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Abstract

Conversational interaction, for example through chatbots, is well-suited to enable automated 

health coaching tools to support self-management and prevention of chronic diseases. However, 

chatbots in health are predominantly scripted or rule-based, which can result in a stagnant 

and repetitive user experience in contrast with more dynamic, data-driven chatbots in other 

domains. Consequently, little is known about the tradeoffs of pursuing data-driven approaches 

for health chatbots. We examined multiple artificial intelligence (AI) approaches to enable micro-
coaching dialogs in nutrition — brief coaching conversations related to specific meals, to support 

achievement of nutrition goals — and compared, reinforcement learning (RL), rule-based, and 

scripted approaches for dialog management. While the data-driven RL chatbot succeeded in 

shorter, more efficient dialogs, surprisingly the simplest, scripted chatbot was rated as higher 

quality, despite not fulfilling its task as consistently. These results highlight tensions between 

scripted and more complex, data-driven approaches for chatbots in health.
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1 INTRODUCTION

Health coaching is a promising approach to support self-management for the millions living 

with chronic conditions [18], but there are not enough coaching practitioners to provide 

care to those in need, let alone provide preventative support. Technology-based approaches 

can make coaching accessible to larger and more diverse populations [34]. Mobile health 
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applications can scaffold health goal setting, and self-monitoring enables individuals to 

collect data about their behaviors and health state, which hold potential to personalize 

coaching support to each individual.

One particularly promising approach for delivering coaching support is through 

conversational interaction, for example chatbots. Automated conversational approaches like 

chatbots may be better able to follow clinical communication best practices than human 

practitioners [3], and are a natural fit with the conversational interaction style at the heart 

of health coaching [73]. However, some have argued that effective health coaching relies on 

uniquely human abilities, like empathy and problem solving, and researchers have debated 

whether automated approaches are suited to health coaching [48, 54]. These arguments are 

justified, at least in part, by the relatively simple approaches to chatbot design that are 

typical for health applications. Until recently, most chatbots in health have been scripted or 

rule-based [38], and while these approaches have shown promising results, they can also 

be perceived as stagnant and repetitive, which can hamper long-term engagement [38, 48]. 

In other domains, massive, openly available data sets enable more dynamic, flexible, and 

passingly intelligent chatbots [2, 59]; incorporating these newer methods could alleviate 

some of the weaknesses of health chatbots and provide more intelligent, dynamic support, 

with the potential to increase their positive impact on individuals’ health. However, there 

is a lack of such corpora for health applications, at least partly due to data privacy and 

confidentiality concerns — consequently there is a lack of knowledge about the potential 

benefits and limitations of applying data-driven dialog modeling approaches in a health 

context [38].

In this paper, we investigate one particular dimension of automated health coaching that 

could benefit from a more intelligent, data-driven approach. In particular, prior work has 

shown that in the context of goal-oriented health coaching individuals are often unsure 

about whether they are achieving their health goals, and are eager for feedback and 

contextually tailored suggestions [47, 48, 53]. This is particularly the case for nutrition-

related goals, as opposed to other components of self-management like physical activity, 

sleep, or medication adherence. Because of the degree of nutrition knowledge and literacy 

required to categorize and estimate the amounts of foods in one’s meal in relation to one’s 

goal, arriving at accurate assessment may present challenges for individuals with varying 

levels of nutritional literacy [9]. Therefore, goal achievement feedback is an important 

component of coaching tools. Generating such feedback computationally requires digital 

records of individuals’ health behaviors, for example meal logs, that include a sufficient 

level of detail to enable comparison between captured meals and nutritional goals. However, 

comprehensive self-tracking can be burdensome and impede long term engagement [15, 

56]. Furthermore, offering feedback on already captured meals has a limited impact on 

individuals’ ability to change their choices. In a coaching context, if an experienced health 

coach were available when an individual was planning their meals, they might try to help by 

asking a few carefully selected questions to assess the individual’s plan and offer insightful 

feedback and suggestions. We refer to such brief, health coaching conversations related to 

specific behaviors as micro-coaching and argue that effectively implementing automated 

micro-coaching dialogs may benefit from more sophisticated Artificial intelligence (AI) 
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approaches, in particular the need to understand natural language descriptions of meals, and 

to select the most informative follow-up questions.

In this research we explore multiple approaches to implementing micro-coaching dialogs, 

including a fully scripted approach and several approaches that incorporate AI with the 

following research questions: What are the comparative benefits of these different types of 
dialog management approaches for coaching chatbots? How do these chatbots compare in 
their ability to reach their end goal as quickly as possible, and their perceived quality and 
user experience?

To answer these questions, we implemented four micro-coaching chatbots; each chatbot 

could generate a set of dialogs to automatically assess whether a planned meal is 

consistent with a given nutrition goal. First, a fully-scripted chatbot was designed through 

a user-centered approach with input from diabetes educators. Then, we developed two 

additional chatbots that incorporated common types of AI: rule-based and data-driven. 

Applying AI to assess the attainment of nutritional goals requires representing meals in a 

computer-understandable form. To that end, we developed a knowledge-based system for 

natural language understanding (NLU) and generation—FoodNLU—to parse and interpret 

utterances describing an individual’s meal. The rule-based chatbot chooses follow-up 

questions with pre-defined logic based on information extracted from an initial description 

of a planned meal using FoodNLU. The data-driven chatbot builds on the same FoodNLU 

system, but instead of a rule-based system, a Reinforcement Learning (RL) model learns 

how to efficiently manage dialogs from many examples. Finally, as a fourth control 

condition, we implemented a chatbot with the FoodNLU system and a random policy for 

choosing the next question.

To evaluate these approaches, we conducted a study with crowd workers recruited on 

Amazon Mechanical Turk. In this study, crowd workers were presented with records of 

meals and responded to prompts from one of the four chatbots; we used the resulting dialogs 

to create a crowdsourced corpus for training and evaluation. We compared the resultant 

dialogs on their length, and also enlisted additional crowd workers to assess the quality of 

dialogs, as well as the perceived user experience. To assess quality, crowd workers were 

presented with pairwise comparisons of two dialogs side-by-side, and asked to rate which 

was superior in terms of the coach’s question-asking strategy, as well as the coherence and 

naturalness of messages from the coach. To assess perceived user experience, crowd workers 

reviewed multiple dialogs from the same chatbot, and completed the subjective assessment 

of speech systems questionnaire (SASSI; [28])

In the evaluation study, we found that the RL chatbot succeeded in generating conversations 

that were significantly shorter than those generated with the other chatbots. Considering 

the perceived quality of the chatbots, we expected the AI-based chatbots to out-perform 

the scripted chatbot, but found mixed results, particularly on the user ratings of the chatbot 

coach’s strategy. Raters assessed longer conversations as more strategic, not shorter, pointing 

to a tension between the efficiency of dialogs and dimensions of their perceived quality. 

However, despite the higher quality ratings, the fully-scripted chatbot was able to collect 

necessary information about users’ meals only 65% of the time. In contrast, the data-driven 
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(RL) and rule-based chatbots always collected the necessary information. Performance 

differed across the three nutrition goals considered as case studies in the evaluation; for 

one of the quantitative goals, the RL-based chatbot was rated as more natural and coherent 

than the others. There were no differences between the four chatbots in perceived user 

experience.

These results have implications for the application of data-driven approaches to health 

chatbots. While the data-driven, RL-based approach was most successful in the intended 

outcome of brief conversations, crowd workers did not always rate it as high quality. This 

may have been due to the counterintuitive question-asking strategy of the RL approach 

that did not aim to preserve a logical flow of questions, as opposed to scripted approach, 

which was more transparent in why each question as being asked. This work also contributes 

a dialog corpus that can be used by other researchers to further refine data-driven dialog 

management approaches. Overall, these results suggest the plausibility and potential benefits 

of more complex computational approaches to chatbots in health, while highlighting the 

value of simple and scripted approaches, which have shown promising results in many 

health domains.

2 RELATED WORK

2.1 Health coaching

Self-management for many chronic conditions requires changes to daily lifestyle behaviors, 

like diet, exercise, and sleep [5]. Health coaching has been shown to be an effective 

intervention to support healthy lifestyle changes [18]. Coaching centers on collaborative 

goal setting, where the coach and client work together in a supportive, longitudinal 

relationship, aiming to increase motivation and help the client learn self-management 

strategies and skills [52, 73].

Some have argued that the human element is essential to effective health coaching, and 

placed particular emphasis on building interpersonal relationships and flexible, contextual 

thinking [54]. However, human-powered coaching interventions are limited in their ability to 

reach everyone in need of support because there are not enough coaching practitioners, 

resources are not always available in underserved communities, reimbursement varies, 

and there are barriers for individuals in accessing coaching support, including access to 

transportation or time off from work.

2.2 Conversation agents

Conversational agents — sometimes referred to as chatbots, or intelligent assistants — are 

a class of applications driven by the exchange of natural language between a user and the 

system. One of the first conversational agents, ELIZA, was developed in the 1960’s [72]. 

The first use case for ELIZA was to emulate a Rogerian psychotherapist with rule-based 

responses. Decades later, in the present day, more sophisticated conversational agents are 

nearly ubiquitous, from Siri in smartphones to Alexa in smart speakers [12].

Chatbots can be categorized into three categories based on their functionality: finite state-

based, frame-based, and agent-based [44]. Finite state-based systems follow a deterministic, 
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structured dialog tree or use rule-based language processing to respond to user input. Frame-

based systems are useful for task-based applications, where the designer can specify the 

types of tasks and pieces of information necessary to complete the task, or slots. Frame-

based approaches then utilize natural language processing (NLP) to classify the user’s intent, 

and fill the necessary slots in the frame to execute the task. Finally, agent-based or AI 

systems come closest to replicating human-human dialog, and rely on more complex logic to 

determine responses, often through data-drivel dialog models trained with machine learning 

(ML). Many of the early examples of chatbots were finite state-based [4, 72], and rule-based 

agents continue to be developed [23].

Recent approaches to designing more dynamic conversational AI agents rely on training 

statistical dialog models, for example deep neural networks, that learn from large corpora 

of example conversations [25]. Through thousands of examples, these models learn a 

mapping from input messages to output responses. This approach is made possible by 

many large, openly available corpora of dialogs in many domains like IT support and 

restaurant searching [43, 59], as well as advances in computational power to train ever-larger 

language models. In particular, transformer-based models like BERT, and GPT, have shown 

astounding success in many natural language understanding tasks [6, 17, 69].

Applying these advances to other areas like health coaching presents challenges due to 

the nature of the task and the need for domain knowledge to accomplish it. Certain types 

of conversational interaction are well studied, including task-based agents, open domain 

chit-chat, and question answering systems [1, 2, 25, 42]. However, there may be challenges 

applying these approaches to different types of interaction like health coaching, which are 

not primarily user-initiated task-based or question-answering system, nor are they fully 

unstructured open domain chit chat conversations. Second, while language models can be 

trained on large corpora and transferred to other, smaller data sets for fine-tuning, healthcare 

and health coaching dialogs include domain-specific knowledge, for example about nutrition 

and health state. Pre-trained language models have been developed for biomedical literature 

[39], but existing models may not necessarily transfer to health coaching, particularly 

because of the nutrition terminology and informal language used by coaches and clients. 

In either case, the creation and open availability of corpora would be necessary to train or 

tune data-driven dialog models for health coaching.

As shown in Figure 1, a common architecture for chatbots separates interpreting user 

utterances (understanding), from what an agent should say in response to user input (dialog 

management) from as how to say it (dialog generation) [25]. Importantly, data-driven 

approaches can be applied to a subset of these components, requiring less data than end-to-

end models [25].

2.3 Reinforcement learning for conversational agents

A common approach to improve the efficiency of dialog management is to apply 

Reinforcement Learning (RL) [25, 63]. RL is a distinct machine learning approach, and 

is separate from supervised learning — where the task is to predict a label or classification 

for instances in a data set — and unsupervised learning — where the task is to find 

hidden structures or relationships within a data set. The task for RL is to learn a policy 
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for what actions to take in a given environment with a certain state. RL agents learn from 

trial-and-error, collecting rewards as they move through the environment, and keeping track 

of which actions in which situations bring about the highest long-term reward [63]. In recent 

years, RL has shown strong performance playing many different games without any expert 

knowledge about the game’s rules or strategy [61].

For conversational agents, RL has been applied to improve an agent’s dialog management. 

For example, RL can help task-based agents accomplish the user’s aim with fewer back-

and-forth turns, or in a manner that is perceived as more natural, depending on how the 

rewards are defined [40, 42, 62]. In the case of open domain chit-chat bots, reinforcement 

learning has been used to choose responses that result in longer engagement with the 

agent and positive user sentiment during dialogs [58]. RL refinement of dialog management 

can be accomplished as a part of end-to-end models, or as a separate dialog management 

component [25].

A key distinction in RL is between online and offline learning. With online learning, the 

agent is able to interact with a simulated or actual environment to directly observe the 

impact of their actions on the state and reward collected by the agent [63]. This is partly 

attributable to the high-profile success of RL in playing many common games, where 

thousands upon thousands of iterations of the game can be simulated. In the case of dialog 

agents, this is not always possible, and learning in real time with actual users would take 

too long when the RL model is in the early stages of training and makes many errors. 

Many RL algorithms are able to learn offline from data generated by some other process. 

Offline learning with an existing data set can be used to train or pre-train RL models before 

deploying them into an actual environment, where they can continue learning over time [63, 

65]. When the generating policy for a data set is not known, it can introduce methodological 

challenges for offline learning, which is an open research area [31, 65]. If the generating 

process is known, it can simplify the RL approach substantially [65]

2.4 Conversational agents in health

Conversational agents in healthcare are often applied in mental health settings, and are 

predominantly finite-state based or frame-based [38, 49], as opposed to AI-based or data-

driven. The continued focus on rule-based and scripted agents is partly because of a low 

tolerance for error in the health domain [16, 35]. With scripted agents, the designer knows 

exactly how the agent will respond to a given input from the user. With more dynamic, 

data-driven approaches, the models are probabilistic, and because the responses can be more 

variable the designer has much less control over what the agent might say to a user, which 

is not a desirable risk if delivering health-related advice. In addition, because of HIPAA and 

other data privacy protections, health-related data sets are rarely made openly available for 

researcher use, and there is therefore a lack of publicly available dialog corpora in health 

domains [38, 59].

Advances in data-driven and ML approaches have been used primarily for Natural Language 

Understanding (NLU) in the health domain. Some examples take advantage of commercial 

services and platforms (e.g. Google Home) [10] or preexisting NLU services [24, 68], while 

others develop their own ML models [30, 51]. These systems use ML to parse user input, 
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classify the user’s intent, and identify key entities, but do not use ML to manage or generate 

responses, and are typically classified as frame-based systems. Other researchers have 

incorporated ML into chatbots for personalization and clustering users [22, 36] to analyze 

personal health data for insights or trends [37, 48, 77], or to analyze user engagement [29]. 

Another related body of research seeks to analyze speech and verbal patterns for diagnostic 

purposes, for example detecting dementia [64]. The use of data-driven ML approaches for 

dialog management has been less thoroughly explored in a health context. In one notable 

example, Yasavur and colleagues applied reinforcement learning for dialog management for 

brief virtual counseling interventions [76], however they did not compare their system with 

other dialog management approaches.

3 MICRO-COACHING

Prior work has shown that self-monitoring is burdensome which can adversely impact 

engagement [15, 56]. In addition, for chatbots, brief dialogs are preferable for sustained 

engagement [37, 48]. In the context of health coaching and goal setting, it is well 

documented that individuals pursuing health goals may not always be sure of their progress 

in achieving these goals and are eager for feedback and for personalized and contextually 

appropriate suggestions to help meet their goals [47, 53].

These findings helped us to formulate several design needs for micro-coaching dialog 

systems (Figure 2). First, the system needs to be able to automatically assess whether 
the user is on track to achieve their goal with a planned meal. The assessment must be 

automatic in order to provide timely, in-the-moment support. Second, the system must offer 
feedback to the user based on the goal assessment. This could be positive reinforcement 

if the user is on track, or an acknowledgement and explanation if they are not. Third, if 

the user is not on track, the system must offer suggestions for how to modify their plan 

to better align with the goal. These suggestions should be personalized to an individual’s 

preferences, and to alternate options available to them. Throughout all three phases of 

support, an overarching design need is for conversations to be as brief and targeted as 

possible.

The three design needs can be met with three distinct phases of a micro-coaching 

conversation; implementing each incurs their own potential complexities and nuances. The 

remainder of this paper focuses on the first need — the ability to automatically assess 

whether an individual’s planned meal is likely consistent with their nutrition goals. This step 

is a prerequisite to enable the subsequent steps of offering feedback and suggestions, and 

itself presents considerable complexity.

4 CHARACTERIZING EXPERT APPROACHES TO MICRO-COACHING 

DIALOGS

To explore how expert coaches approach asking follow-up questions about meals, we 

conducted a qualitative study with health coaches. In particular, we wanted to know types of 
questions coaches would ask their clients about specific meals in order to assess whether a 

meal is consistent with a nutrition goal.
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4.1 Methods

Health coaches, who were Certified Diabetes Care and Education Specialists (CDCESs), 

were recruited from professional networks to participate in the study.

First, CDCESs joined for an interview where we asked them how they would interact with 

clients in a hypothetical scenario when they were always available in real time to discuss 

their clients’ planned meals. In addition, each coach completed a survey that prompted 

them to list the questions they would ask a hypothetical client about their meal if the only 

information the coach had available was a brief text description of the meal, and the nutrition 

goal the client is working on. In each survey, the prompt was repeated for 10 meals across 

5 nutrition goals, and coaches were asked to list 3 to 5 questions per meal. We inductively 

categorized the yielded set of questions listed for each meal/goal pair in the survey to find 

patterns and groupings.

After completing the survey on their own time, participants returned for a second interview 

to discuss their specific responses, as well as to member-check findings.

4.2 Results

Two CDCESs participated, completing surveys for a total of 20 meals covering 10 distinct 

nutrition goals and generating 60 questions.

We found that there was a very limited set of question types across all of the meal-goal pairs. 

At the highest level of distinction, some questions sought to search by asking individuals to 

list additional food items not already mentioned, while other questions sought to drill-down 
on the details of food items that had already been mentioned. As shown in Table 1, the 

four main question types were “what else?”, “what kind?”, “how much?”, and “how was it 

prepared?”.

Within the question types, there were some variations. Some questions apply generically 

to the entire meal (e.g., “What else will you have with your meal?”) while other question 

reference specific components of the meal (e.g., “What else will you put in your burrito?”). 

In addition, meal-specific questions sometimes referenced sub-components of a meal that 

were not explicitly stated in the meal description, for example asking about the amount of 

bread in “a ham sandwich.”

Considering which questions were applicable to which goals, we found that search questions 

were applicable across all goals. In contrast, drill-down questions were applicable to some 

goals and not others. For example, “How much?” questions were applicable to quantitative 

goals, while “What kind?” questions were more applicable to qualitative goals. In addition, 

some of the questions took different forms in the context of different goals. For example, 

“What kind?” questions might be asking about the fat content of yogurt (e.g., 0%, 2% or full 

fat) for a goal about lean proteins, while asking if the yogurt is plain or favored for a goal 

about added sugars.

Using the results of this study as a guide, we designed four different chatbots that utilize 

different approaches to NLU and dialog management. The first is a fully scripted, while the 
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other three utilized an AI system for NLU, called FoodNLU. The AI-based chatbots utilize 

different approaches for dialog management: rule-based, data-driven with Reinforcement 

Learning, and random as a control condition. In the following sections, we describe 

the design of these different chatbots and results of intrinsic evaluation studies for the 

underlying components of the chatbots.

5 A SCRIPTED, FINITE STATE-BASED CHATBOT

The first chatbot condition was a fully-scripted, finite state-based chatbot. Using the 

question types identified from the qualitative study with CDCESs, the scripted chatbot 

always asks the same questions in the same order for a given goal; the questions differed 

between nutritional goals but not between meals. The scripted chatbot did not include 

any NLP components, and always asked the same questions regardless of how the user 

responded, or the details of their meal, so conversations would always be exactly the same 

length. The complete scripted dialogs are included in Table 10.

6 AI-BASED CHATBOTS

In order more intelligently respond to user’s descriptions of their meals with follow-up 

questions, a chatbot first needs to be able to “understand” the nutrition content of the 

meal being described. In the next section, we describe a system for Natural Language 

Understanding (NLU) of meal-related dialogs, called FoodNLU, based on the findings from 

the study with CDCESs. This system performs NLU of user utterances, and also generates 

a set of goal- and meal-depended follow-up questions. We then describe chatbots with 

multiple dialog management approaches to choosing between these possible responses: 

rule-based, data-driven, and random.

6.1 Knowledge-based natural language understanding (FoodNLU)

In this section, we describe the design and evaluation of the natural language understanding 

system, called FoodNLU. A visual overview of the pipeline is presented in Figure 3

6.1.1 Overview of FoodNLU.—First, to parse food items from natural language 

descriptions of meals, we utilized Nutritionix, a commercial solution for named entity 

recognition (NER) of food items [78]. Nutritionix has been used as a component of other 

natural language food projects [50], and can handle common misspellings as well as brand 

names. For many multi-component foods, Nutritionix includes a sub-recipe of component 

ingredients. For example, “ham sandwich” has the components “ham,” and “bread,” which 

enables asking questions about implicit sub-components of the meal. In addition, we 

extended existing open source code to identify quantities [27].

In order to both determine whether food items were consistent with a given goal, as well 

as to determine which questions would be applicable to which food items, we incorporated 

food types and categories from an existing and widely used food ontology, FoodOn [19]. 

For example, considering the question “What else will you put in your <food_item>?”, some 

foods are likely to be containers for other foods, like sandwiches or burritos. In FoodOn, 

Mitchell et al. Page 9

Proc SIGCHI Conf Hum Factor Comput Syst. Author manuscript; available in PMC 2022 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these types of foods are listed as “multi-component food items,” which can be used as a 

heuristic to determine which food items the question is applicable to.

These attributes also enable the system determine when a meal is or is not consistent with 

a goal. For example, for the goal “Choose lean proteins,” attributes indicating which foods 

are proteins, and which proteins are lean or fatty, can be used to determine when all proteins 

have been clarified to be either fatty or lean, and the stop criteria are met.

In the last step, the system considers the question types relevant to the goal and the attributes 

present in the user’s meal description to generate a set of possible follow questions.

6.1.2 Implementation of FoodNLU with a sample of nutrition goals.—Because 

the applicable question types vary for different goals, it was important to consider multiple 

different nutrition goals when designing and evaluating the system. Specific nutrition goals 

can vary for different individuals, but there are many themes and similarities across them. 

We chose three nutrition goals to examine as case studies. Candidate goals were compiled 

from an existing knowledge base of diabetes-focused health goals [14].

Goals were chosen to give coverage across key attributes, and were intended to be a 

reasonable level of difficulty for most individuals with diabetes, both in terms of how often 

individuals achieve each goal, as well as how accurate individuals are in self-assessing goal 

attainment. From an analysis of goal achievement in a prior data set with over 3,000 meals, 

we selected a set of 3 goals, presented in Table 2.

For each of the three goals, we determined the set of potentially relevant follow-up questions 

based on the results of Study 1. See Table 3 for a summary of which question types apply to 

each goal.

In addition, we wrote a set of rule-based stop criteria based on the logic underlying each of 

the three goals and the attributes of foods in the meal. The stop criteria indicate when there 

is enough information to say whether a given meal is likely consistent with a nutrition goal. 

The initial version of all stop criteria are presented in Appendix Table 11

6.1.3 Intrinsic evaluation of FoodNLU.—To evaluate FoodNLU, we focus 

specifically on evaluating the stop criteria. Because these criteria are the cumulation of the 

steps in the system (Figure 3), if the stop criteria perform well, it suggests that the upstream 

components are reasonably performant as well. In order to evaluate the stop criteria we used 

crowdsourcing to create a set of dialogs regarding a diverse set of meals.

Crowdsourcing dialogs.: Each dialog started by presenting crowd workers with a photo 

of a “seed” meal to describe. Meal images were drawn from prior self-tracking studies. 

We selected 10 meals at random, balanced on the user, the type of meal (e.g., breakfast, 

lunch, or dinner) and the length of the user-entered meal description. Each image was 

manually reviewed to ensure the food item(s) were clearly visible. Based on the image, and 

user-entered description, a member of the research team wrote an ingredient list, plainly 

listing the names of the food items in the photo.
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To create the dialogs, we posted human intelligence tasks (HITs) to Amazon’s Mechanical 

Turk (mTurk) platform. Each HIT included the seed meal image and ingredients, which 

were rendered as a photo to prevent copy-pasting verbatim, and a text-message conversation 

history between a fictitious health coach and their client (Figure 12). Each crowd worker 

was asked to review the conversation history and the meal image/ingredients, and answer the 

question posed by the health coach. Each meal was used as a seed for 3 dialogs per goal, for 

a total of 90 dialogs (30 per goal). Each dialog continued until it was clear that there was 

enough information to determine whether the described meal achieved the goal, according to 

the stop criteria defined in Table 11

Registered Dietitian surveys.: For each of the 3 goals, we selected 5 dialogs where the 

stop criteria were met, indicating that there was enough information and the conversation 

could end, as well as 5 dialogs where the stop criteria had not been met (Figure 4). The 

dialogs were balanced on the number of turns to prevent any potential confounding effects of 

conversation length.

In a Qualtrics survey, Registered Dietitians (RDs; n=2) assessed whether they thought there 

was enough information to determine whether the meal the individual was describing would 

likely meet their nutrition goal, or not for each of the 30 dialogs. If there was enough 

information, RDs also labeled whether the goal was met or not, and if there was not enough 

information, indicated what necessary information was missing.

We calculated inter-rater agreement with Cohen’s Kappa statistic. After adding their initial 

labels, disagreeing items were discussed, and RDs had the option to change their labels. 

We calculated both the inter-rater agreement and accuracy of the FoodNLU’s determinations 

with those of the RDs.

In addition to inter-rater reliability and accuracy, we performed a qualitative error analysis 
to better understand the cause of situations where the system’s predictions were incorrect. 

For each of the dialogs where one of the RDs disagreed with the prediction of the rule-based 

stop criteria, we categorized the reason for the disagreement and tabulated the frequency of 

each type of error.

Results.: Interrater agreement between the two RDs was initially only moderate (κ = 0.46). 

Most of the disagreements were due to differing definitions of lean proteins between the two 

RDs. After clarifying the rubric for the 3 goals, RDs adjusted some of their initial labels, 

resulting in a substantially improved inter-rater agreement score (κ = 0.87).

Considering the agreement between FoodNLU and the RDs, the average inter-rater 

agreement score indicated substantial agreement about whether there was enough 

information in the dialog to determine if the goal would be achieved (κ = 0.67. Considering 

the overall accuracy of predictions from FoodNLU, the terminal states were accurate 83% of 

the time, and accuracy decreased as the goals increased in complexity (Table 4).

When there was enough information for the system to make a prediction about whether the 

meal was consistent with the goal, those labels were 81.8% accurate with RD labels. These 

evaluation results suggest that the rule-based FoodNLU system is reasonably performant.
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Results of the error analysis are presented in Appendix Table 12. The most common reason 

for error was that the dialog did not include a drill-down question asking about a food 

that likely contained a large quantity of other food items, like a smoothie. A handful of 

additional errors were due to disagreements about food item attributes with the labels from 

the FoodOn ontology, or errors with the Nutritionix named entity recognition system. The 

results suggest that there was not a single point of failure responsible for all of the errors.

6.2 Rule-based dialog management

While FoodNLU represents what a user has said, and the possible follow-up questions the 

chatbot coach could ask, it does not include logic for which question to ask next. The food 

items and attributes identified by FoodNLU, though, can be used as a straightforward set of 

features for rule-based dialog management. For example, for the lean proteins goal, if one of 

the food items identified is either lean or fatty protein (e.g., skim or whole for milk) then the 

system should ask “what kind” in an attempt to disambiguate whether the protein is lean or 

fatty.

Informed by the qualitative findings from health coaches, we built on FoodNLU to 

design a simple, rule-base algorithm to choose the next action (Algorithm 1). To prevent 

premature closure of conversations, the rule-based system had a constraint to always ask one 

search question before the dialog was considered complete. For instance, for a goal about 

carbohydrate portions, if two high-carb food items were eaten, but only one was mentioned 

in the initial description, the conversation might end prematurely without searching for 

unmentioned food items. This constraint ensures there are at least some amount of search 

questions in each dialog.

6.3 Data-driven dialog management with Reinforcement Learning (RL)

The same food items and attributes identified by FoodNLU system can also be used as 

features for an ML-based dialog management system. Reinforcement Learning (RL) is a 

machine learning approach that is well suited to the task of learning to choose the best action 

in a given circumstance [63]. However, data-driven approaches like RL require a corpus of 

examples to learn from.

Without an existing data set for micro-coaching dialogs, we used crowdsourcing to create a 

corpus of meal-related dialogs. Because of the potentially high costs and wasted resources 
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of paying crowd workers for multiple iterations of online learning, we created a corpus of 

dialogs for offline learning.

In this section, we introduce the RL algorithm used in this analysis, q-learning, followed by 

a description of the state space and rewards. Then, we present two validation studies, first 

with simulated data, and then with a new, crowdsourced data set of meal dialogs.

6.3.1 RL algorithm: Q-learning.—Q-learning [63, 70, 71] is an off-policy algorithm 

that aims to learn the action-value function Q(s, a), which estimates the value of taking 

a particular action a ∈ A while in a discrete state s ∈ S. The value is the reward r ∈ R 
gained from moving to the next state s′ plus the sum of rewards∈ that could be accumulated 

from s′ onwards, reduced by a discount factor γ ∈ [0, 1] By observing the reward when 

moving from s to s′, the q values are updated iteratively following a temporal distance 

learning algorithm (Algorithm 2). Through these iterations, the learned action-value function 

Q approximates q*, which is the optimal action-value function.

The hyperparameters for q-learning are the learning rate α ∈ [0, 1], which controls the step 

size of each q-value update, the learning rate decay ω ∈ [0, 0.01], which gradually decreases 

the learning rate α over the course of training, and the discount-rate γ ∈ [0, 1], which 

discounts the value of future rewards thereby increasing the influence of immediate rewards.

Once q-values have been learned offline from an existing data set, the algorithm can 

be applied to prospectively collected dialogs, following a policy based on the pretrained 

Q-values. In a given state S, the best action according to the Q-values can be attained 

from maxaQ(S, a). However, always greedily following the best action can pigeonhole the 

algorithm to following a particular path, and will not be able to continue learning about other 

paths. Therefore, the greedy algorithm can be modified so that at each turn a random action 

is taken with probability ε ∈ [0, 1].

6.3.2 State space and reward function.—Two key considerations in applying q-

learning to micro-coaching dialogs are representing the state space  and the reward 

function.

Considering , the larger the state space is, the more observations that are necessary for the 

algorithm to converge. Therefore, smaller state spaces are desirable for a proof of concept. 

The same attributes used for the rule-based system can be used as features to represent the 
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state of the conversation. For instance, the number of food items identified by FoodNLU 

may be informative, as would the presence or absence of certain types of food items. For 

example, for the goal to “Choose lean proteins” the presence or absence of any proteins in 

the meal would be a relevant feature to determine which questions would be informative. 

Based on these features, we designed minimalist, discrete state spaces for each of the three 

nutrition goals used as case studies in this analysis (Table 5).

Considering the reward function, it was of primary importance to reward reaching a terminal 

state, meaning a state where the stop criteria are fulfilled, with as few conversational turns 

as possible. The highest reward (r = 10) was given for reaching a terminal state. To reward 

questions that resulted in additional information, for example, finding additional food items 

or identifying a goal-relevant food item, a smaller reward was given (r = 3). To incentivize 

short conversations, a small penalty (r = −1) was given for questions that resulted in no 

changes to the state representation, suggesting that they were non-informative.

6.3.3 Creating a corpus for offline learning.—In order to train a model with actual 

data, we need data to learn from. To create a corpus for training the RL model, we used 

crowdsourcing following a similar process to the intrinsic evaluation of FoodNLU. For 

the crowdsourced corpus, the dialog management was handled by a random policy — the 

coaches’ follow-up question was chosen at random from the possible question type.

We selected 25 meal images and ingredient lists to serve as seed meals for crowdsourced 

dialogs. Each meal was the seed for 4 dialogs per goal, for a total of 300 dialogs (100 

per goal). Each dialog continued for a total of 10 turns. The resulting corpus included 300 

dialogs and 3,000 total conversational turns. The corpus is available for other researchers 

to use on GitHub in a JSON format similar to other open dialog data sets [60]. Descriptive 

statistics of the corpus are presented in Appendix B.

6.3.4 Validation experiments with simulated data.—To validate this q-learning 

approach as a proof of concept, we first conducted an experiment with simulated data. The 

simulation was also designed so that certain questions would be more informative in certain 

states. For example, with the lean protein goal, asking “what kind of <ambiguously fatty 
protein>?” would find a non-ambiguous lean or fatty protein and receive a high reward with 

an 80% probability if there were proteins present in the meal.

Methods.: We iteratively trained the q-learning model with the simulated data and a random 

policy for hundreds of episodes (one training episode corresponded to a complete dialog 

from beginning to end). We tuned the hyperparameters by examining the changes in q value 

for convergence and the consistency in performance across multiple rounds of training.

To examine the performance of trained q-values, we then simulated the prospective, online 
collection of new dialogs between two policies: 1) a policy that greedily follows the action 

with the highest q-value, and 2) the same random policy that was used for training. We 

compared the average length of dialogs between the greedy-q and random policies, as well 

as the average reward attained per episode.
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Results.: As shown in Table 6, the tuned q-learning algorithm was able to learn a policy that 

resulted in shorter conversations, compared to a random policy.

Examining the change in q-values over the course of training suggested that the algorithm 

was correctly unpacking the signal in the simulated data, and finding different actions to be 

more valuable in different states. A side-by-side comparison of the q-value history for two 

different states and the “lean protein” goal is presented in Figure 5, which shows that the 

most valuable actions (the actions with the highest q-values) were correctly identified;. In 

addition, the q-value histories show that the q-values begin to find signal and converge after 

25 to 50 episodes, suggesting that a corpus of 100 dialogs should be sufficient for training.

6.3.5 Validation experiments with crowdsourced data.—After validating the q-

learning approach with simulated data, we trained a q-learning agent for each of the three 

goals using the crowdsourced dialogs.

Methods.: The training data set was the corpus of 100 dialogs per goal. Following similar 

methods to the simulated data, we trained 3 separate q-learning models, one for each of the 

3 goals, for 150–200 episodes each. In addition, we examined the dataset’s coverage of the 

state space; sufficient coverage of the state space is an assumption needed for q-learning to 

converge [63, 70].

Results.: Examining the changes in q-values over the course of training demonstrated 

similar patterns to those found with simulated data. As seen in Figure 6, for the goal 

“Choose lean proteins,” a policy based on q-values correctly learned to ask “what kind” 

questions when ambiguously fatty proteins are present and a number of other foods had 

been identified, but instead asked “what else” to continue searching if no proteins have been 

mentioned.

Importantly, the RL agent did not always favor exploiting possible drill-down questions: If 

there were few food items present (1 or 2) the agent would continue to search by valuing 

“what else” or “what else in” questions (Figure 7).

Results for the other two goals followed a similar pattern, and are included in Appendix C, 

along with the results of the state-space coverage evaluation.

6.4 Random question dialog management

As a control condition to compare rule-based and data-driven dialog management strategies 

against, the next question can be chosen randomly from the possible responses generated 

by FoodNLU. This random policy is how the dialogs for training RL were generated, and 

represents a minimally intelligent dialog management policy that the other two AI-based 

chatbots should be able to outperform.
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7 COMPARISON OF MULTIPLE CHATBOT APPROACHES FOR MICRO-

COACHING

In the prior section, we described four chatbots for micro-coaching dialogs. One was simple 

and fully scripted, while the other three incorporated some elements of AI. The three 

AI-based chatbots used FoodNLU to parse user input and generate possible follow-up 

questions, but employed different dialog management approaches: rule-based, data-driven 

with RL, and random as a control. In this section, we describe an evaluation study 

comparing the four chatbots in dialog length, and perceived quality and user experience. 

An example of dialogs generated using each of the 4 chatbots is presented in Figure 8

7.1 Methods

7.1.1 Crowdsourced dialog test set.—With 10 meal images that were not a part of 

the training set for RL, we crowdsourced 2 dialogs per meal, per goal for each of the 4 

conditions, resulting in a total of 240 evaluation dialogs.

7.1.2 Dialog length.—To examine the length of conversations, we compared the 

average number of dialog turns across each of the conditions, and tested for significance 

with pairwise Wilcoxon tests between the RL condition and three comparators, using a 

Bonferroni correction for multiple hypothesis tests.

7.1.3 Perceived dialog quality.—For each of the four chatbots, we solicited crowd 

worker feedback on the quality of coaching dialogs with is design. Pairwise comparison 

a pairwise comparison commonly used to compare multiple entities on some subjective 

property, for example in preference elicitation and decision-making research [26, 55]. 

Pairwise comparisons have the advantage of avoiding floor and ceiling effects [11] that 

can occur when using Likert scales to measure subjective attributes, and therefore ensure the 

ability to understand which chatbots were preferred to others. Crowd workers were asked to 

consider the overall quality of the coach’s question-asking strategy (following [41]), as well 

as the naturalness and coherence of messages from the coach (following [42]).

With 10 dialogs per goal and 4 conditions, there were a total of 60 unique comparisons per 

goal. Crowd workers completed surveys on mTurk with 30 randomly-selected comparisons. 

For each comparison, participants were shown two dialogs, and asked which of the two was 

superior in each of the 3 quality constructs (Figure 9).

Participants were recruited from mTurk, and needed to be United States residents with a 

90% approval rate to be eligible. Participants were compensated $5 for completing the 

survey.

We calculated how often each of the four chatbots was rated as better than another in 

pairwise comparison, for each of the three quality constructs, resulting in an overall “win 

percentage” for each chatbot. We considered the win percentage for each of the 3 quality 

constructs (strategy, naturalness, coherence) individually, as well as a composite quality 

score from averaging all three together.
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In addition, to compare quality assessment based on the length of dialogs, we examined how 

often the winning dialog was longer (more turns), or shorter (fewer turns), or deemed it a tie 

if the dialogs were the same length.

7.1.4 Perceived user experience.—A separate set of participants was recruited to 

evaluate the perceived user experience of interacting with the coach using the Subjective 

Assessment of Speech System Interfaces measure (SASSI; [28]), with a between subjects 
design. Participants reviewed 10 dialogs from the same chatbot, related to the same goal, 

and then were asked to consider the experience of the user and complete the full SASSI 

questionnaire. Each participant was compensated with $8 for completing the survey through 

the mTurk platform.

To test for differences in survey responses, scores were compared between the four chatbot 

conditions. Because survey measures are ordinal, values between the conditions were 

compared with the Kruskal-Wallis test, a non-parametric version of a one-way ANOVA.

7.1.5 Stop criteria for the scripted chatbot.—Unlike the other 3 chatbots, which 

continued until reaching the stop criteria, the scripted chatbot always asked the same 

questions, regardless of the responses offered by the user. This meant that the scripted 

dialogs may not contain sufficient information to determine if the described meal is 

consistent with a goal. To quantify this discrepancy, I applied the same stop criteria to 

the scripted dialogs, to examine how often the scripted dialogs reach the stop criteria. If a 

dialog does not reach the stop criteria, there is likely insufficient information to determine if 

the meal is likely consistent with the goal.

7.2 Results

7.2.1 Dialog length.—As shown in Figure 10, conversations with the RL chatbot were 

consistently shorter to meet their stop criteria. Conversations were an average of 3.56 turns 

long in the RL condition, compared with 4.18 turns in the rule-based condition, and 5.75 

turns in the random condition. Scripted conversations were predictably an average of 4.33 

turns long. A breakdown of conversation length across the 3 goals is presented in Table 7. 

The more complex goal “Make ½ my meal fruits and/or non-starchy vegetables” generally 

had much longer conversations on average than the other two goals. RL showed the most 

improvement over the random baseline for the goal “Eat no more than 2 portions of carbs 

(30g)”

7.2.2 Perceived dialog quality.—15 participants completed the pairwise quality 

comparison survey. The win percentage results are presented in Table 8. The higher quality 

condition varied by goal. The scripted condition won most often in head-to-head quality 

comparisons, especially for goal #1, “choose lean proteins,” and goal #3 “1/2 fruits and 

non-starchy vegetables. For goal #2, “no more than 2 portions carbs,” the RL chatbot was 

the most natural and coherent, while the rule-based chatbot had the better question-asking 

strategy.

Considering the length of conversations (Table 9), shorter dialogs were considered natural 

more often, while longer dialogs were considered to have a better question-asking strategy.
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7.2.3 Perceived user experience.—When examining differences in perceived user 

experience through the SASSI, which has a minimum score of 1 and a maximum of 5, 36 

individuals completed the survey, and no statistically significant differences were detected 

(Figure 11)

7.2.4 Stop criteria for the scripted chatbot.—Dialogs from the scripted chatbot 

reached the stop criteria only 65% percent of the time. Dialogs for the other chatbots 

reached their stop criteria 100% of the time.

8 DISCUSSION

In this research, we examined multiple approaches to design a conversational coaching 

intervention. Informed by prior research, we proposed a set of design needs for micro-
coaching dialogs — brief conversations to provide support for planning specific meals. 

Enabling such an approach required the ability to automatically determine whether an 

individual is likely to achieve their chosen goal, based on the description of their meal, 

which was the focus area of this research.

Specifically, we designed and evaluated a knowledge-based system that processes user 

utterances describing their meals and generates a set of possible follow-up questions. In 

addition, we compared multiple approaches to dialog management, including a simple 

fully-scripted approach, approaches that utilize different types of AI, rule-based, data-driven, 

and an approach that selected questions at random. Below we discuss the main findings of 

this work and their implication for future research in micro-coaching chatbots.

8.1 Comparative advantages of rule-based vs. data-driven dialog management

In the evaluation study, we compared multiple approaches to dialog management for micro-

coaching dialogs, including scripted, rule-based, and data-driven approaches. The scripted 

chatbot always asked the same goal-relevant questions, regardless of the meal and responses, 

The rule-based chatbot took advantage of the goal-relevant food features identified with 

the expert system to determine the next question with a small set of rules. The data-driven 

system used the same features as the rule-based system, but instead selected the next 

question based on a reinforcement learning (RL) algorithm. The RL algorithm, q-learning, 

was trained on a sample corpus of 300 dialogs created through crowdsourcing and learned 

which questions to ask to most quickly learn the goal-relevant aspects of the meal.

We evaluated these four different chatbots comparing the length of conversations; we also 

assessed individuals’ perceptions of the strategy, coherence, naturalness, and usability of 

the different chatbots, by asking crowd workers to rate the conversations and complete a 

usability assessment in a survey study.

The results of the evaluation study suggest that each chatbot approach had distinct strengths. 

Principally, the RL chatbot succeeded in its intended purpose of completing conversation 

with the fewest number of questions asked. However, performance of the quality assessment 

was mixed across the four chatbots, which we discuss below.
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We expected the RL chatbot to be perceived as having a superior question-asking strategy 
because it accomplished the aim of shorter conversations on average. However, the scripted 

and rule-based chatbots were rated as having a better strategy, depending on the goal; in 

contrast, the RL chatbot was never rated higher on its strategy. In addition, considering all of 

the non-scripted dialogs (which varied in length) raters consistently assessed longer dialogs 

as more strategic compared to shorter dialogs. There are a number of potential explanations 

for this unexpected result. First, it is possible that longer dialogs may have allowed for a 

more gradual exploration of different properties of each meal, thus creating an appearance 

of a better strategy. Furthermore, individuals may have perceived the order of questions 

with the RL chatbot to be less intuitive compared to rule-based or scripted strategies. While 

RL-based dialog management did result in more efficient conversations, it may not have 

aligned with participants’ intuition on successful question-asking strategies. This aligns with 

research in conversational symptom checkers, which found that individuals dislike when 

questions are asked in a seemingly random or nonsensical order [66]. This is also consistent 

with arguments in clinical decision support that models and explanations ought to align with 

the way humans think about a problem to be adopted and trusted [8].

Considering how coherent the dialogs were, we expected the RL or rule-based chatbots to 

perform well, because the follow-up questions asked would be more specific to food items 

mentioned by the user. In contrast, the scripted chatbot’s responses not connected to the 

user’s previous replies, for example asking about fruit portions if the user said they had not 

eaten any fruit. However, we found mixed results, with either the RL or scripted chatbots 

rated as more coherent. It is possible that the consistent pattern followed by the scripted 

dialogs may have better aligned with rater’s expectations, making these dialogs read at times 

as more coherent than RL-generated ones.

We expected all of the dialogs to perform similarly on naturalness, with perhaps scripted 

dialogs being rated as more natural because there were no chances for small grammatical 

errors or unnatural phrasing that could occur in the conditions with dynamically generated 

responses from FoodNLU. We found that performance was mixed across all of the different 

goals, which was generally in line with our expectations.

Overall, the scripted chatbot performed surprisingly well across all the quality assessments. 

Importantly, however, while the rule-based and RL chatbots both collected necessary 

information and reached the stop criteria 100% of the time, the fully-scripted chatbot had 

several important limitations. First, it only succeeded in collecting information needed to 

assess goal attainment 65% of the time. In addition, in this evaluation study, participants 

were exposed to each type of dialog only once; while the scripted dialogs may have felt 

more natural in their first occurrence, they could be perceived as increasingly repetitive 

overtime, as compared to the more dynamic chatbots.

These findings have several implications for future design and research in conversational 

agents in health. First, they suggest that there exist trade-offs between different dialog 

models and that different models may be more or less appropriate in different circumstances.
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First, while the RL model was designed to minimize the length of dialogs, shorter dialogs 

were not consistently rated as higher in the assessed quality dimensions. This presents a 

potential tension between the empirical efficiency of a dialog management approach, and 

its perceived quality. Longer, more comprehensive dialogs, or dialogs where the questions 

are asked in a more intuitive order may have fewer benefits in the context of efficient 

dialogs for nutritional micro-coaching but may be advantageous for user experience in other 

contexts, for example in more general health coaching. Future research can more directly 

examine the relationship between dialog efficiency and perceived quality in different health 

contexts. This tension also suggests a particular direction for future research in RL for health 

chatbots. In this work, RL reward function considered only the length of conversations, 

but other approaches could incorporate additional components to the reward, for example 

considering the perceived user quality of resulting conversations in addition to the dialog 

length [40, 42]. To inform such a reward function, future work could more directly examine 

the relationship between conversation length and user perceptions of the chatbot, as well as 

considering the quality ratings from those with more coaching expertise. Alternatively, if the 

dialog management stays focused on dialog length, another approach could be to incorporate 

elements of explainable-AI to offer explanations for why the chatbot is asking a particular 

question [66].

Second, the choice of an approach to dialog modeling may be impacted by practical 

considerations as well. The RL-based chatbot in this study resulted in shorter conversations; 

however, it did require the use of crowdsourcing to create a dialog corpus to learn from. 

While the resources for such a corpus were relatively modest (about $200 per 100 dialogs), 

the data set was not necessary at all for the rule-based approach. Still, both approaches were 

relatively simple, considering only a small number of features about the meal in question. 

To scale up either approach, either a more complex rule-based system to handle more 

cases, or a more sophisticated RL algorithm, would require additional resources. For the 

rule-based system, expert input would be needed to craft the additional rules and features 

in a more complex system. More complex rule-based systems, for example for motivational 

interviewing, can require hundreds or thousands of rules [57], and expert input to create 

a large number of rules could be more resource intensive than crowdsourcing. In contrast, 

scaling up the RL algorithm with more features in the state space, or a more sophisticated 

algorithm may require an incrementally larger corpus to learn from [76], but there is no 

need for additional expert input. Because these results demonstrate the feasibility of using 

RL to manage follow-up question asking in dialogs, pursuing more complex RL approaches 

is a promising vein for future work. RL-based approaches also have the advantage of 

being able to continue to learn and adapt their approach once deployed [63], whereas a 

rule-based system would need to be explicitly redesigned and revised [46]. These results are 

consequential, in part, because little research has compared user perceptions of rule-based 

vs. data-driven dialog management systems side-by-side.

8.2 Alternatives to knowledge-based natural language understanding

In order to design a chatbot that can converse intelligently with users about their meals, 

we needed to integrate food-related knowledge. To this end, we designed and evaluated 

FoodNLU, a knowledge-based system for natural language understanding (NLU) of meal-
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related conversations. The system incorporated existing tools for named entity recognition 

(NER) of food items, as well as a food ontology (FoodOn), to tag foods with relevant 

attributes like their primary macronutrient, and whether they likely contained sub-foods 

within them. This representation was used to inform both a set of possible follow-up 

questions about the meal, as well as for a rule-based criteria to assess whether the meal was 

likely consistent with a nutrition goal.

This system was able to assess when there was sufficient information to determine if a meal 

was consistent with a goal with more than 80% accuracy, and was also 80% accurate at 

making predictions about whether meals were consistent with a health goal. These results 

suggest the feasibility of such an approach, which is generally in line with previous NLU 

systems for health-related chatbots [10, 24, 38, 49, 68], However, there are many potential 

directions to explore to improve the performance of FoodNLU.

Because FoodNLU was designed as a combination of existing resources, the performance 

of the overall system was limited by its component parts. For instance, the underlying 

knowledge base, FoodOn [19], could be expanded and refined to handle more types of 

food. An alternative approach could build on recent advances in data-driven NLP, for 

example leveraging the success of pre-trained language models like BERT [17] and GPT 

[6] as a starting point for a model to interpret user utterances and perform named entity 

recognition. Achieving high performance on food-related dialogs would likely require re-

training such models on nutrition, food, and health-related corpora, due to the amount of 

domain-specific knowledge, similar to BioBERT for biomedical text [39]. Additional work 

would be necessary to curate or create the necessary corpora for pre-training with coverage 

of domain-specific terminology.

There are also alternative approaches to meal logging that are not text-based, for example 

food photo diaries. Researchers have examined photo-based food logs as a lightweight 

approach to logging, but photos by themselves do not contain the features necessary to 

assess goal achievement [15, 20]. Considering the difference in performance across the 

three different goals, the results were not uniform — in particular the goal to “make 1/2 of 

my meal fruits and/or non-starchy vegetables” was less accurate. Since it is based on the 

visual plate proportions in the USDA MyPlate guidelines [67], a visual approach may be 

more successful for this goal. ML can be applied to food photos to detect component food 

items, or estimate nutrient values through comparison with other meal photos [32, 33, 45, 

74]. However, these systems are often inaccurate, or require additional database lookup and 

confirmation form users, which can increase the burden of logging. In addition, requiring a 

photo negates the ability to engage in meal planning, which the text-based micro-coaching 

approach facilitates. Once a meal is ready to eat, there’s less that can be done to help 

support changes in-the-moment. In addition, text-based approaches can connect explanations 

and feedback back to the exact words people used to describe their own meals, which 

could facilitate more understanding and learning than the food items detected from a meal 

image. Future work could directly compare text- and photo-based approaches for lightweight 

logging as input to micro-coaching support.
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8.3 Implications and future directions for micro-coaching

This research constitutes an initial step towards enabling a larger proposed vision for 

micro-coaching dialogs. The results suggest feasibility of AI-based approaches for the first 

component, assessing the consistency of a planned meal with a nutrition goal. Additional 

proposed components of micro-coaching include offering feedback based on the goal 

assessment, as well as support in the form of personalized suggestions to modify the plan.

Feedback was something that participants in all of the prior studies of this thesis expressed 

a keen interest for. This applied to feedback on achieving particular goals, as well as 

overall improvements to self-management and health outcomes. Feedback and explanations 

are also important part of learning [7]. Considering the theoretical foundations of health 

coaching, feedback helps to establish accountability, as well as an opportunity for education 

and increasing an individual’s nutrition knowledge [52, 73]. The rule-based approach to 

assessing meal dialogs against goals enables feedback with explanations as well, because 

the connection between each food item mentioned and the systems assessment is clear. 

Considering, for example, the goal to choose lean proteins, this would enable the system to 

explain to an individual that they did achieve their goal by eating “chicken breast without 

skin,” or that they did not because they ate “bacon.” Future work could explore additional 

ways of delivering feedback during micro-coaching conversations, and their impact on 

motivation and engagement.

Such an approach would also require nutrition knowledge, but of a different form. 

Specifically, knowledge of what foods go well with each other, how meals could be 

adjusted to be more consistent with a goal, as well as similar, alternative meals would 

all be useful. In addition, personalizing suggestions would necessitate a representation of 

the user’s preferences and context. Given these constraints, conversational recommender 
systems may offer a promising direction for future research. Conversational recommender 

systems are dialog systems that search among alternatives in a database (for example of 

restaurants or products) taking into account a user’s preferences across multiple sessions. 

Such an approach could be applied to a database of recommendations, and research in meal 

similarity and ingredient substitution could also be applied in crafting suggestions [27, 45, 

75].

While the focus of this research was Specifically on nutrition-related micro-coaching, 

the results have implications for chatbot design in health, healthcare, and coaching more 

broadly. A similar approach could be applied for goal assessment in other domains, like 

physical activity or medication adherence [13, 21]. To apply the approach to another 

coaching domain would require a knowledge base for the NLU component of the 

system. In addition, the findings related to user perceptions of dialogs generated by 

chatbots with different dialog management approaches has implications for researchers 

and designers interested in applying data-driven approaches like reinforcement learning 

for dialog management. The tensions between the length, efficiency, and perceived quality 

has relevance not just for coaching, but also for other areas like conversational symptom 

checking [66].
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8.4 Limitations

This work has notable limitations. The examination of micro-coaching considered a sample 

of only three nutrition goals. While these goals were chosen to be representative of a diverse 

set of nutrition goals, it’s possible that the findings and approach may not generalize to 

other nutrition goals. In addition, the assessments of quality and user experience come 

from lay-individuals reviewing complete dialogs from one of four chatbots. However, the 

perceived user experience from reading a completed dialog may not capture the perceived 

user experience of directly interacting with a chatbot, and may have limited the ability of 

the evaluation to detect meaningful differences in user experience. Finally, this study only 

focused on perceptions of the coaching chatbot, and not on their impact on individuals’ 

behaviors and health.

8.5 Conclusion

In this paper, we explored AI-methods for chatbot design, including the application of data-

driven, RL-based dialog management, which has rarely been applied in a health context, 

but may be necessary to enable more intelligent automated coaching interventions. Despite 

the success of the RL chatbot in enabling shorter conversations, its assessments on dialog 

quality were mixed. This suggests the need for additional research into ways to combine 

the efficiency of data-driven approaches with intuitiveness and transparency of scripted 

approaches to chatbots in health.
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APPENDIX

A. : SUPPLEMENTARY TABLES AND FIGURES

Table 10:

Script for the fully-scripted chatbot

Goal Question type Question text

Choose lean proteins what_else What else will you have with your meal?

any(lean protein) Will you have any lean proteins with your meal, like 
chicken breast or egg whites?

Eat no more than 2 portions of 
carbs (30g)

what_else What else will you have with your meal?

how_much(carbs) What portion of carbohydrates like rice, pasta, or 
bread will you eat? For example, one fist is about 
one cup

how_much(fruit) What amount of fruit will you eat? For example, one 
fist is about one cup

Make ½ my meal fruits and/or non-
starchy vegetables

what_else What else will you have with your meal?

how_much(fruit) What amount of fruit will you eat? For example, one 
fist is about one cup
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Goal Question type Question text

how_much(non-starchy 
veg)

What amount of non-starchy vegetables will you eat? 
For example, one fist is about one cup

how_much(protein) All fruit and vegetables have amounts?

how_much(carbs) What portion of carbohydrates like rice, pasta, or 
bread will you eat? For example, one fist is about 
one cup

Table 11:

Summary of stop criteria logic for each of the three goals.

Goal Stop criteria

Choose lean proteins [any(proteins) and none(ambiguously_fatty_protein)]
or
[none(proteins) and (n_food_items > 2) and asked_what_else]

Eat no more than 2 portions of carbs (30g) [any(carbs) and all(has_amount(carbs))]
or
[none(carbs) and (n_food_items > 2) and asked_what_else]

Make ½ my meal fruits and/or non-starchy 
vegetables

[all(has_amount(fruit_veg)) and all(has_amount(non_fruit_veg))]
or
[none(fruit_veg) and (n_food_items > 2) and asked_what_else]
or
[none(non_fruit_veg) and (n_food_items > 2) and asked_what_else]

Table 12:

Error types, examples, and counts from the error analysis of the natural language 

understanding (NLU) system

Label type Error type Examples Count

Enough information to assess 
meal/goal achievement

Unasked drill-down 
question

•Amount of fruit in a smoothie (Carb and 
Fruit/Veg goals)

4

Disagreement about food 
item attribute

•Soy milk (Lean proteins)
•Milk (Carbohydrate)

3

Nutritionix missing sub-
recipe

•System does not know that “Chicken 
noodle soup” contains “chicken” “noodles” or 
“vegetables”

1

Assumed amount of food 
items

•Assumed quantity of carrots and onions would 
be less than the amount of shrimp, lima beans, 
and corn already stated (3 cups)

1

Meal/goal achievement Differing amount 
estimates

•Is “1 cup of noodles” more or less than 30 
grams?

3
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Figure 12: 
Example crowdsourcing task to create crowdsourced dialogs.

B. : CROWDSOURCED CORPUS DESCRIPTIVE STATISTICS

Figure 13 and Figure 14 summarize the length of messages from crowd workers in the 

corpus, with word count and character counts. There is a diversity of response lengths, 

and importantly, all of the responses are fewer than 160 characters, suggesting they are a 

reasonable length for SMS messaging.

Figure 15 shows how the count of food items parsed by Nutritionix increases as 

conversations increase in length. The number of food items identified increases most after 

the first turn, and then gradually increases in subsequent turns.
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Figure 13: 
Histogram of crowd worker response lengths (word count)
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Figure 14: 
Histogram of crowd worker response lengths (character count)
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Figure 15: 
Box-and-whisker plot of the cumulative count of food items parsed by the depth of the 

conversation.

C. : SUPPLEMENTARY Q-LEARNING RESULTS

For the second goal (Figure 16), “Eat no more than 2 portions of carbs in each meal (30g)”, 

we similarly found that the RL agent would correctly favor asking “how much” questions to 

quantify the carbohydrate consent of the meal when at least one carbohydrate was present, 

but would instead search by asking “what else in” questions when no carbohydrates had 

been mentioned yet.
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Figure 16: 
Change in q-values over 150 training episodes for two different states, for the goal “Eat no 

more than 2 portions of carbs in each meal (30g).” Higher q-values suggest an action will be 

more valuable in a given state.

For the third goal (Figure 17), “Make 1⁄2 of my meal fruit and/or non-starchy vegetables”, 

we found a similar pattern: the RL agent learned to prioritize asking for amounts of fruits 

and non-starchy vegetables when at least one had been mentioned without an amount. If 

amounts were present for all fruits and vegetables, it would instead prioritize asking about 

non-fruits and non-vegetables, like carbohydrates and proteins.

Considering the state-space coverage for the first goal, “Choose lean proteins” (Figure 18), 

all states are well represented except for one: when only one food item has been mentioned, 

and it is a protein, but it is ambiguous. For example, the user stating “I’m eating chicken” 

would result in this state.

For the second goal, “Eat no more than 2 portions of carbs” (Figure 19), there is relatively 

low coverage for states with a large number of food items (3 or more), but none of them are 

carbohydrates.

The third goal “Make ½ my meal fruits and/or non-starchy vegetables” (Figure 20), has a 

considerably larger state space than the other two goals. Coverage was spotty when there 

were two food items identified, and exactly one was a fruit/vegetable and the other was 

non-fruit/vegetable. For example, “an apple and peanut butter,” or “chicken and broccoli” 

would be examples of meal descriptions with low coverage in the corpus.
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Overall, these results suggest reasonable coverage, with the caveat that if some states appear 

in the test set, q-learning may not have had the opportunity to learn reasonable q-values for 

that state.

Figure 17: 
Change in q-values over 150 training episodes for two different states, for the goal “Make ½ 

of my meal fruit and/or non-starchy vegetables.”
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Figure 18: 
State space coverage for “Choose lean proteins” The x-axis is labeled with the value tuples 

for the 3 state features: (n_food_items, any_protein, all_protein_non_ambiguous)
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Figure 19: 
State space coverage for “Eat no more than 2 portions of carbs” The x-axis is labeled with 

the value tuples for the 3 state features: (n_food_items, any_carbs, amt_carbs_all)

Figure 20: 
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State space coverage for “Make ½ my meal fruits or non-starchy vegetables” The x-axis 

is labeled with the value tuples for the 3 state features: (n_food_items, any_fruit_veg, 

any_non_fruit_veg, amt_fruit_veg_all, amt_non_fruit_veg_all)
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CCS CONCEPTS

• Applied computing → Life and medical sciences; Consumer health; • Theory of 
computation → Theory and algorithms for application domains; Machine learning 

theory; Reinforcement learning; • Computing methodologies → Artificial intelligence; 

Natural language processing; Artificial intelligence; Distributed Artificial intelligence; 

Intelligent agents.
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Figure 1: 
A common chatbot architecture separates natural language understanding and generation 

from dialog management
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Figure 2: 
Proposed structure for micro-coaching dialogs.

Mitchell et al. Page 41

Proc SIGCHI Conf Hum Factor Comput Syst. Author manuscript; available in PMC 2022 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Outline of the process of parsing meal descriptions from input dialog utterances.
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Figure 4: 
Study design for the evaluation of the natural language understanding (NLU) system. Two 

dietitians assessed 10 dialogs each, 5 dialogs that reached the stop criteria and 5 that did not.
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Figure 5: 
Comparison of change in q-values over training between two different states in offline 

learning with simulated data. Higher q-values suggest an action will be more valuable in a 

given state. The only difference between the two states is whether any proteins have been 

mentioned by the user — any_protein is equal to 1 on the left and 0 on the right. If a protein 

has been mentioned, then most valuable action per the simulation is to ask “what kind” of 

protein to determine if it’s fatty or lean. The graph on the left shows that the q-value for 

“what kind” questions (green) quickly becomes the most valuable after a few dozen training 

episodes. In contrast, when there are no proteins mentioned yet, as on the right, that question 

is not valuable and instead asking “what else” to find addition food items that might be 

proteins should be more valuable. The graph on the right shows that the q-value for “what 

else” questions quickly and appropriately becomes the most valuable action for that state.
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Figure 6: 
Change in q-values over 200 training episodes for two different states, for the goal “Choose 

lean proteins.” The high q-values for “what kind” and “what else” questions on the right- 

and left-hand graphs, respectively, mirror the patterns found in the simulated data set, as 

shown in Figure 5
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Figure 7: 
Change in q-values over 200 training episodes for the goal “Choose lean proteins,” when 

only two foods are mentioned and one is a protein. In this state, even though there is an 

ambiguous protein to as a follow-up “what kind” question about, the q-values reward asking 

“search” questions like “what else is in <x_food_item>”, demonstrating a balance between 

valuing “search” and “drill-down” question types.

Mitchell et al. Page 46

Proc SIGCHI Conf Hum Factor Comput Syst. Author manuscript; available in PMC 2022 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Side-by-side comparison of chatbots with multiple dialog management approaches for the 

same starting meal description for the goal to “Eat no more than 2 portions of carbs (30g).” 

The Random chatbot dialog (a) continues for 2 more turns, and is longest of the four dialogs. 

The Scripted dialog (b) consistently asks the same 3 follow-up questions for every meal, 

based on the user’s goal. In this example, the Rule-based (c) and RL (d) dialogs include 

similar follow-up questions, with the exception that the rule-based dialog includes at least 

one “Search” question (“What else will you put in your cereal?”), whereas the RL chatbot 

does not. Note that while the dialogs start with the same seed meal description, each dialog 

is continued by a different crowd worker, so the final description of meals diverge by the end 

of each dialog.
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Figure 9: 
Illustration of the pairwise comparison task to evaluate dialog quality. A and B are dialogs 

generated from two different chatbots, for the same seed meal description.
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Figure 10: 
Box-and-whisker plot comparing the number of conversational turns per dialog across the 

four chatbot conditions. Reinforcement learning (RL) dialogs were the shortest, followed by 

rule-based, scripted and random. **p<0.01; ***p<0.001, ****p < 0.0001
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Figure 11: 
Average user experience scores across the four chatbot conditions, measured with the 

Subjective Assessment of Speech Systems Interfaces (SASSI; [28]) indicate no detectable 

differences in perceived user experience across the four chatbots.
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Table 4:

Average accuracy of stop criteria from the rule-based system with expert registered dietitian (RD) annotations

Goal Accuracy

All goals 83%

Choose lean proteins 95%

Eat no more than 2 portions of carbs (30g) 80%

Make ½ my meal fruits and/or non-starchy vegetables 75%
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