Skip to main content
. Author manuscript; available in PMC: 2022 Nov 29.
Published in final edited form as: Phys Rev A (Coll Park). 2019 Sep;100(3):10.1103/physreva.100.033419. doi: 10.1103/physreva.100.033419

TABLE II.

Operating parameters and calculated collisional frequency shifts for 27Al+, 40Ca+, 88Sr+, and 171Yb+ clocks. For 27Al+, we use the parameters of and calculate the BGC shift and uncertainty specifically for the clock described in Ref. [19]. For the 40Ca+, 88Sr+, and 171Yb+ clocks, we use parameters similar to experimental implementations at WIPM [28,29], NRC [9,30], and PTB [8], but we do not perform a rigorous analysis of the uncertainty of the BGC shift. For all clocks, we simulate Rabi interrogation. Current 171Yb+ clocks based on the 467 nm electric-octupole (E3) transition use hyper-Ramsey [8] or autobalanced Ramsey [31] interrogation, so this calculated collision shift for 171Yb+ should be taken as a rough estimate.

27Al+ 40Ca+ 88Sr+ 171Yb+ E3
Trap drive frequency [MHz] 40.7 24.7 14.4 15
Secular frequencies [MHz], x direction 2.85,3.31 1.01 1.13 0.7
           y direction 3.54, 3.95 1.07 1.15 0.7
           z direction (axial) 1.47, 2.55 2.31 2.25 1.4
Interrogation time [ms] 150 80 100 150
Clock laser direction, k^ (1/2, 1/2, 2) (1,0, 1)/2 (1, 1,0)/2 (1, 1,0)/2
BG temperature [K] 294.15 ± 2.70 300 300 300
BG pressure [nPa] 38 ± 19 30 16 6
Fractional frequency shift, Time dilation [10−19] 0.60.3+0.6 −0.9 −0.2 0.0
           Phase shift [10−19] ±2.3 ±13.3 ±11.9 ±2.5
           Total [10−19] −0.6 ± 2.4 −0.9 ± 13.3 −0.2 ± 11.9 0.0 ± 2.5