Table 4.
Overview of input Parameter grid
Machine learning algorithm | Parameter grid |
---|---|
Random Forest | ∙ ‘max_depth’: 10,150,500,1000 |
∙ ‘max_features’: 30,500,3000 | |
∙ ‘min_samples_leaf’: 1,10,100 | |
∙ ‘min_samples_split’: 2,10,100 | |
∙ ‘n_estimators’: 10, 100 | |
Logistic Regression | ∙ ‘random_state’: 0 |
K-Nearest-Neighbors | ∙ ‘n_neighbors’: 3 |
SVC | ∙ ‘gamma’: 2 |
∙ ‘C’: 0.025, 1 | |
∙ ‘kernel’: linear | |
Decision Tree | ∙ ‘max_depth’: 5, 10, 15 |
Multi-layer Perceptron | ∙ ‘alpha’: 1 |
∙ ‘max_iter’: 1000 | |
Neural Network (BERT) | ∙ ‘max_length’: 256 |
∙ ‘epochs’: 5 | |
∙ ‘lr’: 1e-5 | |
∙ ‘eps’: 1e-8 |