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Background
In metabolomics, the comprehensive analysis of metabolites, multiple separation meth-
ods such as capillary electrophoresis (CE), liquid chromatography (LC), and gas chro-
matography (GC) have been developed. They are often used with one of the various 
types of mass spectrometer, such as time-of-flight (TOF), orbitrap, and triple-quadru-
pole (QqQ) mass spectrometers, which have different sensitivities [1]. Since the field of 
metabolomics was established, metabolomic data have been acquired by these analytical 
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platforms for many research fields, such as biomarker discovery using human biologi-
cal fluids and elucidation of drug mechanisms using animal models [2, 3]. In the future, 
it may be commonplace to integrate multiple metabolomic datasets and make biologi-
cal inferences that could not be made from individual datasets. In fact, in the field of 
transcriptomics, databases and data analysis methods have been proposed, such as 
COXPRESdb to search for co-expressed genes from large datasets, and CellMontage 
to search for sample similarity from gene expression profiles [4, 5]. Although research 
on the integration of multiple metabolomic profiles from different studies has recently 
been initiated in the context of meta-analysis [6, 7], data analysis methods for integrat-
ing metabolomic data in general acquired by different analytical platforms have not been 
well studied. This is due to two main problems in metabolomic data, with the first one 
being rather common in other omics data as well.

The first problem is the reproducibility of the metabolite level measured at different 
facilities [8]. In mass spectrometry-based metabolomics, the peak area of each metabo-
lite has often been used as its quantity for statistical analysis. The peak areas of metabo-
lites from different studies cannot be simply gathered for subsequent statistical analyses 
because peak area depends not only on metabolite concentration but also on the sensi-
tivity of mass spectrometry, which varies with different instruments. Many other factors 
including capillary replacement and elapsed time after start of measurement also have 
effects on the sensitivity [9]. To integrate metabolomic data acquired from different ana-
lytical conditions, normalization of the quantitative value of each metabolite using the 
corresponding stable isotope as an internal standard is essential. However, stable isotope 
reagents are very expensive, and it is practically difficult to prepare specific isotopes for 
each of the metabolites [10]. Recently, a data integration approach by using pooled QC 
samples with normalization has been applied in large-scale metabolomic studies [9, 11–
13]. However, the application of this approach is limited to large-scale studies of human 
biofluid samples on the same instrument, such as cohort studies, and it is not applicable 
to the integration of metabolomic data acquired from different analytical conditions.

The second problem is the overlap of the sets of metabolites measured in different lab-
oratories. In metabolomics, there are multiple separation methods such as CE, LC, and 
GC, so the targeted metabolites differ depending on which is selected [14]. Even if the 
separation analyses are the same, the sets of detected metabolites do not always match 
because the number of detected metabolites depends on the sensitivity of the mass spec-
trometer. For example, Bing et al. reported that only 126 metabolites were detected by at 
least two platforms among 1421 metabolites measured by Metabolon, Broad Institute, 
and Nightingale Health, and only 14 metabolites were detected on all three platforms 
[15]. This means that, in most cases, only a small proportion of metabolites remain after 
merging metabolomic data, which limits the number of situations in which we can use a 
merged metabolomic dataset.

To integrate multiple sets of metabolomic data while avoiding these two problems, 
we developed iDMET, a network-based approach to integrate metabolomic data from 
different studies. For the first problem of reproducibility, we referred to the paper by 
Izumi et  al. They measured target and control samples at different laboratories and 
reported that the ratios of target sample to control sample were highly reproduc-
ible for many metabolites [16]. Therefore, we integrated different studies based on the 
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differential metabolomic profiles between two groups, instead of the raw peak area, an 
approach similar to the one used in the “amanida” software package for meta-analysis 
[7]. We further avoided the second problem of low overlap of the metabolites among 
multiple studies by performing a pairwise approach that integrates one pair of two dif-
ferential metabolomic profiles at a time, instead of integrating them all at once. iDMET 
is designed to conduct “data-driven” biology, which can be widely used to generate new 
hypotheses from various metabolomic data, as opposed to meta-analysis where col-
lected metabolomic studies should focus on the same disease (or biological phenome-
non) according to the specified hypothesis [6, 7]. Thus, iDMET may discover unexpected 
findings such as connections between different cancer types from the metabolomic data 
obtained at different facilities and from different samples.

As an actual application to cancer metabolomics, we collected metabolomic data from 
27 articles or repositories published so far, and integrated them in iDMET. We focused 
on strong relationships between different studies and found results that led to novel bio-
logical inferences.

Methods
Literature collection

A large number of studies related to cancer metabolomics have been conducted on mul-
tiple platforms. We searched for relevant entries in PubMed and MetabolomeXchange, 
an online portal of metabolomics repositories, which includes data from four different 
repositories, namely, MetaboLights [17], Metabolomics Workbench [18], Metabolomic 
Repository Bordeaux [19], and Metabonote [20]. The search terms included “Metabo-
lomics,” “Metabolome”, “Tumor cells, Cultured,” and “Hypoxia” and their variants, 
and they were used initially to search for relevant literature in PubMed. In addition, 
“hypoxia, cancer” was used as a search term in the repository MetabolomeXchange. The 
entries found in PubMed (324 papers) and repositories (6 papers) using the above terms 
included those that are irrelevant or unsuitable for this study (Fig. 1). For instance, some 
studies focused on the structural biology of a metabolite, while others had a bioinformat-
ics focus. Each article was manually curated to obtain and organize relevant information 
and to determine whether each article was suitable for our goal of integrated analysis.

The following criteria were used to select metabolomics datasets for this study: (1) 
metabolite data were available in a form amenable to reading or parsing computationally 
(text file or a common format of spreadsheet etc.), and (2) data were representative of 
the primary metabolomics technologies (e.g., nuclear magnetic resonance, gas chroma-
tography mass spectrometry, liquid chromatography mass spectrometry). Quality con-
trol of metabolomic data was beyond the scope of our current work, so the quality of the 
metabolomic data depended on the quality control conducted in each study. Searches 
were performed in February 2020.

Datasets

We finally selected 27 studies suitable for analysis (Fig. 1). Among them, data matri-
ces of metabolomic profiles, where rows and columns of each matrix represent 
samples and metabolites, respectively, were available for five studies (Dataset 1) 
and were used to test the efficiency of simple merging and sample normalization of 
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metabolomic profiles from multiple studies, where a metabolomic profile is a set of 
metabolite levels detected in a specific condition. For creating the data matrices, we 
used metabolite levels pre-processed by the original authors. Detailed descriptions 
of the data pre-processing methods (normalization, removing metabolites with large 
coefficient of variations, imputing missing values, etc.) can be found in Additional 
file 2: Table S2 as well as in the original articles. The simple merging is defined as 
vertical concatenation of data matrices of metabolomic profiles. Metabolomic data 
from all 27 studies (Dataset 2) were used for testing and evaluation of the iDMET 
method. A brief summary of the datasets is shown in Table  1. The computational 
framework for this study required data to be converted to a standardized Excel file 
format, where each column represents a variable and each row represents an obser-
vation. Standardizing the data format before data analysis enabled clear presentation 
and efficient reuse of computer code.

Fig. 1  Workflow diagram for the collection and integration of metabolomic data from public resources. The 
literature search resulted in 324 hits and an additional six references were identified from the metabolome 
repository (MetabolomeXchange). Among the 330 studies identified by the initial search, we excluded 303 
studies for the reasons shown in the figure. We finally selected 27 studies suitable for analysis. Among them, 
data matrices of metabolomic profiles were available for five studies, which were used to investigate whether 
simple merging of multiple sets of metabolomic data is efficient (left blue box at the bottom). Metabolomic 
data from all 27 studies were used for our newly proposed method (right blue box at the bottom). The details 
of the flow chart and how each of the datasets was used are described in the methods
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Overview of iDMET

We developed iDMET, a network-based approach for integrating multiple sets of 
metabolomic data. The overall procedure of iDMET is shown in Fig.  2. iDMET has 
the advantage of being able to integrate and compare data obtained at different facili-
ties and from different samples even if the absolute metabolite levels (i.e., data matrix 
of metabolomic profile) are not available. It only requires relative changes of metabo-
lite levels (“differential metabolomic profile”). Steps 1 and 2 are the process of organ-
izing data. We collected supplementary data from papers or repositories to generate 
a list of variable metabolite names and their values. Steps 3 and 4 are computational 
processes for network generation. We calculated the similarity of each pair of differ-
ential metabolomic profiles based on the information generated in step 2 and visual-
ized the relationships among differential metabolomic profiles as a network (Fig. 2).

Table 1  List of 27 papers whose datasets were used for network construction by iDMET

Detection method: gas chromatography (GC), liquid chromatography (LC), mass spectrometry (MS), tandem mass 
spectrometric (MS/MS), time-of-flight mass spectrometry (TOFMS), nuclear magnetic resonance (NMR), capillary 
electrophoresis (CE). Search date: February 2020. Numbers (%) in parentheses represent rates of metabolites remaining after 
matching all metabolites that appear in each paper with the list of metabolite names and synonyms that we prepared (i.e., 
“valid metabolites” for this study)

PMID Journal Metabolite detection method Total number of metabolites 
incorporated into iDMET 
(valid metabolite rate)

Ref

1 20861191 Cancer Res NMR 15 (78.9%) [21]

2 21853158 PLoS One GC–MS, LC–MS/MS 213 (85.2%) [22]

3 21912692 PLoS One LC–MS 51 (53.15%) [23]

4 22380946 Cancer Sci GC–MS 69 ~ 131 (92%–100%) [24]

5 22421146 Cell Cycle GC–MS, LC–MS/MS 245 (84.2%) [25]

6 22628425 Cancer Res GC–MS, LC–MS/MS 205 ~ 243 (83.3%–91.0%) [26]

7 24153255 BMC Syst Biol GC–MS 40 ~ 42 (95.0%–100%) [27]

8 24952473 Oncotarget LC–MS/MS 46 (74.2%) [28]

9 25880539 J Ovarian Res GC–MS, LC–MS/MS 149 (83.2%) [29]

10 26023239 J Biol Chem CE-TOFMS 112 (96.6%) [30]

11 26311851 J Biol Chem GC–MS, LC–MS/MS 287 (83.9%) [31]

12 26318292 Oncotarget CE-TOFMS 63 (87.5%) [32]

13 26415588 Mol Cell Endocrinol GC–MS 70 (86.4%) [33]

14 26508589 Sci Rep GC–MS 30 ~ 31 (88.2%–93.9%) [34]

15 26623558 Oncotarget GC–MS, LC–MS/MS 117 (87.3%) [35]

16 26637368 Mol Cancer Ther LC–MS 193 (85.4%) [36]

17 26766592 Cancer Cell GC–MS, LC–MS/MS 491 (85.1%) [37]

18 26886430 PLoS One GC–MS, LC–MS 79 (94.0%) [38]

19 26980435 J Exp Clin Cancer Res CE-TOFMS 55–60 (67.9%–69.7%) [39]

20 27533043 Mol Carcinog 1H-NMR 9 (24.3%) [40]

21 29084919 Clin Cancer Res CE-TOFMS 70 (73.7%) [41]

22 30026261 Biosci Rep 1H-NMR 143 (40.5%) [42]

23 30482722 EBioMedicine 1H-NMR 51 (85.4%) [43]

24 30538212 Aging (Albany, NY) GC–MS, LC–MS/MS 227 (61.9%) [44]

25 30830323 Metabolomics GC–MS 52 (51.0%) [45]

26 30903027 Nat Commun LC–MS 30 (71.4%) [46]

27 31068703 Nat Med LC–MS 89 (39.5%) [47]
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Before incorporating metabolomic profiles into iDMET, we needed to convert identi-
fiers of analytes reported in each study to common metabolite names. Thus, we man-
ually created an initial list of the common metabolite names and their synonyms. If a 
metabolite name that appears in each study was not on our initial list, we expanded the 
list by manually adding the metabolite name and as many of its synonyms as possible 
using PubChem. We manually corrected the character if any incorrect characters (extra 
spaces, garbled characters, and misspelling of metabolite names, etc.) were included in 
the data. We did not use analytes with only m/z or retention time (but not metabolite 
name) given. Details of each step are described below.

Data curation (step 1)

The data were collected mainly from tables and supplementary files of the 25 articles, 
and two sets of data were collected from the repository. These data included various 
types of data, such as matrices of samples and metabolites, and tables featuring metabo-
lite names with the ratios of changes in their levels between two groups, and p-values. 
To analyze these data using iDMET, we manually converted all data into tables consist-
ing of the names of metabolites, and the corresponding ratios of the differences in their 

Fig. 2  Overview of iDMET for construction of differential metabolomic network based on the published 
metabolomic datasets. The procedure in iDMET consists of four main steps. The metabolomic data collected 
from papers or repositories are subjected to differential metabolomic analyses (step 1) to calculate the 
ratios of metabolite levels among the possible pairs of all conditions that appear in each paper. Step 1 can 
be omitted if the ratios are provided in the papers. Based on the specified thresholds of the ratios, up- and 
downregulated metabolites for each comparison of condition pair (designated as “differential metabolomic 
profile”) are selected (step 2). Then, for all possible pairs of comparisons, a 2 × 2 contingency table counting 
the number of metabolites that are upregulated (or downregulated) based on one differential analysis while 
upregulated (or downregulated) in the other differential analysis is generated. For each table, the odds 
ratio and p-value are calculated (step 3). Pairs of differential metabolomic profiles having remarkable odds 
ratios and p-values are selected and visualized as a network where each node represents a comparison 
(step 4). An edge between a pair of differential metabolomic profiles denotes that the upregulated (or 
downregulated) metabolites in one differential analysis significantly overlap with those that are upregulated 
(or downregulated) in the other differential analysis. Further details on the network visualization are given in 
the legend of Fig. 4
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levels between two groups. If there were three groups or more, the ratios were calculated 
for all combinations and used to generate the network.

Data integration (step 2)

From the tables created in step 1, we selected metabolites whose ratios were higher 
than the upper threshold (“upregulated metabolites”) or lower than the lower threshold 
(“downregulated metabolites”). In this study, we set the following thresholds: ratio > 1.2 
(upper threshold) or ratio < 1/1.2 (lower threshold), and alternatively as a more stringent 
option, ratio > 1.5 or ratio < 1/1.5. In this study, we mainly focus on the former thresholds.

Similarity assessment of two differential metabolomic profiles (step 3)

A 2 × 2 crosstabulation table was created using the number of metabolites that were up- 
or downregulated in a pair of differential metabolomic profiles. The odds ratio calculated 
based on the four numbers in the table [odds ratio = (m1,1/m1,2)/(m2,1/m2,2) = (m1,1·m2,2)/
(m1,2·m2,1), where mi,j represents the number in the table] was used as the degree of 
correlation between the pair. It is analogous to enrichment score, which is frequently 
used in functional and pathway enrichment analyses. Odds ratio may work efficiently 
to capture a significantly correlated pair if an up- or downregulated level of metabolites 
beyond the threshold is not important. If any of the four numbers was 0, 0.5 was added 
to all four numbers, so that the odds ratio could be calculated. We performed this calcu-
lation for all pairwise combinations of differential metabolomic profiles. For interesting 
pairs of differential metabolomic profiles, we also checked the correlation coefficient of 
their differential profiles, besides the odds ratio. Finally, we created a graph adjacency 
matrix, in which each element contains the value of the odds ratio for each pair of dif-
ferential metabolomic profiles.

Visualizing network (step 4)

The weighted network was visualized based on the graph adjacency matrix. Each node 
in the network represents the pair of metabolomic profiles from the same publication, 
where the numbers of up- and downregulated metabolites were calculated, which repre-
sents a differential metabolomic profile. Each edge represents the similarity of the pair of 
differential metabolomic profiles corresponding to the connected node pair. The thick-
ness of the edge represents the odds ratio. However, when the result of the chi-squared 
test for the edge was not significant (p-value > 0.05), the edge was removed. Uncon-
nected nodes were removed and the network was visualized in Cytoscape version 3.7.2 
[48, 49].

Statistical analysis

For simple merging and analyses of metabolomic data, we chose the widely used tool 
MetaboAnalyst 4.0 [50]. There were large numbers of missing values, as is often the 
case in a typical metabolomic dataset, and they were replaced by one-fifth of the mini-
mum positive value among the corresponding metabolite levels. For normalization of 
the dataset, the following settings were used: sample normalization, quantile normali-
zation; data scaling, auto scaling. Hierarchical clustering with a heat map and dendro-
grams were used to investigate patterns of metabolomic profiles in the dataset. The 
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“gplots” package [51] in R software version 3.3.3 was used to visualize missing values in 
the datasets. Other statistical analyses were performed using R software and the “igraph” 
package [52] was used to conduct network analyses before visualizing the network using 
Cytoscape [48, 49].

Results and discussion
Characteristics of the included studies

Our PubMed and repository search conducted in February 2020 found 330 relevant 
studies, with 324 found by PubMed search and 6 found in MetabolomeXchange. Most 
papers were available under an open access scheme (Fig. 1). A total of 298 articles were 
review or methodology papers or those without quantitative values provided. Five arti-
cles did not contain useful metabolomic data as they focused on a single biomarker or 
lipidomics. The final number of articles valid for this study was thus 27. The 27 datasets 
curated for this study are summarized in Table 1. The formats of these publicly available 
datasets were very different. For example, we found that only 5 out of the 27 articles 
included data in a csv file or in a text document that could be easily imported for com-
putations. In the other studies, the results were either embedded in the main text or 
provided as a PDF supplement.

There is an issue of variety in how the data provided in each article were processed 
to control their quality. We found that only 6 out of 27 articles excluded metabolites 
based on technical variability such as coefficient of variation and relative standard devia-
tion within QC samples, while some articles gave little information about the metabolite 
exclusion criteria. Handling missing values is also one of the major procedures for pre-
processing. The most common approach to treat a missing value of a metabolite was 
to replace these by the smallest value among the levels of the corresponding metabo-
lite. Only 8 out of 27 articles reported imputing the missing values (Additional file  2: 
Table  S2). The Metabolomics Standards Initiative (MSI) proposed minimum criteria 
(e.g., metadata, sample preparation, data processing) for reporting metabolomic analysis 
in order to facilitate data sharing [53]. However, it has been reported that the data pre-
processing and how the results were reported did not follow any standardized procedure 
[54, 55]. Playdon et al. reported that, if the measurement was done by contractors, the 
data pre-processing methods applied were not always available to the user [54].

Each article used different metabolite names and IDs for the same metabolite because 
metabolites have many synonyms but lack a standardized nomenclature. Therefore, the 
metabolite names that appear in each article were converted to standard names in the 
list (for further details, see methods). Over 70% of the metabolites provided in each 
study successfully matched with one of the metabolites in our prepared list with syno-
nyms (Table  1). In other words, 30% of the metabolites failed to be converted to any 
of the metabolites in our list. Metabolites with ambiguous annotations (i.e., unknown 
metabolites or an inability to discriminate between the isomers) were not used.

The analytical process was less homogeneous; the authors used various techniques, 
including nuclear magnetic resonance imaging (NMR) spectroscopy, LC, GC, and CE 
(for full details, see Table  1). The analyzed samples include plasma, urine, tissue, cul-
ture cells, and culture medium. There are many factors related to sample handling that 
may influence measured metabolite levels, including the medium used for cell culture, 
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storage period in the freezer, centrifugation conditions, and temperature of storage prior 
to metabolite extraction, although most samples were frozen at − 70 °C to − 80 °C until 
they were extracted and analyzed.

Simple merging of data matrices was not an efficient strategy for multiple metabolomic 

data integration

Treating missing values is an important task during metabolomic data analysis. In most 
cases, data are missing because of an actual absence of the compound in the samples, a 
failure to detect peaks of low-concentration metabolites, or the metabolite correspond-
ing to the missing value not being one of the targets for analysis by the instruments in 
the study. The number of metabolites included in each study ranged from 15 to 491 
(Table 1). Notably, some of the 27 studies did not fully report their collected metabo-
lomic data. Only 5 (18.5%) of the 27 studies reported data on all measured metabolites as 
real-value matrices (Figs. 1, 3a). This is in contrast to the proteomic and transcriptomic 
data, where full dataset deposition in repositories is often required.

These six sets of data matrix of metabolomic profile from five studies were used to 
investigate the efficiency of simple merging for metabolomic analyses. The heat map in 
Fig. 3a represents how the investigated metabolites overlap across the six datasets. If the 
level of specific metabolite was reported in the specific study, the corresponding cell of 
the heat map was colored blue. Otherwise, the position was left empty, which implies 
that the metabolite level was not reported or there was a failure of peak detection due to 
a low metabolite concentration. From the abundant white “empty” spaces, it is clear that 
the reporting of metabolites was far from complete. We noted that the levels of only nine 
metabolites were reported in at least one sample in each of the five studies. This sug-
gested that, for simply merging metabolomic data, we could perform classical statistical 
analyses such as hierarchical clustering only for a small proportion of metabolites (only 
nine metabolites) because there were few common metabolites when we simply merged 
metabolomic data derived from the different metabolomic platforms. Also note that the 
clustering result may be highly dependent on the small number of specific metabolites 
selected.

Furthermore, to explore how the nine common metabolites (in five studies) are 
altered across cancer types, we used hierarchical clustering visualized by heat maps 
and dendrograms for simply merged metabolomic data with the imputation of miss-
ing values (Fig. 3b, c). Prior to analyses, metabolomic data should be normalized to 
exclude technical variations originating from various factors including sample pre-
processing and measurement by instruments, especially when integrating results 
from different laboratories [56]. Data scaling is used to adjust biases among various 
metabolomic data. Also in our work, data were subjected to auto scaling (Fig.  3b) 
before further analysis. Metabolomic profiles shown by two columns at both ends 
(denoted by yellow in the class bar) in Fig.  3b are from publication PMID30830323 
[45] and appeared to show extreme values compared with the other metabolomic 
profiles in the same figure, and such values visually obscured other metabolomic 
profiles. These results suggest that, if only auto scaling were applied, inter-study bias 
would be prominent and hide any other characteristic patterns of metabolite levels 
in this integrated metabolome dataset. Therefore, quantile normalization was applied 
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before auto scaling to mitigate the extreme values (Fig. 3c). As a result, the metabo-
lomic profiles were grouped primarily by study, while samples originating from dif-
ferent studies were rather dispersed (Fig. 3c). Ideally, metabolomic profiles should be 
clustered based on cancer type, but the clustering of metabolomic profiles from the 
same cancer type was much less evident. We noticed that two metabolomic profiles, 
PMID30482722 [43] and PMID30830323 [45], were from the same cancer type (breast 
cancer), but they were not grouped into a single cluster, although the separation may 
be due to differences in the cancer subtypes.

These results suggest that simple merging of metabolomic data with quantile nor-
malization that corrects biases in overall metabolite level distributions among differ-
ent studies is still inefficient for integrating multiple sets of metabolomic data derived 
from different metabolomic platforms.

Pairwise integration and network generation using common differential metabolites

As described in the previous section, we were only able to integrate a small number 
of metabolites in a limited number of studies (Fig.  3). In this section, we introduce 
iDMET to integrate all of the data in a pairwise manner, calculating all possible pair-
wise combinations of pairs of differential metabolomic profiles where each differential 
profile represents changes in the metabolite levels calculated based on the compari-
son between two conditions (Fig. 2). This allows us to use a larger number of metabo-
lites showing correlated changes in two differential metabolomic profiles to determine 
the relationships among the compared pairs (Fig.  4a). The iDMET method has sev-
eral advantages compared with simple merging of data. For example, it requires only 
ratios of metabolite levels between each condition pair as input data, so data matrices 
of metabolomic profiles are unnecessary. In addition, iDMET can further build large-
scale networks enabling the exploration of multiple conditions simultaneously.

Here, we applied iDMET to various metabolomic data from 27 articles on cancer 
metabolomics. At the threshold of ratio > 1.2 (or ratio < 1/1.2) and p < 0.05 in the chi-
squared test (see Fig. 2 and methods), we obtained 348 pairs of differential metabo-
lomic profiles. Among them, there were 236 and 112 pairs of differential metabolomic 
profiles where the two datasets associated with each pair were from the same and 
different papers, respectively (Fig. 4a). At the more stringent threshold of ratio > 1.5 
(or ratio < 1/1.5) with the same p, we obtained 192 pairs, of which 35 pairs had data-
sets from different papers. Thus, pairs of about 70%–80% of the obtained dataset pairs 
were from the same paper. This was due to the fact that the same set of metabolites is 
usually analyzed in multiple conditions in a single paper, and the number of metab-
olites showing correlated changes among different conditions in the same paper is 
apparently larger than that among different conditions over different papers, since 
the number of targeted metabolites common to two different papers is usually low, as 
we discussed in the previous subsection. To avoid this bias, we decided to focus only 
on pairs from different papers in this study. The top 20 pairs sorted based on odds 
ratios are shown in Table 2 and Additional file 1: Table S1. We note that we used raw 
p-values for the chi-squared test, although, in the future, we are planning to adjust 
p-values so that the results will be statistically more robust.
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The network successfully identified biologically relevant pairs of differential metabolomic 

profiles

The top pair in Table 2 was the edge between nodes 17–1 (P17-1) [37] and 24–1 (P24-
1) [44]. (The node ID is in the format Px-y, where x and y represent publication and 
pair of datasets within the study, that is, a differential metabolomic profile, respec-
tively.) Its log2 odds ratio was 8.95 (p-value = 4.2 × 10−32). Both of their correspond-
ing original publications describe cohort studies that compared metabolomic profiles 
of clear cell renal cell carcinoma (ccRCC) and normal kidney tissues (Fig.  4b, 5, 
Table 2, Additional file 1: Table S1). Thus, the biological conditions in which metabo-
lomic profiles were obtained are highly relevant in these two studies, which justifies 
the inclusion of this edge in our network. Among the collected publications (Table 1), 
the above-mentioned two studies were the only pair obtained for the same disease 
using the same sample type. It is thus reasonable that this pair is the most significant 
in Table 2 and Additional file 1: Table S1. Overall, 217 metabolites were common to 
both of the two studies (Fig. 5a) and the changes of their levels among two differential 
profiles, namely, tumor vs. normal tissue in each study, were used to assess the signifi-
cance of the pair of differential profiles. There was a positive correlation between fold 

Table 2  List of significant node pairs that constitute the network

Based on the specified thresholds of the ratios, differential metabolomic profile pairs having remarkable odds ratios and 
p-values were selected (p < 0.05, odds > 4). The odds ratio shows a high positive (or negative) value if the metabolites were 
consistently upregulated (or downregulated) in the differential metabolomic profile pair (for details, see Fig. 2, Additional 
file 1: Table S1, and methods)

Pair Platform Cancer type Ratio > 1.2, 
ratio < 1/1.2

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2 Odds p-value

P17-1 P24-1 GC–MS, LC–MS/MS GC–MS, LC–MS/MS Kidney Kidney 8.95 4.2E − 32

P7-1 P14-7 GC–MS GC–MS Colon Colon 6.71 0.0018

P7-1 14–14 GC–MS GC–MS Colon Colon 6.71 0.0018

P7-1 P14-1 GC–MS GC–MS Colon Colon 6.57 0.0028

P7-1 P14-13 GC–MS GC–MS Colon Colon 6.57 0.0028

P7-1 P14-10 GC–MS GC–MS Colon Colon 6.51 0.0033

P7-2 P14-2 GC–MS GC–MS Colon Colon 6.29 0.0019

P7-1 P14-5 GC–MS GC–MS Colon Colon 6.20 0.0075

P7-2 P14-10 GC–MS GC–MS Colon Colon 6.04 0.0040

P7-2 P14-5 GC–MS GC–MS Colon Colon 5.91 0.0059

P7-1 P14-2 GC–MS GC–MS Colon Colon 5.75 0.0088

P7-1 P14-4 GC–MS GC–MS Colon Colon 5.67 0.0094

P10-2 P18-3 CE-TOFMS GC–MS, LC–MS Lung Prostate 4.81 0.0040

P7-2 P14-1 GC–MS GC–MS Colon Colon 4.58 0.0294

P7-2 P14-13 GC–MS GC–MS Colon Colon 4.58 0.0294

P7-2 P14-14 GC–MS GC–MS Colon Colon 4.46 0.0194

P7-2 P14-7 GC–MS GC–MS Colon Colon 4.17 0.0375

P6-2 P25-1 GC–MS, LC–MS/MS GC–MS Kidney Breast 4.17 0.0492

P16-1 P17-1 LC–MS GC–MS, LC–MS/MS Colon Kidney  − 4.68 0.0000

P17-1 P18-3 GC–MS, LC–MS/MS GC–MS, LC–MS Kidney Prostate  − 4.46 0.0021

P6-2 P18-3 GC–MS, LC–MS/MS GC–MS, LC–MS Kidney Prostate  − 4.29 0.0022

P5-2 P11-7 GC–MS, LC–MS/MS GC–MS, LC–MS/MS Lung Leukemia  − 4.15 0.0394

P16-2 P17-1 LC–MS GC–MS, LC–MS/MS Colon Kidney  − 4.08 0.0002
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change of metabolite levels in P17-1 and P24-1 (r = 0.808, p < 0.001, Spearman’s rank 
test; Fig. 5b). Figure 5c shows a 2 × 2 contingency table created based on the data in 
Fig. 5b. It was used to assess the statistical significance of the similarity of differential 
metabolomic profile pairs and to determine whether each profile pair should be con-
nected by an edge, according to the thresholds of log2 odds ratio and p-value. There 
were 96 and 72 metabolites whose levels were up- and downregulated, respectively, 
in tumor compared with the levels in normal tissue in both studies. The number of 
metabolites showing correlated changes (96 + 72 = 168) was far greater than that 
showing uncorrelated changes (2 + 7 = 9, Fig. 5c).

The reason for the high log2 odds ratio resulting from a high correlation may be that 
the employed analytical instruments were the same (GC–MS and LC–MS/MS) and the 
measurements of the two studies were carried out at the same research institute [37, 
44]. Consequently, the measured metabolomic profiles were less affected by the analyti-
cal conditions, and we were able to see that the change of metabolomic profiles among 
normal versus tumor samples observed in one study was clearly reproduced in the other 
study, with similar biological conditions.

Fig. 3  Inefficiency of simply merging multiple metabolomic profiles. Six data matrices of metabolomic 
profiles from five publications were merged and visualized. a An overview of the investigated metabolites 
that overlap across the six datasets. The rows correspond to each metabolomic dataset and the columns 
correspond to metabolites. Blue vertical line indicates that the corresponding metabolite is a target of the 
analysis in at least one sample in the dataset. White spaces represent metabolites that are not reported in the 
given studies or where a failure to detect their peak occurred due to a low metabolite concentration. The bar 
plots above represent the numbers of datasets that include the given metabolite, which were used to sort 
the metabolites in this heat map; nine metabolites that are covered by all six datasets are indicated on the 
right. Colored squares on the right represent the platform types (see also legend). b, c Hierarchical clustering 
of the levels of nine common metabolites was performed based on Pearson’s correlation coefficient as a 
distance metric and average linkage as a clustering algorithm. Each column represents the metabolomic 
profile from the literature specified by a color on the top, and each row represents each metabolite in the 
profile. The color of each cell represents the metabolite level shown by a color gradient bar on the right (low: 
blue, high: red). Auto scaling was applied for data pre-processing. b indicates that metabolomic profiles 
from PMID30830323 (columns marked with yellow at both ends) likely show extreme values compared 
with the other profiles. For (c), quantile normalization was applied before auto scaling. Then, it is clear that 
metabolomic profiles were probably clustered by the literature from which the profiles were derived. (a) was 
generated by R software and the “gplots” package [51]. b, c were generated using MetaboAnalyst [50]
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Fig. 4  Differential metabolomic network based on the published cancer metabolomic datasets. 
Metabolomic data from the list of papers in Table 1 were used to generate the network in (A). Each node 
represents a comparison of a metabolomic profile pair (differential metabolomic profile). A pair of nodes 
are connected by an edge if the corresponding pair of differential metabolomic profiles are correlated (see 
also Fig. 2). The node color reflects the source article, where the same color denotes that the corresponding 
source data are from the same paper. The widths of edges indicate odds ratio weights. The node size depicts 
the total number of differential metabolites for each dataset. The network connects metabolomic data 
not only from the same laboratory (denoted by dotted edges), but also those from different laboratories 
(denoted by solid edges). The subnetwork of (a) that contains a strong connection between P17-1 and P24-1 
is magnified in (b) and further assessed in Fig. 5. The network was visualized by Cytoscape

Fig. 5  Assessment of connection between P17-1 and P24-1 in the network. a Venn diagram showing the 
number of metabolites common to both of the two cohort studies on which P17-1 [37] and P24-1 [44] were 
based. In both studies, metabolomic analyses were conducted on human clear cell renal cell carcinoma 
and normal kidney tissue using GC–MS and LC–MS. b Comparison of changes in the level of metabolites in 
node P17-1 versus node P24-1 (r = 0.808, p < 0.001, Spearman’s rank test). In both nodes, the changes from 
normal tissue to tumor were calculated. Red plots represent metabolites found to be upregulated in the 
tumor group, whereas blue plots represent those found to be downregulated. c A 2 × 2 contingency table 
of the numbers of upregulated and downregulated metabolites in the two nodes (log2 odds ratio = 8.95, 
p-value = 4.2 × 10−32). The table was created based on (b). See Fig. 2 for details on the table creation
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The clinical background of the patients (e.g., age, sex, BMI, stage of the disease) in the 
two cohort studies was heterogeneous and we thought that the metabolite levels may 
vary depending on the participant [37, 44]. However, we were able to observe a clear 
correlation (Fig. 5b, c). Although the absolute amounts of the metabolites may vary from 
patient to patient, the direction of the regulation in tumor compared with normal tis-
sue (i.e., either up- or downregulated) appeared to be fairly consistent throughout the 
patients.

The next significant pair was nodes 7–1 (P7-1) [27] and 14–7 (P14-7) [34]. In addi-
tion, many other pairs from these two papers were also identified (Fig.  4a, Table  2, 
Additional file 1: Table S1, 2nd to 12th and 14th to 17th node pairs). We found that the 
above two papers were published from the same laboratory, and some of the data were 
shared between the two publications used in the analysis, so it is reasonable that this 
pair ranked high in Table 2.

Discovering novel connection of biological phenomena from the network

We further explored edges in the network associated with strong correlations of a pair 
of differential metabolomic profiles, each of which represents an upregulation or down-
regulation in cancer relative to controls (change after drug treatment). We also explored 
how consistently metabolites were altered across drug types. There was a strong posi-
tive correlation between nodes 10–2 (P10-2) and 18–3 (P18-3) (Fig. 4b, 6, Table 2, and 
Additional file 1: Table S1). The original two studies corresponding to these two nodes 
investigated the effects of drug treatments (two drugs for P10 and one drug for P18) 
on metabolomic profiles using various human cancer cell lines, including those of lung 
adenocarcinoma, prostate carcinoma, and Hodgkin’s lymphoma [30, 38]. Both studies 
conducted metabolomic analyses using CE-TOFMS, GC–MS, and LC–MS/MS (Fig. 6a). 
Detailed descriptions of the experimental methods, cell lines, and used drugs can be 
found in Additional file 3: Table S3 as well as in the original articles.

P10-2 represents the differential metabolomic profile in H1975 cells (H1975; human 
lung adenocarcinoma cell line), which compares metabolite levels between before 
and after treatment with PKI-587 (gedatolisib) [30]. P18-3 represents the differential 
metabolomic profile in L428 cells (L428; human Hodgkin’s lymphoma cell line), which 
compares metabolite levels between before and after treatment with tetra-O-methyl 
nordihydroguaiaretic acid (M4N) [38]. The controls for these differential analyses were 
set as the metabolomic profiles before the drug treatments (Fig.  6b). There were 45 
metabolites common to both of the two studies (Fig.  6a) and the changes of metabo-
lite levels upon drug treatment were highly correlated (r = 0.656, p < 0.001, Spearman’s 
rank test; Fig. 6b). The number of up- and downregulated metabolites in both studies 
(16 + 7 = 23) was greater than that showing inconsistent changes between the two stud-
ies (1 + 4 = 5, Fig. 6c). The metabolites that showed upregulation upon treatment in both 
studies included tyrosine, tryptophan, glycine, proline, and phenylalanine. Those that 
showed downregulation in both studies included glucose-6-phosphate, glucose-1-phos-
phate, succinate, and GSSG.

We noticed that both drugs (M4N and gedatolisib) inhibit factors in the PI3K/AKT/
mTOR pathway (Fig.  6d), which is critical for the regulation of aerobic glycolysis and 
cell proliferation [30]. This pathway is abnormally activated in cancer cells and it has 
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marked effects on tumor cell maintenance and survival, protein synthesis, and altered 
metabolomic pathways. The drug M4N suppresses Specificity protein 1 (Sp1), which is 
a transcription factor that plays a role in the regulation of oncogenes required for tumor 
survival and progression [57, 58]. Gedatolisib is a dual inhibitor of phosphatidyl inositol 
3-kinase (PI3K) and mammalian target of rapamycin (mTOR) [30, 59, 60]. The group of 
downregulated metabolites in both studies are products of glycolysis and the TCA cycle 
and the group of upregulated ones are amino acids (Fig. 6c, d). Both of the drug targets, 
Sp1 and mTOR, regulate pathways such as the cell cycle and apoptosis (Fig. 6d bottom), 
which have major impacts on overall cellular processes. We speculate that glycolysis and 
the TCA cycle were particularly affected by such treatment. The upregulation of amino 
acids can be explained by the inhibition of Sp1 and mTOR, both of which have roles 

Fig. 6  Discovery of novel connections between two studies. a Venn diagram showing the number of 
metabolites common to both of the two studies on which P10-2[30] and P18-3 [38] were based. In both 
studies, metabolomic analyses were conducted using CE-TOFMS, GC–MS, and LC–MS. b Comparison of 
changes in the level of metabolites in P10-2 versus P18-3 (r = 0.656, p < 0.001, Spearman’s rank test). P10-2 
represents the differential metabolomic profile in H1975 cells (H1975; human lung adenocarcinoma cell 
line) after treatment with PKI-587 (gedatolisib). P18-3 represents the metabolomic profile in L428 cells (L428; 
human Hodgkin’s lymphoma cell line) after treatment with tetra-O-methyl nordihydroguaiaretic acid (M4N). 
Their controls were the cells before drug treatment. In both nodes, the changes from control to drug-treated 
were calculated. Red plots represent metabolites found to be upregulated in the tumor group (treatment 
group), whereas blue plots represent those found to be downregulated. c A 2 × 2 contingency table of 
the numbers of upregulated and downregulated metabolites in the two nodes (log2 odds ratio = 4.81, 
p-value = 0.004). The table was created based on (b). See Fig. 2 for details on the table creation. d Schematic 
representation of PI3K/AKT/mTOR pathways and the point of inhibition by the drugs used in the two studies. 
Metabolite classifications to which simultaneously upregulated or downregulated metabolites belong 
are shown at the bottom. PI3K, phosphatidylinositol 3-kinase; PIP3, phosphatidylinositol 3-phosphate; 
PDK-1, 3-phosphoinositide-dependent protein kinase 1; Akt, protein kinase B (PKB, also called Akt); mTOR, 
mammalian target of rapamycin; Sp1, Specificity protein 1
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in suppressing autophagy, which may upregulate amino acid levels by autophagy. This 
connection between P10-2 and P18-3 may be justified by its aforementioned biological 
relevance, that is, two drugs affect the same pathway, which can be a target for further 
experimental investigation to determine the similarity of molecular reactions initiated 
by gedatolisib and M4N.

Thus, iDMET discovered a connection between different cancer cells, each of which 
was treated with different drugs. This example of discovering a novel connection implies 
that, by adding a much larger number of differential metabolomic profiles from other 
publications, we may be able to discover more novel connections (In the current study, 
the discoveries were made based on only 27 publications).Therefore, we suggest that 
iDMET, which focuses on the relationships among differential metabolomic profiles, 
might be a useful tool for discovering novel relationships between biological reactions 
including drug responses.

Current issues of publicly available data for iDMET

We note that the nomenclature of metabolites is an important technical issue for our 
approach, given that the integration of metabolomic profiles from different studies is 
based on metabolite IDs or names. However, for each metabolite, there are usually syno-
nyms and multiple IDs from different databases. If the matching of metabolite names or 
IDs from two studies fails, it will result in an undercount of metabolite overlap between 
the two studies, which often happened in the current study. Therefore, we might have 
missed important cancer-associated metabolites. Once this problem is resolved through 
standardization of IDs, metabolite names, and nomenclature, we can perform more 
accurate network analyses.

It should also be noted that publicly available metabolomic datasets were limited, 
which is a particular problem in metabolomics [7]. The deposition of matrix data of 
metabolomic profiles to public repositories is not yet common in metabolomics, partly 
because it is not always mandated by scientific journals. Generally, public availability 
and reuse of datasets is important because it is considered to be a good scientific prac-
tice (e.g., for reproducing the results or for obtaining new findings from published data). 
As metabolomic repositories (e.g., Metabolomics Workbench [18] and MetaboLights 
[17]) are improved and more datasets are uploaded, we anticipate that data sharing in 
metabolomics will improve. By incorporating these datasets into network analysis, we 
may have a much higher chance of discovering novel relationships between the regis-
tered studies.

Future directions

We note that, since iDMET is a network-based approach of discovering novel rela-
tionships between differential metabolomic profiles from different studies, the use 
of network-based algorithms may boost the discoveries. For example, general sub-
network extraction tools such as CytoCluster [61] may extract sets of metabolomic 
profiles having important relationships, although for our current dataset, it mainly 
extracts subnetworks that are composed of metabolomic profiles from the same stud-
ies (Additional file  4: Table  S4). There are a number of sophisticated algorithms to 
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analyze biological networks [62] and applying appropriate ones to our dataset, which 
should expand to a much larger size in future, may efficiency of discovery.

Conclusion
In this study, we developed iDMET, a network-based approach connecting differential 
analysis for metabolomic data integration. iDMET has the advantage of enabling the 
integration and comparison of data obtained at different facilities and from different 
samples, even if the absolute metabolite levels are not available. By applying iDMET 
to the analysis of cancer metabolomic datasets, we uncovered new associations 
between drugs that may have effects on similar metabolic reactions, which may lead 
to a novel hypothesis on the underlying pathway common to these drug responses. 
We hope that iDMET will help researchers to visualize and integrate complex metab-
olomic datasets, and thus promote hypothesis generation and verification.
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