B0511.12 2 negative negative negative conditional (mouse)
PPP1CA*+ C06A1.3 4 mixed positive mixed 8–20%
PPP1CB gsp-1 2 positive positive positive 52–96% (sanger)
PPP2R3C - 2 negative negative negative 10–27%
RAB2A unc-108 2 negative negative negative no
RAB31 - 2 negative negative negative no
RPL29 rpl-29 2 positive positive positive 2–30% (broad)
RTN2 - 2 mixed positive negative no
RYR1 unc-68 2 positive positive positive no
SCN3B - 2 positive positive positive no
SIX4 ceh-32 2 negative negative negative no
SNRPD1 snr-3 2 negative negative negative common 100%
TMEM70 F32D8.5 2 mixed positive negative no
TUBG1 - 2 mixed positive negative common 60–100%
WIPF1 wip-1 3 negative negative negative no
ZC3H15 F27D4.4 2 negative negative negative no
SQSTM1* sqst-1 3 negative negative negative negative 2–25% (broad)

Further, we filtered for modules that are associated with the
health(span) phenotype (see next paragraph), and the hub
genes are likely to also have a strong effect on this pheno-
type.

Only network modules whose WGCNA eigengene cor-
related with the ‘health phenotype score’ (P value < 0.05)
were retained further. Then, the 30 genes (see the
WGCNA tutorial https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/WGCNA/Tutorials/)
most connected in a module according to the WGCNA
softConnectivity function were considered for subsequent
consensus analyses, and called ‘hub’ genes hereafter. Be-
sides the modules, output of the WGCNA workflow is the
topological overlap matrix with a quantitative description
(termed adjacency) of all interactions between any pair of
genes of an experiment. For each experiment, we deter-
mined a threshold at the 95% quantile of all the adjacency
values. Only gene interactions with an adjacency above
that experiment-wide threshold contribute to our analysis
of interactions of genes in the health-associated modules.
For the 30 hub genes, all pairwise interactions above that
experiment-wide 95% quantile were thus exported, i.e.
subjected to a pan-module search for consensus genes and

consensus interactions, also across species by considering
orthologs, presented in Tables 1 and 2. Orthologs were
determined based on Ensembl version 101 (30).

Further, for each health-associated module, the 30 genes
correlating the strongest with the module’s eigengene (re-
flecting average module behavior, also called ‘module mem-
bership’ in WGCNA) were retrieved. Those found in at
least two species are presented in Table S3. The correla-
tion is taken in relation to the eigengene, and not in rela-
tion to the health phenotype score. Either would be fine
for a ranking of the hub genes within a module, and the
ranking is expected to be identical for the genes most cen-
tral to a module. However, our particular interest was to
abstract from the phenotypes of the experiment and thus
utilize the WGCNA-performed modularization to influence
the ranking. This is assumed to be particularly useful for
experiments with multiple health-associated modules, each
of which we expect to focus on a different aspect of health
and for which the constituent genes should thus be ranked
differently, in order to analyze that particular module most
appropriately, and without any particularities pertaining to
the health phenotype score. Multiple probesets describing
the same gene, or its splice variants, were not distinguished

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
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and mapped to the same human gene, resulting in genes
interacting with themselves. Such self-interactions were re-
moved.

Network figures

The network figures were created with the R igraph pack-
age. A spring-embedding layout was chosen for the plots
and manually refined. Figure 2 shows an overview on all
hub genes from Table 1, their direct interactions and genes
found in any species that connect to at least two hub genes.
Additionally, Figure 2a–d in the Supplement were prepared
separately for each species, i.e. they show only interactions
from modules that WGCNA identified for an experiment
based on samples from that species. Input to these sup-
plement figures are the hub genes from Table 1 and all
genes that are reachable from the hub genes which are no
more than two transitions away. All interactions between
the selected (reachable) genes were also added. The resulting
graphs were simplified with the igraph minimum spanning
tree implementation that maintains the connectivity of the
graph but removes all redundant paths between genes. The
spanning tree retains the stronger of two alternative paths
between genes. A gene connected to a hub gene with a low
adjacency value will thus lose that direct link if it is corre-
lating strongly with another gene that has a strong correla-
tion with that hub gene. Hub genes were determined from
within WGCNA considering all interactions, not only the
ones above the 95th percentile. Hub genes that are strongly
connected for experiments in one species may not be equally
dominating in another species. This possibility and the com-
petitive effect on directly connected hub genes (one cross-
species, the other only observed for one species) imposed by
the spanning tree give the impression that the cross-species
consensus hub genes are marginalized in Supplemental Fig-
ure S2a–d, albeit these graphs are seeded from the consen-
sus hub genes and their interactions.

Permutation tests

The question whether the selected hub genes (see Table 1)
are special with respect to their number of interactions in
protein-protein interaction databases was addressed empir-
ically. Hereto, all genes in the STRING (35) database were
ordered by their degree (sum of incoming and outgoing con-
nections). For single genes a rank in that order can be de-
termined, and for any set of genes the sum of these ranks
can be derived. 10 000 random gene selections of equal size
each yield their respective rank sum. The fraction of these
random gene selections with a higher rank sum score than
the gene sets in Tables 1 and 2 estimates the probability to
make that respective finding by chance.

Similarly, the significance of the number of consensus
genes of Tables 1 and 2 was assessed by repeating the con-
sensus determination with an equal number of randomly
picked genes from the respective same species.

RESULTS

We analyzed all experiments listed in Supplemental Table
S1 with WGCNA. This analysis provided a modularization

by an expression-based clustering of genes and allowed to
describe the association of each module with the ‘health
phenotype score’. WGCNA also quantified the strength of
gene correlations and determined hub genes for each mod-
ule. We identified 12 genes (Table 1) that are among the 30
hub genes in health(span)-associated modules from at least
two species. In total (Supplement Table 2), 658 different
genes were found among these top-30 hub genes of all mod-
ules as determined by WGCNA. An interaction network of
the genes from Table 1, based on correlation of gene expres-
sion, is presented in Figure 2.

To prioritize the cross-species hub genes of Table 1, we
also looked at the module membership of all genes for
each module. The genes most correlating with the mod-
ule’s eigengene are reported and, analogous to Table 1, the
genes that are found in multiple species were determined
and listed in Table 2. This table further indicates whether a
gene’s change in expression is positively or negatively corre-
lated with the eigengene of the WGCNA module to which it
belongs, which in turn may be positively or negatively corre-
lated with the health(span) phenotype. Supplement Table 2
shows the WGCNA module details from which Table 2 was
derived. To allow for a direct comparison of the genes’ cor-
relation with health(span), not quantitatively but in terms
of direction (that is, up- or downregulation in relation to the
health phenotype score), Table 2 presents a gene’s inverted
direction if the gene’s module is already negatively corre-
lated with the health(span) phenotype. Its column ‘ Cor-
relation’ presents the direction that all experiments are in
agreement with or ‘mixed’ if the experiments differ in terms
of their correlation with the health phenotype score. This
information can be calculated for all genes, which we con-
sider to help interpreting a module. The provenance of each
module is described in the supplement (Supplement Table
S1).

The intersection of Tables 1 (hub genes) and 2 (genes cor-
relating with the health phenotype score) points to a subset
of genes that are considered both influential and directly
associated with health, i.e. MYL1, PAXIP1, PPP1CA,
SCN3B, TUBG1 and WIPF1. The enrichment by g:profiler
for the genes of Table 1 are shown in Figure 3. Supplement
Figure S1a shows an enrichment analysis for the intersec-
tion of Tables 1 and 2 which is matching closely the enrich-
ments in Figure 3, except that it does not feature the terms
associated with muscle. Supplement Figure S1b shows the
enrichment for all genes in Table 2. The latter is the least ro-
bust since the enriched terms do not cover a large fraction
of the genes.

Tables 1 and 2 were both created by taking the 30 top-
ranked genes in each module. The gene set enrichment anal-
yses for Table 2 (Supplement Figure S1b) were not conclu-
sive but the 29 genes (Table 2) in multiple species are un-
likely to be achieved by chance, as we demonstrate next. The
quantiles after 10000 permutations with an equal number of
random genes selected for a module are

0% 1% 5% 10% 25% 50% 75% 90% 95% 97.5% 99% 99.5% 99.9% 100%
0 3 4 5 7 9 11 13 14 15 16 17 19 21

which indicates a P value < 0.0001 to find 29 genes con-
firmed as healthspan-associated across species with mod-
ules of the same size and a maximal selection of 30 genes
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Figure 2. Cross-species conserved hub genes observed in health(span)-associated WGCNA modules, and genes that connect these hub genes. Connections
are interactions taken from the WGCNA adjacency matrix if the adjacency is above the 95th percentile of all interactions of that experiment and if for that
experiment the interaction is in a health(span)-associated module. The only direct interaction between hub genes is between MYL1 and ACTN3.

per module. Analogously, for the selection of hub genes,
an equal selection of random genes after 10 000 iterations
shows this distribution:

0% 1% 5% 10% 25% 50% 75% 90% 95% 97.5% 99% 99.5% 99.9% 100%
0 1 2 3 4 5 7 8 9 10 11 12 13 16

This indicates a P value < 0.01 to confirm 12 hub genes
across species by chance from modules of equal size.

We also tested if the genes in Tables 1 and 2 have more
interactions than one could expect by random selections of
an equal number of genes in STRING. For interactions with
a quality score of 900, which excludes genes that have only
support by gene-correlation analyses, a P value of 0.0022
was empirically determined with 10000 repeated attempts
to outperform the hub gene selection of Table 1, while the
P value was found to be 0.019 (not significant) for the genes
of Table 2. When lowering the quality score threshold to
200, as suggested in the tutorial of the R interface of the
STRING database, then both gene selections are found to
be significant with P < 0.0001.

Effect of data normalization

WGCNA is considered robust towards linear transforma-
tions that affect all genes in an equal fashion since only the
correlation between genes affects its data processing. Exter-
nal factors that increase or lower the expression of all genes
in a dataset will only increase the threshold above which a
correlation becomes significant. Thus, a shift of the mean,
also combined with a division to derive Z scores does not
affect the analysis.

We also performed quantile normalization which, for
each gene, examines the data across samples and which
therefore does not necessarily maintain the order of expres-
sion levels for each sample. This affected the correlation
scores, the modules and the module membership ranking
for each module, and the results. Data for the same analy-
sis performed on quantile normalized expression levels are
shown in the supplement. For our analysis we used the data
as normalized by the authors of the respective dataset. This
should enable the straightforward comparison of the analy-
ses with the publication accompanying the data and it leaves
the decision regarding the normalization method and cor-
rection for batch effects to the authors of the dataset, who
are much more familiar with it.
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Figure 3. Gene set enrichment analysis of cross-species hub genes for health(span) with g:profiler. Input are genes from Table 1 that are observed in
healthspan-associated modules of multiple species. Terms with a low coverage of genes are not suitable to describe the selection as a whole but may still
direct the interpretation of parts of the network where these genes are connected. Color codes are used for the P value (4th column) and color represents
the source for the gene assignment (5th column), cf. the g:Profiler documentation, https://biit.cs.ut.ee/gprofiler/page/docs.

DISCUSSION

Method

The basis of this investigation were all experiments in
GEO/ArrayExpress that mention ‘healthspan’ in their de-
scription (or ‘health’ or ‘healthspan’ in case of worm). For
each experiment, from the descriptions that are provided
for the samples in the database, a ‘health phenotype score’
was derived. A gene expression correlation analysis with
WGCNA yielded a gene coexpression network for each ex-
periment as a set of modules of genes that correlate with the
health(span) phenotype. We were interested in genes that

are most connected, i.e. hub genes, for each module, and
in their interactions as described by the WGCNA network.
The correlation of genes with the module eigengene (Table
2), to predict a positive or negative association with health
in the molecular context of that module, was only of sec-
ondary interest to us.

In this analysis, we focussed on common observations
across two or more species and a variety of health-related
phenotypes, including the reaction to drugs that extend
healthspan (Supplementary Table S1). The first steps of our
analysis with WGCNA identified modules directly from the
expression data, i.e. without inspecting a phenotype; the se-

https://biit.cs.ut.ee/gprofiler/page/docs
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lection of health(span)-associated modules was performed
in a later step. The WGCNA protocol was directly derived
from the WGCNA tutorial.

The selection of genes, based on strong connectivity, from
modules selected in such a way shall hence be considered
robust even if the mapping of the multi-factorial sample de-
scriptions to a single factor, that is, the health phenotype
score describing the health-effect observed in samples, may
allow for plausible alternatives. This is another reason, be-
sides the need for abstraction to compare experiments, why
we consider it advantageous to compare the module’s genes
against the module’s eigengene, which is derived solely by an
inspection of the expression data, and not against the health
phenotype score (as done in Table 2). The manual interven-
tion to derive the health phenotype score was solely needed
to filter for health(span) associated modules (Supplemen-
tary Table S2).

To filter for gene interactions, we decided to filter for
the strongest 5% of adjacencies from each experiment, fur-
ther constrained to modules that are associated with the
health(span) phenotype score; see the Methods section for
details. This experiment-dependent threshold reflects that
experiments differ in the number of samples and subgroups
and hence in the contrasts to separate genes by their corre-
lations.

The authors of WGCNA suggested that their software
can be used to perform network meta-studies from multi-
ple microarray experiments in a single WGCNA setup (74).
But they clearly stated that the same module needs to be
robust across experiments to directly perform WGCNA on
a single joint matrix based on all expression data. For the
very diverse set of experiments contributing to our anal-
ysis and their polygenic phenotype this is not necessarily
expected to be the case, i.e. experiments may have their
true healthspan-associated module in different sections of
the transcriptome. Indeed, we did not observe any inter-
actions to have orthologs across species. The setup pre-
sented here is pragmatic and robust, i.e. individual exper-
iments can be removed without affecting the gene interac-
tions determined for another experiment. Of major concern
for us was that hub genes are expected to show a measurable
effect on health(span) only under the conditions of those
ArrayExpress/GEO experiments in which they are differ-
entially expressed. To follow this work up with wet lab con-
firmations, it is hence essential to provide provenance in-
formation on how the change to the hub gene’s expression
was induced, i.e. a pointer to the ArrayExpress/GEO ex-
periment. In a joint matrix across many experiments this
information would be more difficult to retrieve, which sug-
gests not to conduct the integration of experiments directly
within a single WGCNA analysis.

Furthermore, for integrating interaction data from mul-
tiple experiments, the authors of WGCNA suggested to
weigh the interactions from each experiment to derive a
single joint adjacency matrix and they suggested to ap-
ply a threshold on that single matrix to derive a network.
Because of the heterogeneity of our experiments, we can-
not tell which experiment would be more informative for
health(span), compared to another, and thus could not ad-
just weights accordingly. By treating all experiments indi-
vidually, with the null hypothesis that all experiments have

the same fraction of true interactions that shall be identified
by the respective highest adjacency values, we could use an
experiment-tailored threshold for filtering the interactions.
Therefore, we used the 95th percentile of correlation values
in the adjacency matrix, for each experiment, to adapt the
selection of the interactions to be forwarded to describe a
meta-study consensus (see Figures 1 and 2). These gene in-
teractions may be trusted and they thus could be reassem-
bled into a larger integrated meta-study network to reflect
the molecular neighborhoods of hub genes, which we pre-
sented as Figure 2 (cross-species) and Supplement Figures
2a-d (for multiple modules of the respective same species).
The comparison of findings across species further strength-
ens the confidence in the WGCNA results. Thus, we identi-
fied conserved candidate regulators of health(span).

An important technical concern lies with the interpreta-
tion of gene expression correlation data for RNA-seq ex-
periments, which have an intrinsic high noise-level for low-
abundant genes. We have shown (75) that even for array
data (that are less noisy for low-abundant genes), the low-
abundant genes have a measurable effect on a ranking of
genes by Pearson correlation, and this is likely also the case
for module calculations as performed here. This concern has
to be borne in mind in the following interpretation of the
modules in terms of biological functionality.

Cross-species hub genes and their interactions

Most of the hub genes identified by our analysis (Table 1)
have been described in a health(span)-context before. The
gene set enrichment analysis with g:profiler describes the
molecular roles of the cross-species hub genes (Table 1) as
specifically associated with a) features of the muscle and b)
actin filament-based organelles and movement (Figure 3).
The worm is a model species also for muscle development
because of striking similarities of its muscles to mammalian
muscle tissue (76), and movement (locomotion) is an im-
portant phenotype in all species towards operationalizing
health by quantification (17). For human, rat and mouse in
Supplementary Table S1, there are experiments for which
samples were selectively taken from muscle tissue, but not
so for the worm, which is routinely sequenced as a whole.
Upon closer inspection of the enrichment results of Fig-
ure 3, we found that ‘actin filament-based movement’ refers
to a wide spectrum of processes, i.e. genes that support
actin polymerisation (WIPF1), the motor protein myosin
(MYL1) or the transition of endosomes into exosomes for
intercellular communication (SDCBP).

The number of experiments of vertebrates and inverte-
brates is balanced. Apart from a lack of tissue specificity,
the experiments for the worm differ from rodents and hu-
mans, in that worm experiments may comprise samples
from different larval stages. This may ease the task of find-
ing strong correlations between genes, but specificity for
aging-associated processes is likely reduced.

Inspecting the distribution of hub genes by species, we
found no more than five of the 12 hub genes in worm, cf.
Supplement Figure S2b, and four in human, cf. Supple-
ment Figure S2a. The only conserved direct interaction be-
tween consensus hub genes was observed between MYL1
and ACTN3 (Figure 2). However, interactions were found
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multiple times for experiments of the same species, namely
ABRA with VRK2, AQP11 with GSTA2 and CYLD with
PCNX2 for the worm. These three interactions are shown
in Supplement Figure S2b and the VRK2 gene remains di-
rectly connected with the PPP1CA hub gene also after the
minimum-spanning-tree-based edge removal. VRK2 is de-
scribed to have downstream effects on the consensus hub
gene PPP1CA (77) via GSK3beta (78). Its genetic variants
are associated with a series of neurological diseases and vi-
ral infection, but also with healthspan associated sleep pat-
terns (79). The interactions conserved in multiple species are
not confirmed in STRING for humans, however in worms,
the consensus hub gene PPP1CA (C06A1.3) links to VRK2
(tag-191).

By interpreting the enrichments in Supplement Figure S3
we can gain more insight into how the genes we identified
may be involved in health. An example is the enrichment
referring to the TYROBP pathway described in wikipath-
ways and to the GO term Leukocyte activation (Supplement
Figure S3a). Genes connecting MYL1 and SKIV2L are
involved in muscular structures (Supplement Figure S3b).
Tubulins (e.g. TUBG1) are known to bind to PP1, of which
PPP1CA is a subunit and together these proteins regulate
histone acetylation (80), which is reflected by the genes con-
necting PPP1CA and TUBG1 (Supplement Figure S3c).
Further, enhanced histone acetylation is associated with ex-
tended health and lifespan in worm (81).

The highly connected genes selected in this study differ
from the list we recently published (18). This WGCNA-
based study does not refer to prior knowledge about ge-
netic contributions and does not perform a factor analysis
to directly associate genes with a health(span) phenotype.
Instead, our focus here is the network-centric interpreta-
tion of correlations within gene co-expression clusters, i.e.
WCGNA modules. It is the module as a whole that corre-
lates in its expression with health, not necessarily the indi-
vidual genes. Table 2 lists genes within the clusters that are
most representative for the features/characteristics of the
cluster in question, i.e. that have the highest degree of mod-
ule membership by WGCNA definition, and in the table,
there are marks (by boldface) for the subset of genes that
are also hub genes. Of the cross-species hub genes in Table
1, six are also listed in Table 2. Others are ‘near misses’, e.g.
Table 2 does not list the consensus hub gene MRPL18 but
MRPL19. And besides the consensus hub gene PPP1CA,
other PP1 subunits like PPP1CB and PPP2R3C are found in
two species (Table 2). The PP1 subunit PPP1R8 was found
as a hub gene only for the worm (Supplement Figure S2b).

In Table 2, we report SQSTM1 as the only gene that is
associated with health in three species. That gene was long
suggested to be aging- and health-related (82,83), also for
human, even though it was only found to be health(span)
associated in the animal experiments of this study. Its tran-
script is negatively correlated with health, but SQSTM1
overexpression is known to extend healthspan in worm (84),
which may be suggestive for a protective upregulation effect.

We performed the permutation test as a means for an in-
ternal validation of the analysis. The re-analysis on a dif-
ferently normalized dataset means that any consensus is
given with extra confidence in the association of PPP1CA
with healthspan (this association was found in all runs

with only 30 genes exported, for interactions and as a hub
gene). Extending the quantile normalization’s export to 60
genes also confirmed CEBPB, PAXIP1, and SQSTM1 with
healthspan. If exporting 60 instead of 30 genes per module
for the original data (data not shown) and for quantile nor-
malization (Supplement Tables S3 and S4), the consensus
grows to ABCD4, ANXA2, BAP1, GDF15, PPP1CA, SD-
CBP and SQSTM1, for which g:profiler finds an enrichment
for ‘exosome formation’.

In a review by Bartha and coworkers (85) a gene is defined
as essential when its dysfunction has a strong effect on an
individual’s viability/fitness. Healthspan is also influenced
by resilience, which without respective environmental stim-
uli will not show its effect on fitness and hence is less likely to
be identified by knock-out/down experiments in vitro. Nev-
ertheless, we provide references to the OGEE database for
all genes in Tables 1 and 2. Most genes are found essential
in a fraction of cell cultures, both for the selected hub genes
and the genes that highly correlate with the healthspan phe-
notype. The OGEE database will keep growing, but if no
indication of essentiality has yet been reported and a gene
is positively correlated with the health score then this may
be an early indication for a gene to be simply repairing or
otherwise strengthening an individual’s resilience. We also
cross-checked with the GTEx database for genes that ap-
pear equally present across tissues and gender, which would
be the expected characteristics for housekeeping genes. To
represent the common notion of housekeeping genes, we
combined multiple scores including the proportion of sam-
ples that express a certain gene as well as the gene’s mean ex-
pression and its standard deviation (86). This finds the genes
from both Table 1 and Table 2 to be enriched (Wilcoxon
rank sum test PTable 1 = 0.0001 and PTable 2 < 0.0001) for
their ubiquity across tissues. The most ubiquitous genes of
Table 1 are PPP1CA, SDCBP, and MRPL1, of Table 2 these
are RPL29, PPP1CA and PPP1CB.

We could not increase the number of health-associated
modules (or genes within modules) by lowering the minimal
module size that was defaulting to 30. Nevertheless, the low
P values from the permutation tests give extra confidence in
our findings. It should however be noted that the WGCNA
tutorial’s limit on 30 genes and the threshold imposed on
the interaction score were key to achieve these significance
levels. With more genes exported per module this increases
the likelihood to find a match in another species by chance.
With the quantile normalization applied we could double
the export per module to 60 genes while remaining signifi-
cant in the permutation test with 67 hub genes in the con-
sensus across species (P < 0.001, 50% quantile at 44, Sup-
plement Table S3).

Overall, our meta-analysis of a highly diverse set of tran-
scriptomics experiments successfully identified genes which,
for the most part, were already established to be closely
associated with health(span), and together they have a
strong and meaningful GO term enrichment. The enrich-
ment of muscle-related genes can be credited to our focus on
health(span) experiments, and our study found many ‘actin
filament-based movement’ genes (Figure 3) that provide the
cellular infrastructure not just for movement, but also for
signaling and cell division, which may be triggered/blocked
whenever cells start to feel unwell. If so, then it may be possi-
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ble to detect many healthspan genes solely by inspecting cel-
lular data. This hypothesis may be confirmed by an exten-
sion of our setup to a larger set of cellular transcriptomics
data sets for which samples vary in their genetic or environ-
mental exposure to stress factors.

This study provided a cross-species meta-study of
gene interactions for health(span)-related datasets in
ArrayExpress/GEO. It focused on a series of co-expression
network analyses and subsequently on derived hub genes,
instead of a focus on those genes that correlate the most
with the ‘healthspan phenotype score’. Tissues, technolo-
gies and experimental setups differ between the experi-
ments but are homogeneous for each WGCNA analysis per-
formed. This approach allows for an abstraction from the
experiment at hand and permits a search for common me-
diators of an effect. The proposed consensus hub genes were
plausible in their implication into health(span). Their in-
teractions could be confirmed in STRING, or were found
consistent with gene set enrichment analyses and they may
support the interpretation of joint or epistatic effects be-
tween pairs of haplotypes in healthspan GWAS or linkage
analyses. The protocol as provided with WGCNA is very
transparent so that findings can be traced back to the ex-
periments that are backing them, to serve as a template for
further investigations in the wet lab.
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4. Dönertaş,H.M., Valenzuela,Fuentealba, Partridge,M. and
Thornton,J.M. (2018) Gene expression-based drug repurposing to
target aging. Aging Cell, 17, e12819.
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Human ageing genomic resources: integrated databases and tools for
the biology and genetics of ageing. Nucleic Acids Res., 41,
D1027–D1033.

7. van Dam,S., Cordeiro,R., Craig,T., van Dam,J., Wood,S.H. and de
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