Skip to main content
. 2022 Nov 24;55:101745. doi: 10.1016/j.eclinm.2022.101745

Table 3.

Diagnostic accuracy of a multivariable diagnostic prediction model for HIT as determined in the validation dataset (25% of the patients).

n TP FN TN FP Sensitivity (95% CI) Specificity (95% CI) PPV NPV LR+ LR−
TORADI-HIT algorithm
 CLIA (SVM) 324 25 1 282 16 96 (80, 100) 95 (91, 97) 61 (45, 76) 100 (98, 100) 17.91 (11.05, 29.02) 0.04 (0.01, 0.28)
 PaGIA (GBM) 319 24 0 280 15 100 (86, 100) 95 (92, 97) 62 (45, 77) 100 (99, 100) 19.67 (12.01, 32.20) 0.00 (0.00, 0.01)
 ELISA (SVM) 343 25 3 300 15 89 (72, 98) 95 (92, 97) 62 (46, 77) 99 (97, 100) 18.75 (11.26, 31.23) 0.11 (0.04, 0.33)
Current clinical algorithm
 CLIA 324 21 5 282 16 81 (61, 93) 95 (91, 97) 57 (39, 73) 98 (96, 99) 15.04 (9.01, 25.11) 0.20 (0.09, 0.45)
 PaGIA 319 21 3 243 52 88 (68, 97) 82 (78, 87) 29 (19, 41) 99 (96, 100) 4.96 (3.72, 6.63) 0.15 (0.05, 0.44)
 ELISA 343 24 4 292 23 86 (67, 96) 93 (89, 95) 51 (36, 66) 99 (97, 100) 11.74 (7.70, 17.89) 0.15 (0.06, 0.38)

Abbreviations: TP - true positives, FN - false negatives, TN - true negatives, FP - false positives, PPV - positive predictive value, NPV - negative predictive value, LR+ - positive likelihood ratio, LR− - negative likelihood ratio, SVM - support vector machine, GBM - gradient boosting machine.

The accuracy in the full dataset is given in Table S8 of the supplementary material. Accuracy data of the currently recommended algorithm (4Ts score + immunoassay) are given as comparison.