Skip to main content
. 2022 Nov 29;60(2):571–591. doi: 10.1007/s10844-022-00768-8

Table 4.

Overview of input Parameter grid

Machine learning algorithm Parameter grid
Random Forest ∙ ‘max_depth’: 10,150,500,1000
∙ ‘max_features’: 30,500,3000
∙ ‘min_samples_leaf’: 1,10,100
∙ ‘min_samples_split’: 2,10,100
∙ ‘n_estimators’: 10, 100
Logistic Regression ∙ ‘random_state’: 0
K-Nearest-Neighbors ∙ ‘n_neighbors’: 3
SVC ∙ ‘gamma’: 2
∙ ‘C’: 0.025, 1
∙ ‘kernel’: linear
Decision Tree ∙ ‘max_depth’: 5, 10, 15
Multi-layer Perceptron ∙ ‘alpha’: 1
∙ ‘max_iter’: 1000
Neural Network (BERT) ∙ ‘max_length’: 256
∙ ‘epochs’: 5
∙ ‘lr’: 1e-5
∙ ‘eps’: 1e-8