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A B S T R A C T

The popularization of long-term invasive tools for continuously monitoring blood pressure remains challenging.
However, with the rising popularity of wearable personal health management devices, non-cuff blood pressure
measurement technology that applies electrocardiography (ECG) and photoplethysmography (PPG) has gradually
received increasing attention. In particular, whether blood pressure can be measured continuously by the PPG
signal alone is of great interest. In this study, we aim to develop a device that includes systolic and diastolic blood
pressure calculation formulas derived from characteristic waveform points in the PPG time domain and that can
measure blood oxygenation and heart rate. This device applies empirical formulas developed by PPG waveforms
in the PhysioNet MIMIC-II database to calculate blood pressure. The systolic and diastolic pressures are then
compared with the actual blood pressures obtained from invasive blood pressure waveforms to verify the
effectiveness and feasibility of the complete developed system. Overall, 263 waveforms with double peaks and
261 waveforms with only a single peak totaling 524 sets of data are used to derive the empirical formulas. The
systolic blood pressure estimation result using single peak analysis has an excessively large error exceeding �40
mmHg, providing no reference value. However, systolic blood pressure estimation is notably better in double peak
analysis, with error values reducing to approximately 23 mmHg. Diastolic pressure estimation errors are low with
both single (�7 mmHg) and double peak (�4 mmHg) analyses. The error is lower in double-peak analysis than in
single-peak analysis for obtaining systolic pressure from PPG waves. We plan to use PPG to detect additional
physiological parameters in the future, e.g., respiratory rate, heart rate variability, or irregular heartbeat, to
further enhance the functionality of PPG-based wearable devices.
1. Introduction

When assessing personal physical health, the heart rate, blood pres-
sure, body temperature, and respiration rate are the most suitable pa-
rameters for rapid measurement and are also the most important
indicators of health [1]. Although there are many convenient and inex-
pensive medical instruments on the market, the values of these physio-
logical parameters can be easily measured by noninvasive methods [2,
3]. However, there is still no ideal and suitable tool available to achieve
continuous, long-term monitoring. For example, only invasive manom-
eters can be used if users wish to continuously and accurately measure
blood pressure changes. Among the associated parameters, especially for
systolic blood pressure and diastolic blood pressure, long-term abnormal
changes are often early warning signs of diseases in many body organs
[4].
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The traditional method for measuring blood pressure is to use a
mercury sphygmomanometer or the oscillometric method commonly
used in modern electronic sphygmomanometers. Regardless of the
method, it is necessary to pressurize and deflate a pressure cuff to mea-
sure a single systolic and diastolic blood pressure. In addition to the
cumbersome and time-consuming operation, the main problem is that it
cannot be performed for continuous real-time detection. With the
increasing popularity of wearable personal health management devices,
nonpulse-belt blood pressure measurement technology has gradually
received attention, and new theories and ideas have emerged. Among
these techniques, the approach of measuring and estimating blood
pressure by using the time or phase difference between the electrocar-
diography (ECG) and photoplethysmography (PPG) signals is proposed
and implemented [5, 6]. Although this method cleverly solves the
shortcoming of only one-time, intermittent blood pressure measurement,
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due to the electrode patch that needs to be worn to capture the ECG
signal, there is still discomfort caused by the long-term contact of the
patch with the skin. In addition, the entanglement of electrode leads also
indirectly affects the convenience of use. Because of the PPG measuring
device’s inherently easy-to-use and straightforward characteristics and
the associated convenience and comfort of wearing, measure blood
pressure continuously using the PPG signal alone is proposed [7, 8].

The theory of predicting blood pressure with the PPG signal alone is
derived from the time difference relationship between the ECG signal and
the PPG signal, similar to early derivations [9], and there is also a model
that uses a neural network to extract the eigenvalues of the PPG signal for
training directly [10, 11]. Some theories are based on the original
waveform of the time-domain PPG signal in addition to the first-order or
even the second-order derivative waveform [12]. There is also a corre-
lation between the amplitude and the wave height obtained from the
complete waveform shape (such as the time value corresponding to the
wave height percentage of the time percentage) [13]. The corresponding
wave heights are based on the associated eigenvalues. Alternatively, we
can combine the above theories and directly incorporate them into a
neural network for training to obtain a model to predict [14, 15].
However, excessive reliance on neural networks is unsatisfactory.
Although the model obtained by training has excellent prediction results
for the existing training data, the results are different if a new dataset is
added unless the model is retrained [16]. It is difficult to recognize the
uniqueness of the individual unless a corresponding individual model is
trained separately, but this is impractical and violates the original
strategy of universally applying a standard model [17].

Based on the various factors discussed above, we choose the relevant
literature on the systolic and diastolic blood pressure calculation for-
mulas derived from the waveform characteristic points in the PPG time
domain with a partial theoretical basis as the starting point for this study
[18, 19]. First, the self-developed hardware circuits, firmware, and
software programs to calculate blood pressure are reviewed. Then, with
the synchronization data (i.e., invasive blood pressure waveforms and
PPG signal waveforms) obtained and filtered from the PhysioNet
MIMIC-II database, we identify the characteristic points of the waveform,
apply an empirical formula to calculate the systolic and diastolic blood
pressure, and then compare the systolic and diastolic blood pressure with
the actual blood pressure obtained from the invasive blood pressure
waveform to verify the effectiveness and feasibility of the overall system.
Finally, the difficulties and problems faced in implementation steps are
discussed in the context of the device and method developed in this study
aiming to find more effective, feasible, and comprehensive solutions.

2. Materials and methods

2.1. PPG measurement and analysis system

Regarding oxygen concentration measurement in blood, PPG signals
based on body tissues naturally have a low absorption rate for red light
and near-infrared light. In contrast, red blood cells have a high absorp-
tion rate for near-infrared light; combining these two characteristics, the
difference in absorption rates can be used to derive the oxygen concen-
tration carried by red blood cells. As shown in Figure 1A, red light and
near-infrared LED light are used to irradiate the finger. After the light
enters the body tissue and is absorbed, the photodiode receives the
remaining reflected light, and the intensity is measured to compare the
absorption of the two types of light. In addition, the light-penetrating
measurement method is also feasible, and the difference is only in the
placement of the photodiode and the short path for the light to pass
through. This kind of design of the mechanism is also inconvenient;
however, it is usually better to use the reflective approach. Figure 1B
displays a schematic diagram of the light path of different wavelengths
after entering the body tissue.

Note that the penetrating ability of near-infrared light with longer
wavelengths in the figure is also higher than that of red light; thus, the
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former can reach the depths of the tissue and become absorbed by red
blood cells in the blood. Therefore, it can better reflect the changes in
blood flow in the blood vessels. When we need to detect blood oxygen
concentrations, both light sources are needed; however, when we wish to
use the PPG waveform to estimate blood pressure values, it is natural to
obtain helpful information from the PPG waveform of near-infrared light
that can faithfully reflect blood flow conditions. Figure 1C demonstrates
the relative relationship between the PPG waveform and the ECG
waveform. Figure 1D shows a typical dual-peak PPG waveform, as
described in detail in Section 2.3.

To capture the PPG waveform of near-infrared light, we assemble a
set of basic blood oxygen measurement systems as a tool for research and
experimentation, including red and near-infrared LED light sources,
photodiode receivers, photoelectric system control chip circuits, and
control firmware programs, using the MAX30101 module produced by
Maxim as a front-end sensor to capture PPG signals. For a highly inte-
grated Arduino module (Arduino Nano 33 BLE), we set the operating
mode of the MAX30101 module through the SPI communication inter-
face, receive the PPG waveform that has been converted into an electrical
signal, and transmit the PPGwaveform to the individual through the low-
power Bluetooth interface (BLE) to the computer. A standard recharge-
able 850 mAh lithium polymer battery powers the developed system to
reduce the interference caused by noise that can distort the PPG wave-
form. The battery can be charged with the TP4056 charging module via
USB power. The software program on the personal computer pre-
processes the original PPG waveform and then extracts the correlation of
the near-infrared PPG waveform. A self-developed algorithm analyzes
the information to calculate the predicted systolic and diastolic blood
pressure. The main components of the overall system and the assembled
prototype are described in Figure 2A and 2B. In addition to capturing the
PPG waveform from near-infrared light for blood pressure calculation,
the prototype of the test system can also measure and calculate the blood
oxygen concentration and heart rate of the measured subject.

2.2. MIMIC-II database and data classification and processing methods

In addition to circuit and analysis software development, to meet the
needs of developing and verifying the algorithm for calculating blood
pressure from PPG waveforms, a ready-made and suitable waveform file
from the PhysioNet MIMIC-II database is used as the target for testing.
This MIMIC-II database has synchronized PPG waveforms and invasive
blood pressure waveforms to fit this study’s goal. Details are shown in the
block diagram in Figure 3A. First, a self-written command program is
used to download the PPG waveform recording file (sometimes called the
PLETH waveform in the database). Then, from these downloaded files,
after removing the recording files whose duration is too short, we convert
the files into.txt or.csv format and export them. Second, through manual
inspection and selection, we eliminate the artificial noise segment caused
by the action factor (motion artifact). Then, the typical waveform of
approximately 30 s is extracted from each record file. Finally, the PPG
waveform data are stored in the original state as a file, and the ambu-
latory blood pressure (ABP) waveform is processed in advance to obtain
systolic and diastolic blood pressure for each blood pressure wave and
then saved as the gold standard for actual blood pressure values.
Figure 3B is the interface for previewing the waveforms from the data-
base provided byMIMIC-II. Figure 3C and 3D are examples of typical ABP
and PPG waveforms obtained after processing from the step in Figure 3A.
For the method of calculating the systolic and diastolic blood pressure
from the ABP waveform, the first step is to separate each independent
pulse wave and then find the maximum value of the pulse wave, which is
the corresponding systolic blood pressure. Then, the minimum value of
the pulse wave is found, which is equivalent to the value of diastolic
blood pressure. After the above processing steps, we obtain a total of 48
available waveforms of 30 s each, including 22 waveform sets with
double peaks and 26 waveform sets with only a single peak. Based on the
number of complete waveforms available for analysis and the



Figure 1. (A) Red light and near-infrared LED light are used to irradiate the finger. After the light enters the body tissue and is absorbed, the photodiode receives the
remaining reflected light, and the intensity is measured. In this way, the absorption degree of the two kinds of light is compared. (B) Schematic diagram of the light
path of different wavelengths after entering the body tissue. Note that the penetrating power of near-infrared light with longer wavelengths in the figure is also higher
than that of red light, so the former can reach the depths of the tissue and become absorbed by red blood cells in the blood so that it can reflect changes in blood flow in
the blood vessels. (C) The relative relationship between the ECG signal waveform and the PPG signal waveform in terms of characteristics and the phase difference
between the two, the R wave of the ECG, and the main peak of the PPG also show a one-to-one correspondence. (D) The R-PTT is equivalent to the time interval
between two peaks, exhibiting the standard double-peak PPG waveform.
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corresponding ABP blood pressure values, there are a total of 263
waveforms with double peaks and 261 waveforms with only a single
peak, which is equivalent to 524 sets of data. After the blood pressure
calculation algorithm is verified using these archives, the previously
designed basic blood oxygen measurement system is used to measure
PPG and calculate blood pressure under actual conditions to thoroughly
verify whether the results are as expected by this study.

2.3. PPG data analysis method

Noted that the informed written consent was provided by all partic-
ipants before the experiment. This study was approved by the National
Health Research Institutes, Taiwan. All procedures performed in this
study involving human participants were in accordance with the ethical
standards of the National Health Research Institutes, Taiwan. The raw
data extracted from the MIMIC-II database are analyzed through the
processing procedures and steps shown in Figure 4. First, the components
of the signal baseline drift are removed to obtain a stable waveform.
Small-amplitude moving average processing is applied to filter out use-
less high-frequency noise and separate the PPG pulse wave segment
corresponding to a single heartbeat. Then, the PPG pulse wave segment
corresponding to a single heartbeat is divided. Next, it is determined
whether the single pulse wave belongs to the type with only a single peak
or whether it belongs to the type with multiple peaks. For waveforms
with numerous peaks in the pulse wave, the relevant parameters for
calculating blood pressure can be directly obtained by measuring the
relationship between the characteristic points of the waveform in the
time domain of the PPG waveform. The relevant parameters for
3

calculating blood pressure are obtained directly from the relationship
between the usual points of the waveform in the time domain of the
measured PPG waveform.

Figure 1C illustrates the relative relationship between the ECG signal
waveform and the PPG signal waveform in terms of characteristics. In
addition to the phase difference between the two, the R wave of ECG and
the main peak of PPG also show a one-to-one correspondence, which is
inevitable. As a result, because the signal source is the same, it is only
after the modulation of various body parts that it appears different. Of
course, the exceptions caused by arrhythmias are another matter, and
this topic is not considered in this paper. Excluding arrhythmic pulse
waves from PPG waveforms may be an additional research topic. The
pulse transit time (R-PTT) concept is used on the PPG waveform to es-
timate blood pressure for this relative relationship. As seen in Figure 1D,
a standard double-peak PPGwaveform is taken as an example, and R-PTT
is equivalent to the time interval between two peaks. For a PPG wave-
form with an unclear second peak or only a single peak, the R-PTT value
still exists, but it must be obtained indirectly in other ways, such as with
the quadratic derivative waveform, as reviewed later regarding the de-
tails and discussion of the impact on blood pressure calculations. The R-
PTT is based on two formulas (Eqs. (1) and (2)) as follows:

DBP¼Kb þ 2
0:031

� ln Kc

R� PTT
� 1
3
� Ka

R� PTT2 (1)

SBP¼DBPþ Ka � 1
R� PTT2 (2)

Ka, Kb, and Kc are fixed parameters obtained after correction from the



Figure 2. To capture the PPG waveform of near-infrared light, we assemble a set of basic blood oxygen measurement systems as a tool for research and experi-
mentation, including red and near-infrared LED light sources, photodiode receivers, photoelectric system control chip circuits, and control firmware programs, using
the MAX30101 module produced by Maxim as a front-end sensor to capture PPG signals. For a highly integrated Arduino module (Arduino Nano 33 BLE), we set the
operating mode of the MAX30101 module through the SPI communication interface, receive the PPG waveform that has been converted into an electrical signal, and
transmit the PPG waveform to the individual through the low-power Bluetooth interface (BLE) to the computer. A standard rechargeable 850 mAh lithium polymer
battery powers the developed system to reduce the interference caused by noise that would distort the PPG waveform. The battery can be charged with the TP4056
charging module via USB power. The software program on the personal computer is responsible for preprocessing the original PPG waveform and then extracting the
correlation of the near-infrared PPG waveform. A self-developed appropriate algorithm then analyzes the information to calculate the predicted systolic and diastolic
blood pressure. (A) Assembled prototype. (B) Main components of the system. The analysis platform can be a personal computer or a Raspberry Pi single-board
microcomputer.
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experimental results according to personal conditions. Therefore, our
method is to first measure the current systolic blood pressure and dia-
stolic blood pressure and then obtain the simultaneous R-PTT value with
the arm sphygmomanometer. Next, the above formulas are applied to
obtain the set of Ka, Kb, and Kc values. Finally, the systolic blood pressure
and diastolic blood pressure for a subsequent period of continuous time
can be obtained by substitution into the above formula according to the
change in R-PTT. For the data retrieved from the MIMIC-II database, the
real systolic and diastolic blood pressures are stored as files, as seen in
Figure 3, which can be directly used to solve for Ka, Kb, and Kc in the
formula. Finally, as the last step displayed in Figure 4, the existing blood
pressure value in the database is used as the absolute standard for
comparison to verify the algorithm’s accuracy.

3. Results

3.1. System performance and stability test

Using the prototype assembled in Figure 2A, with the waveform
receiving and analysis program on the computer (such as the actual
operation image in Figure 5), the current subject’s PPG waveform can be
displayed in real-time, and the systolic blood pressure and systolic blood
pressure of the current analysis result can be obtained. The related details
are explained in detail in Section 3.2. The results of the static MIMIC-II
data analysis are first presented here. First, the analysis results ob-
tained when the self-developed software algorithm is applied to the data
extracted from the MIMIC-II database are presented. Some PPG wave-
forms have multiple peaks, while the second peak of some PPG wave-
forms is unclear or the waveform has only a single peak. Therefore, the
objects of analysis are also divided into two groups: 1) a lack of two or
more prominent peaks and 2) two sets of data with more than two
distinct peaks.
4

As shown in Figure 6A, 6B, 6C, and 6D, the diastolic blood pressure
and systolic blood pressure obtained by the PPG analysis of a single peak
are the analysis results relative of the actual blood pressure value. The
Bland-Altman analysis toolbox provided by MATLAB software [20, 21]
was used to generate the plots for Figure 6B and 6D, and subsequent
figures were generated in the same way. The distribution of actual sys-
tolic blood pressure of the subjects is between 92 and 174 mmHg, while
the distribution of actual diastolic blood pressure is between 44 and 85
mmHg. According to the distribution diagram of the comparison between
the estimated value of the diastolic blood pressure and the actual blood
pressure value in Figure 6A, the calculation results are generally satis-
factory. According to the Bland-Altman diagram of diastolic blood
pressure in Figure 6B, most of the error values are concentrated in the
vicinity of plus or minus 7 mmHg Figure 6C shows the distribution of the
estimated systolic blood pressure value and the actual blood pressure
value; since the test data are all from critically ill intensive care unit (ICU)
patients, the second wave peak is challenging to evaluate, resulting in
considerably scattered results. In addition, the systolic blood pressure is
shown in Figure 6D. The Bland-Altman diagram also reveals that the
systolic blood pressure estimation result of a single peak has an error that
is too large; the error value exceeds plus or minus 40 mmHg, which
basically has no reference value. For the PPGwaveformwith only a single
peak, if even the naked eye cannot identify the existence of any second
wave, the analysis method adopted in this paper cannot be applied.

Next, the data shown in Figure 7A, 7B, 7C and 7D are the diastolic
blood pressure and systolic blood pressure obtained by the PPG analysis
with a prominent second peak. The actual systolic blood pressure dis-
tribution of the subjects is between 104 and 185 mmHg, while the actual
diastolic blood pressure is between 36 and 84mmHg. The analysis results
are relative to the actual blood pressure value. The distribution diagram
of the estimated diastolic blood pressure and the actual blood pressure
value in Figure 7A indicate that the estimated value is quite close to the



Figure 3. Block diagram of the MIMIC-II database and data classification processing method. (A) The flowchart block diagram for the data preprocessing. The data,
including PPG and invasive blood pressure synchronization waveforms, are selected from the large amount of data in the database. Next, the data series with a length
that is longer than 30 s are further screened out, and then the waveform files in txt and CSV formats are exported. Then, the artifact fragments caused by the subject’s
actions are removed by manual inspection, and a steady-state waveform of approximately 30 s is captured for each record. After the above processing steps, we obtain
a total of 48 available waveforms of 30 s each, including 22 waveform sets with double peaks and 26 waveform sets with only a single peak. Based on the number of
complete waveforms available for analysis and the corresponding ABP blood pressure values, there are a total of 263 waveforms with double peaks and 261 waveforms
with only a single peak, which is equivalent to 524 sets of data. Finally, the PPG waveform is directly output for subsequent analysis by the analysis program. In
contrast, the invasive blood pressure waveform first calculates the systolic and diastolic blood pressure corresponding to each pulse wave and then exports it for
subsequent analysis by the analysis program. (B) The preview interface for the waveform from the MIMIC-II database. (C) Example of typical ABP (top half) and PPG
(bottom half) waveforms after preprocessing. (D) Enlarging part of the waveform in (C) to show its details, as seen in the figure, the PPG waveform slightly lags behind
the ABP waveform, which is an inevitable phenomenon, because the change of blood oxygen must be slower than that of the pulse wave, so there is a time difference
delay. This factor has been considered when analyzing the waveform.
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actual value. As seen in the Bland-Altman diagram of diastolic blood
pressure in Figure 7B, most of the error values are concentrated within
plus or minus 4 mmHg. In addition, the systolic blood pressure part refers
to the distribution chart of the comparison between the estimated systolic
blood pressure value and the actual blood pressure value in Figure 7C.
The analysis results are notably better than the case of a single peak. In
Figure 7D, the Bland-Altman diagram of systolic blood pressure shows
that the error value is reduced to approximately 23 mmHg.

The empirical formula derived from the same theory and the same
analysis algorithm is applied to these two data groups, but there are
noticeable differences, and the estimated results are closely related to the
shape of the PPG waveform when the mathematical formula is applied. Is
there something wrong with the theory itself or do the differences arise
from the differences in the measurement and analysis methods? This
problem is addressed in subsequent sections to explain its causes and
possible solutions.
5

3.2. Actual measurement results: blood oxygen/heartbeat/diastolic blood
pressure/systolic blood pressure

The software and hardware systems are integrated and applied to the
actual human test to compare with the analysis results from the devel-
oped software. Limited by practical factors, it is difficult to obtain a
continuous synchronous blood pressure waveform, such as the MIMIC-II
database during the real test. Therefore, the first systolic and diastolic
blood pressure measurement methods are obtained by measuring the
PPG waveform with a commercially certified OMRON blood pressure
monitor (HEM-7155-E). In addition, to highlight the difference between
the test results of the selected specific ethnic groups and the test results of
the nonspecific general ethnic groups, the subjects of the real test are
limited to the adolescent group between the ages of 20 and 30 years old
and without special health problems. The study was conducted according
to the guidelines of the Declaration of Helsinki. Moreover, almost all the



Figure 4. Raw PPG waveform data processing procedures, steps, and analysis methods. The original PPG waveform first needs to remove the DC component and the
baseline component that causes the signal drift. Then, the noise is removed by moving the average method and then dividing the waveform to obtain individual pulse
waveforms. If there is only a single peak, the second derivative function must be obtained, the position of the corresponding second peak must be found, and then the
value of R-PTT can be calculated. The highest and second peaks are directly calculated for waveforms with more than two peaks. The distance of the high peak is the
required R-PTT. Next, the blood pressure value corresponding to each pulse wave can be calculated using the R-PTT with the correction parameters calculated from the
user’s initial blood pressure value input. Finally, the calculated blood pressure value is compared with the invasive blood pressure value to verify the algo-
rithm’s accuracy.

Figure 5. Configuration screen and actual operation of this system during
testing. In addition to displaying the PPG waveform in real-time, the analysis
program also displays the current heart rate, blood oxygen concentration, and
systolic and diastolic blood pressure calculated by each pulse wave. Although a
personal computer is used as a demonstration, since the calculation amount is
not as large as that of a deep learning algorithm, even a Raspberry Pi single-
board microcomputer or a single-chip MCU is suitable for porting to portable
devices. For information about the operation mode and result presentation of
this system, please refer to Movie S1 in the supplementary file.
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PPG waveforms in this group have obvious second wave peaks that can
be identified, and it is relatively easy to analyze the data. Since it is purely
for comparison and the previous literature has performed extensive
testing of this group, the number of real life test samples is not very large,
and the total number of people for the test is approximately 20 times. The
6

main purpose is to confirm this experiment. The produced system can
obtain results consistent with previous literature so as not to be biased.
Figure 5 depicts the configuration and actual operation of the system
during testing. The PPGmeasurement device transmits the waveform to a
personal computer or a Raspberry Pi single-board microcomputer
through Bluetooth for analysis and calculation, and the real-time PPG
waveform display can be seen in the middle of the screen. The upper part
of the screen displays the heart rate, SpO2, systolic blood pressure, and
diastolic blood pressure obtained by PPG waveform analysis and calcu-
lation, and the bottom part displays the average value of R-PTT within 6 s
and a warning or error message. From the elapsed time (10 s) of the PPG
waveform on the screen and counting the number of pulse waves within
this time, it can be immediately verified whether the heart rate value is
correct. The PPG waveform displayed in real time can be used to
manually check whether the state is stable during the measurement and
observe whether there is arrhythmia and other phenomena, thus
providing an excellent auxiliary tool. Smooth, continuous changes in the
4 physiological parameters are observed. If there is a need to watch the
long-term change trend of each parameter in the future, this trend can
also be displayed through the record file or switched on the main screen,
which can be achieved by only slightly modifying the software program.

4. Discussion

4.1. Results of other notable papers and discussion of the differences with
our experimental data

At present, among the papers that use only a PPG waveform without
ECG data to estimate the blood pressure value, most directly capture the
original PPGwaveform or add the eigenvalues of the quadratic derivative
waveform and then use a neural network to make the prediction. The



Figure 6. Single-peak PPG waveform analysis results. (A) Distribution diagram of the comparison between the estimated diastolic blood pressure and the actual blood
pressure, which is approximately ideal. (B) Bland-Altman diagram of the diastolic blood pressure, most of which is concentrated at approximately 7 mmHg. (C)
Estimated systolic blood pressure and actual blood pressure. Because the test data are the data of critically ill ICU patients, the second wave peak is challenging to
evaluate, resulting in a considerably overdispersed result. (D) The Bland–Altman chart of systolic blood pressure has an excessively large error in the estimation results.
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model obtained after learning and training is used to predict the blood
pressure of new subjects and to have continuous blood pressure values
for comparison. Most of the previous reports also used the waveform in
the MIMIC-II database as the object of analysis [22, 23, 24]. However, the
biggest problem of deep learning is that a vast amount of data is required
for training to avoid the overfitting phenomenon of the model to ensure
that the trained model has extremely high accuracy for the training data,
but there are substantial errors in the actual test data. That is, the gen-
erality of the model must be improved through a large amount of training
data rather than a unique model generated for a small amount of data.
However, due to the limited data available in the MIMIC-II database,
there are only thousands of data points from different cases. Therefore,
the literature mentioned earlier is usually used only as training data for
long-term measurement data of a few cases and naturally lacks general-
ity. Few works in the literature have used actual measurement data [25,
26], but they also faced similar problems, and their approach was still
based on long-term records to solve the problem.
7

In addition, the trained model must be verified against additional test
data not included in the training data, and the result is the actual data.
Many studies do not mention this part but use only the data of the
training data as a result. Additionally, another problem is that most of
these models do not consider the individual physiological characteristics,
as mentioned in [15]. This is actually a very important factor, and even
with the use of ECG with PPG and PTT to estimate blood pressure [27],
the individual differences need to be considered. However, establishing a
personal model for each individual is even more challenging.

A few papers are based on theoretical models and empirical formulas
[28, 29, 30], and PPG waveforms or few feature points of quadratic de-
rivative waveforms have been used to calculate blood pressure. The
preliminary results are claimed to reach a considerable level, but almost
all the subjects tested are concentrated in similar ethnic groups or are of
similar age (mostly between 20 and 30 years old) or are healthy and
disease-free. Moreover, their PPG waveforms are identical and perfectly
show standard features. That is, they do not cover a wide range of levels,



Figure 7. PPG waveform analysis results based on the clear second peak data. (A) Distribution of the estimated diastolic blood pressure and the actual blood pressure
value. The restus values are very close. (B) Bland-Altman diagram of the diastolic blood pressure, most of which is concentrated at approximately 4 mmHg. (C) The
estimated systolic blood pressure value is compared with the actual blood pressure value. The result is much better than the case of a single peak. (D) Bland-Altman
diagram of systolic blood pressure; the error value is approximately 23 mmHg.
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and test results for patients who need long-term monitoring are espe-
cially lacking.

To compensate for the above two deficiencies, the present paper
deliberately selects different types of PPG waveforms to test the algo-
rithm’s effectiveness when retrieving PPG waveform data from the
MIMIC-II database and aiming to cover broad types of age groups.
Moreover, the MIMIC-II database was initially obtained from the ICU,
and the subjects themselves all had some kind of disease or injury. During
the actual testing, healthy people are included over different age groups.
The database also covers most ethnic groups, thus enhancing its useful-
ness. Additionally, because no similar groups are deliberately selected for
testing, the experimental results show that the analysis algorithm can
achieve excellent results for certain groups, while the same algorithm
would yield very different results for other groups.

For example, compared with the literature on the sample distribution
that is similar to this experiment, for those with systolic and diastolic
blood pressure covering a wide range, as in this experiment, the range of
8

systolic blood pressure is 92–185 mmHg, and the range of diastolic blood
pressure is 36–85 mmHg, mmHg, such as the data reported in a previous
study [24, 31, 32]. This document uses a similar setting and blood
pressure calculation method in this experiment, and the experimental
results are quite similar (refer to Figure s9 in mentioned reference). The
blood pressure error range is also substantially larger, which confirms
that the experimental results do reflect the real situation but also face the
same problem to be solved. Therefore, this paper uses machine learning
to build a model and tries to postcorrect the data with the large original
error, and the blood pressure error value is limited to within þ/�15
mmHg. However, as mentioned above, using machine learning or deep
learning models to analyze data has inherent problems. Although the
data are beautiful, they obviously lack practicality.

In addition, compared with the literature [28], which was mainly
referenced in this experiment, the test subjects of this literature are more
concentrated in young healthy groups, and the blood pressure distribu-
tion range is not wide, which refers to similar individuals with little



Figure 8. (A–B) The PPG waveform can basically be regarded as a composite wave formed by the fusion of the incident wave and the reflected wave. (C) Gradual
merging of the incident wave and the wave crests. (D) In the second stage, the reflected wave crest gradually deforms, and only the turning point is visible. (E) In the
third stage, the reflected wave characteristics almost disappear completely.
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difference in the aforementioned conditions. The obtained experimental
results are also quite good (refer to Figure s16 of the literature [28]),
which is consistent with the results of the real test conducted in this
experiment. It can be seen that the methods referenced and cited in this
experiment have considerable limitations. If we wish to develop a
continuous blood pressure measurement device that can truly be applied
to most ethnic groups, there is still much improvement in the practice
advocated by many papers.

4.2. Our system can be improved in the future

As mentioned in the analysis results in Section 3.1, the blood pressure
value estimated by the PPG type with an apparent second peak is
considerably more accurate than those of other approaches. The reasons
for the formation of different types of PPG waveforms can be seen in
Figure 8. The PPG waveform can basically be regarded as a composite
wave formed by the fusion of the incident wave and the reflected wave
(Figure 8A). The two clearly distinguishable wave peaks gradually merge
together. The reflected wave peak gradually deforms in the second stage,
and only the turning point is visible. When the wave finally enters the
third stage, the reflected wave features almost entirely disappear. This
phenomenon coincides with the typical PPG waveforms of various forms.
In general, in healthy people and younger groups, the PPG waveform
typically exhibits either the first or second stage (Figure 8A and 8B). The
third stage waveform mainly occurs in elderly people with aging blood
vessels and severely ill people (Figure 8C).

PPG waveforms of the first two forms provide a way to obtain the
position of the second wave peak through an appropriate algorithm. The
previous formula can also be used to estimate the blood pressure value
with considerable accuracy. Because it is difficult to determine the po-
sition of the reflected wave, the estimated blood pressure value naturally
deviates from the actual value by a large margin only in the last form
(Figure 8D and 8E), which is also an opportunity for future improvement
[33].

In addition, according to the actual experimental observation results,
even if the subjective and objective conditions of the subjects are exactly
the same and even if the wearing position of the PPG sensor is slightly
changed, the PPG waveform is considerably different, changing between
9

forms. This substantially increases the complexity of blood pressure
estimation.

5. Conclusion

To develop a continuous blood pressure measurement device with
practical properties, this study aims to integrate the most suitable soft-
ware and hardware solutions from various existing technologies. At the
application level, the attributes of light, thin and short are an inevitable
trend, and thus, the use of a neural network-like approach seems inap-
propriate due to the high demand for computing power on the hardware
and some inherent limitations of the algorithm. For a wearable device,
the theoretically derived experimental formula is the focal point of this
study. The limitations of the developed method and the system are dis-
cussed according to our actual test results via verification by extracting
the available data from the MIMIC-II database. The main limiting factor
comes from the shape of the PPG waveform, such as the typical double-
peak waveform. The accuracy of the analysis is within approximately 23
mmHg for systolic blood pressure, and the error for diastolic blood
pressure is within 4 mmHg, which is considered acceptable. However, for
PPG waveforms with only a single peak due to severe illness, although
the diastolic blood pressure error still falls within 7 mmHg, the systolic
blood pressure error can be as high as 40 mmHg, which deviates from the
practical value. Note that the data analyzed in many papers cover very
limited ranges in both systolic and diastolic blood pressure, so the
analysis results are quite ideal. The subjects analyzed in this paper had
systolic blood pressures ranging from 92 to 185 mmHg and diastolic
blood pressures ranging from 36 to 85 mmHg. Ideally, the experimental
results correspond to practical applications as much as possible. The re-
sults of the actual measurement of a single healthy individual (that is,
with a double-peak PPG waveform) from the prototype include a systolic
or diastolic blood pressure error of less than 10 mmHg, but this cannot
reflect the real situation. The reasons for the limitation and the strategies
for future improvement are discussed, hoping to overcome this challenge
to achieve the goal of real practicality. In addition, we hope to use PPG to
detect additional physiological parameters in the future, such as, for
example, respiratory rate, heart rate variability (HRV), or irregular
heartbeat. In addition to integration into a multiparameter monitoring
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tool, it may be possible to synthesize the relationship between various
parameters to analyze more complex physiological phenomena, such as
emotions.
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