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Abstract

The aperiodic exponent of the EEG power spectrum has received growing attention as 

a physiological marker of neurodevelopmental psychopathology, including attention-deficit/

hyperactivity disorder (ADHD). However, its use as a marker of ADHD risk across development, 

and particularly in very young children, is limited by unknown reliability, difficulty aligning 

canonical band-based measures across development periods, and unclear effects of treatment in 

later development. Here we investigate the internal consistency of the aperiodic EEG power 

spectrum slope and its association with ADHD risk in both infants (n=69, 1-month-old) and 

adolescents (n=262, ages 11–17 years). Results confirm good to excellent internal consistency 

in infancy and adolescence. In infancy, a larger aperiodic exponent was associated with greater 

family history of ADHD. In contrast, in adolescence, ADHD diagnosis was associated with a 

smaller aperiodic exponent, but only in children with ADHD who had not received stimulant 

medication treatment. Results suggest that disruptions in cortical development associated with 

ADHD risk may be detectable shortly after birth via this approach. Together, findings imply a 

dynamic developmental shift in which the developmentally-normative flattening of the EEG power 

spectrum is exaggerated in ADHD, potentially reflecting imbalances in cortical excitation and 

inhibition that could contribute to long-lasting differences in brain connectivity.
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Diagnosis of mental health disorders continues to rely solely on behaviorally-rated lists 

of symptoms rather than other types of physiological or biological markers. Attention-
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deficit/hyperactivity disorder (ADHD) is emblematic. Despite substantial heritability and 

a conceptualization of ADHD as a neurodevelopmental condition, no reliable biomarkers 

for ADHD yet exist. Indeed, the term biomarker is itself controversial, with debate about 

its appropriate definition (Lenzenweger, 2013), difficulty applying the term in the context 

of shifting behaviorally-based “gold standards” for diagnosis (Prata, Mechelli, & Kapur, 

2014; Venkatasubramanian & Keshavan, 2016), and questions about the appropriate and 

ethical use of biomarkers in the fields of psychiatry and psychology (Singh & Rose, 2009). 

Here, we use the term biomarker to mean a physiological marker that is probabilistically 

associated with liability or risk for psychological disorders. Thus, while it may not yield 

definitive classification, a biomarker may be used to aid in clinical prediction or as 

part of a probabilistic algorithm for diagnosis. Because ADHD is a neurodevelopmental 

disorder with liability in early life, identifying biomarkers that can be used to estimate 

that risk and aid in clinical prediction can facilitate early prevention efforts— potentially 

preventing onset or minimizing long-term severity (Jaffee, 2018). During later childhood 

and adolescent development, physiological measures have the potential to not only aid 

diagnostic algorithms, but also to act as predictors of treatment response or of differential 

clinical courses. Thus, theoretically-motivated and objective markers for ADHD that can be 

measured across a wide developmental span are needed.

Electroencephalogram (EEG) measures are ideal for these purposes in that they are low cost, 

non-invasive and relatively easily obtained across a wide developmental range and in both 

clinical and non-clinical groups (Kappenman & Luck, 2016). Crucially, they are portable 

and field-deployable for clinical care as well. The application of EEG measures across 

development, and particularly in very young children, is limited by both unknown reliability 

and difficulty aligning canonical band-based measures across development periods (Bell & 

Cuevas, 2012; Saby & Marshall, 2012). Here we address that issue by investigating internal 

consistency of a novel EEG feature— the aperiodic exponent of the EEG power spectrum— 

and its association with ADHD risk in both infants and adolescents.

Establishing internal consistency is a limitation for all putative neural and physiological 

biomarkers for psychopathology. Similar to the way that internal consistency of self-report 

measures is related to the number of items on a questionnaire, the internal consistency of 

EEG-based markers depends, in part, on the number of data segments retained for averaging. 

Thus, both the length of the task (total segments) and data quality (usable segments) 

influence internal consistency. Internal consistency is an important psychometric property 

for neurophysiological biomarkers. In these cases, we expect high internal consistency 

because the same neurological processes should generate the signal across relatively short 

recording periods. If the underlying physiological signal itself is not consistent then adding 

more data will not help: the average of unreliable data will not be reliable (Foti, Kotov, 

& Hajcak, 2013). Further, the internal consistency of the signal may differ across clinical 

groups and developmental periods, and needs to be established separately within each 

population of interest (Karalunas, Bierman, & Huang-Pollock, 2016; Towers & Allen, 

2009). Doing so here for the aperiodic exponent is therefore a potential a key step forward.
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Periodic features of neural power spectra

The EEG signal is comprised of periodic (oscillations) and aperiodic (offset, exponent) 

signals (Donoghue et al., 2020b). Psychopathology research has emphasized differences in 

the periodic features of the power spectrum using canonical frequency bands (e.g. theta, 

alpha, beta, etc.). Power in several of these canonical bands have good internal consistency 

in both resting-state and task-based designs from middle childhood through adulthood 

(Salinsky, Oken, & Morehead, 1991; Tomarken, Davidson, Wheeler, & Kinney, 1992), 

including in clinical populations (Gold, Fachner, & Erkkilä, 2013; Lund, Sponheim, Iacono, 

& Clementz, 1995), but with somewhat lower reliability at the lowest and highest frequency 

ranges.

In ADHD, study of canonical frequency bands as biomarkers has yielded some progress, 

including evidence for imbalance of high versus low frequency activity (Barry, Clarke, 

Johnstone, & Brown, 2009; Loo et al., 2013; Newson & Thiagarajan, 2019) and low 

coherence in specific frequency ranges that are associated with differences in early life 

attention (Barry et al., 2011; Barry, Clarke, McCarthy, & Selikowitz, 2006; Barry et 

al., 2005; González et al., 2013; Whedon, Perry, Calkins, & Bell, 2016). Nonetheless, 

findings in older children and adults have been difficult to generalize to early life when 

the appropriate ranges for canonical frequency bands are difficult to define. In addition, 

internal consistency of the periodic features of the EEG signal may vary based on the 

specific definition of the frequency band that is used (Shackman, McMenamin, Maxwell, 

Greischar, & Davidson, 2010), so markers that are reliable in one developmental period may 

prove unreliable at other ages. Recent work in infants age 11–13 months suggests adequate 

internal reliability (α >.70) of some periodic EEG features (e.g., alpha band power and alpha 

asymmetry, Hill et al., 2020), but this work also highlights the challenges of determining the 

appropriate ranges for canonical bands in very young children.

Aperiodic features of neural power spectra

An alternative and complementary approach to characterizing the EEG power spectrum 

focuses on explicit parameterization of both periodic and aperiodic signals (Donoghue et al., 

2020b). The aperiodic EEG power spectrum is characterized by an exponential decrease 

in power across increasing frequencies— that is, power is highest in low frequencies 

and gradually decreases in higher frequencies. This decrease follows approximately a 

1/f distribution with the slope defined by the aperiodic exponent (i.e., χ in the 1/f^χ 
formulation). Aperiodic activity contributes power across frequencies. Oscillatory activity 

appears as “bumps” at specific frequencies where power rises above the aperiodic signal, 

(He, 2014; Freeman & Zhai, 2009). See Figure 1 for a visual depiction of the aperiodic and 

periodic activity for an exemplar resting-state EEG recording.

Approaches that quantify both aperiodic and periodic activity have at least two potential 

benefits. First, standard approaches to measuring oscillatory activity risk conflating 

differences in aperiodic activity with differences in oscillatory power (Donoghue, 

Dominguez, & Voytek, 2020a; Schaworonkow & Voytek, 2021)). We do not mean to imply 

that spectral work is not valuable, indeed, it has and will continue to be productive in 
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many contexts. However, ratio-based metrics such as those that have been of interest in 

ADHD may be particularly likely to be confounded by differences in aperiodic activity. 

Further, approaches that control for differences in aperiodic activity may be important for 

quantifying oscillatory activity in some cases (Ostlund et al., 2021b).

Secondly, and the main focus of the current study, the aperiodic exponent may be of interest 

in its own right. Animal and computational models suggests that this exponent reflects 

the ratio of excitation and inhibition in cortical circuits (Gao, Peterson, & Voytek, 2017) 

with a shift away from cortical inhibition reflected as a smaller exponent (flatter power 

spectrum). Individual differences in the aperiodic exponent have been speculatively linked 

to less efficient information processing due to increased “neural noise” that may underlie 

multiple forms of psychopathology (Voytek & Knight, 2015).

Another major benefit of an aperiodic exponent measure for studies of neurodevelopmental 

disorders is that is that it is readily measured at rest (so can be assessed even in extremely 

young infants) and that it treats the power spectrum as a continuous dimension rather 

than requiring a priori assumptions about specific bands of interest. Thus, it is related to 

differences in well-studied canonical bands but avoids some of the interpretive problems 

associated with them in young children. Perhaps for this reason, recent studies find that 

aperiodic features are better predictors of individual differences than periodic band measures 

(Demuru & Fraschini, 2020).

Developmental and clinical patterns in aperiodic activity

In typical development, there is a normative broadband “flattening” of EEG power spectra 

with age driven by changes in aperiodic activity and increases in some higher frequency 

bands (He et al., 2019; Schaworonkow & Voytek, 2021; Voytek & Knight, 2015). Recent 

work also identifies differences in the aperiodic exponent in ADHD (Robertson et al., 

2019) and other neurodevelopmental psychopathology such as schizophrenia (Peterson, 

Rosen, Campbell, Belger, & Voytek, 2017). In ADHD, there is emerging evidence that the 

power spectral slope is associated with ADHD generally, and with cognitive impairments in 

ADHD, specifically (Ostlund, Alperin, Drew, & Karalunas, 2021a; Pertermann, Bluschke, 

Roessner, & Beste, 2019; Robertson et al., 2019). However, the direction of these effects 

has been mixed. Studies in young children have identified steeper power spectral slope 

(Robertson et al., 2019), while those in adolescents have found a flatter power spectral slope 

(Ostlund et al., 2021a) but no study has simultaneously considered both age groups. Further, 

while differences have been observed in children as young as 3 years old (Robertson et al., 

2019), it remains unclear how early in development these disruptions emerge, and studies in 

even earlier developmental periods are needed (Schaworonkow & Voytek, 2021).

In addition, how group differences in the aperiodic exponent are related to treatment 

history is unclear. Some studies suggest that acute treatment with stimulants may normalize 

aperiodic activity (Pertermann et al., 2019) or that trait-like differences in aperiodic activity 

may only be present for stimulant-naïve children (Robertson et al., 2019). However, the few 

available studies have focused on early and middle childhood. Larger studies replicating 
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results and extending into adolescence are needed, particularly because earlier treatment 

with stimulant medication is confounded with symptom severity.

Finally, because the approach to characterizing aperiodic features of the power spectrum is 

new, very little is known about the internal consistency of these features. One recent study 

in typically-developing adults found good test-retest reliability of the aperiodic exponent 

(ICCs > .80; Pathania, Schreiber, Miller, Euler, & Lohse, 2021); however, results may 

not generalize to clinical groups, such as ADHD, or to earlier developmental periods. In 

addition, internal consistency has not been assessed.

Current Study

Here we examine internal consistency of the aperiodic exponent of the EEG power spectrum 

in two critical developmental periods: 1) early adolescence, when ADHD symptom courses 

often diverge, and 2) very early infancy (1-month-olds), when early risk prediction could 

critically inform early prevention efforts. To inform future work, we assess internal 

consistency with differing amounts of available data and in clinical and non-clinical groups 

(ADHD versus control in the adolescents and family history of ADHD versus no family 

history in the infants). We then test the relationship between the aperiodic exponent 

and ADHD— using ADHD diagnosis in the adolescents and a dimensional measure of 

ADHD risk based on family history in the infants. We expected good to excellent internal 

consistency in the adolescents and lower but adequate internal consistency in the infants, in 

line with findings for canonical frequency bands (using standard criteria of > 0.9= excellent, 

0.80–0.89= Good, 0.70–0.79= Adequate, and < 0.70= Poor). We also hypothesized that 

adolescents with ADHD would have a flatter power spectral slope (smaller exponent) than 

their typically-developing peers, consistent with earlier findings in a large subset of the 

sample here (Ostlund et al., 2021a). We sought to test whether this association differed 

based on lifetime treatment with stimulants which our prior study did not address. Finally, 

we examined whether an association between the aperiodic exponent and ADHD risk could 

be detected in very early development, but did not make predictions about the direction of 

association at this age.

Method

The current study relies on data from two different cohorts: 1) the Oregon ADHD 1000 

cohort (e.g., Karalunas, Gustafsson, Fair, Musser, & Nigg, 2019; Nigg et al., 2020) and 2) 

the Prenatal Environment and Child Health (PEACH) study of early development (Sullivan 

et al., 2015).

Oregon ADHD 1000 cohort

Participants were initially recruited into the longitudinal study between the ages of 7–11 

years using a community-based strategy based on public advertising and outreach. All 

children in the longitudinal study were invited to participate in an optional EEG testing visit 

at a single time point (Year 5, 6, or 8 of the larger study depending on the date of their 

initial enrollment). Two hundred and sixty-two (nADHD= 107) individuals between the ages 

of 11–17 years completed this optional EEG testing visit. A parent/legal guardian provided 
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written informed consent, and adolescents provided written assent for the study. Ethics 

approval was obtained from the Institutional Review Board at Oregon Health & Science 

University (OHSU).

ADHD Diagnosis.—All children underwent a thorough diagnostic evaluation at baseline 

that included: 1) parent/guardian and teacher standardized behavior rating scales: ADHD 

Rating Scale (DuPaul, Power, Anastopoulos, & Reid, 1998), Conners’−3 (Conners, 2008), 

Strengths & Difficulties Questionnaire (Goodman, 2001); 2) a semi-structured clinical 

interview: Kiddie Schedule for Affective Disorders and Schizophrenia; parent only (Puig-

Antich & Ryan, 1986); 3) behavior ratings of anxiety and depression: Multidimensional 

Anxiety Scale for Children (March, 2013) and Children’s Depression Inventory (Kovacs, 

2011); and 4) IQ and academic achievement screening: Wechsler Intelligence Scale for 

Children, 4th Ed., Vocabulary, Block Design, and Information (Wechsler, 2002) and 

Wechsler Individual Achievement Test, 2nd Ed. Word Reading and Math Reasoning 

(Wechsler, 2003). Using all available information, baseline diagnoses were made by a 

clinical diagnostic team that included a board-certified child psychiatrist with over 25 years 

of experience and a licensed child neuropsychologist with over 10 years of experience. Blind 

to one another’s ratings, they formed a diagnostic opinion based on all available information. 

Their agreement rate was excellent (ADHD diagnosis kappa=.88). Disagreements were 

conferenced and consensus reached. Cases where consensus was not readily achieved were 

excluded from the longitudinal study.

Diagnostic assessment was repeated at all years, including the year at which EEG was 

recorded. In addition to the diagnostic team assessments, total symptom counts were 

determined by combining parent (K-SADS) and teacher (ADHD-RS) report using an “OR” 

algorithm (Pelham, Fabiano, & Massetti, 2005). Following the DSM, final diagnostic groups 

were determined as follows: Individuals with ADHD were required to have ≥ 6 hyperactive 

or ≥ 6 inattention symptoms, as well as parent reported impairment on the K-SADS. 

Individuals in the control group were required to have ≤ 3 hyperactive, ≤ 3 inattention 

symptoms, and ≤ 4 total symptoms with no reported impairment.

Exclusion Criteria.—Children were excluded at baseline if they were prescribed long-

acting, non-stimulant psychotropic medications; had self-reported history of neurological 

impairment such as seizures or head injury with loss of consciousness; had a history of 

substance abuse; had prior diagnosis of intellectual disability, autism spectrum disorder, 

or psychosis; were currently experiencing a major depressive episode; or had estimated 

IQ < 70. Although adolescents who began treatment with non-stimulant medications after 

enrollment were allowed to continue in the longitudinal study, they were excluded from the 

EEG visit.

Stimulant Medication.—Adolescents taking stimulant medication at the time of EEG 

assessment were asked to do a 24- or 48-hour washout (depending on the half-life of the 

medication prescribed), which was verbally confirmed with the family at the start of the 

visit.
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PEACH Cohort

Pregnant women (N=300) ages 18–40 who were less than 24 weeks gestation were recruited 

through OHSU, a major academic medical center located in Portland, Oregon. Patients 

receiving prenatal care through OHSU and its affiliated clinics were identified via electronic 

medical records and were contacted via email or telephone to assess interest and eligibility. 

When available, women’s medical records were reviewed for exclusionary conditions prior 

to contact, to minimize participant and staff burden. Participants were also recruited via 

fliers located on the OHSU campus and via social media ads targeting women living in the 

greater Portland metropolitan area. In recruiting, prioritization was given to patients who 

planned to give birth at OHSU to facilitate the collection of delivery tissue for the larger 

project.

All families were invited to participate in an additional, optional visit where EEG was 

collected when their child was 1-month-old (mean = 6.08 weeks, SD = 1.67 weeks). A 

total of 69 families agreed to participate in the optional EEG visit before data collection 

was halted at the onset of the COVID global pandemic. Because the longitudinal study is 

ongoing, the total N here reflects 73% agreement rate for eligible participants.

Exclusion Criteria.—All participants were screened for eligibility via telephone. 

Exclusionary criteria included being pregnant with multiples, known fetal anomaly or 

genetic condition that may influence child brain development or behavior, current substance 

use (illicit drugs, tobacco, alcohol, marijuana), and current use of medications that may 

influence inflammation (e.g., systemic corticosteroids) or that have known or suspected 

teratogenic effects. Women with a history of recurrent pregnancy loss in the second or third 

trimester and those who conceived their child using a donated oocyte were also excluded. 

To best serve the study’s overarching goal of examining the influence of maternal perinatal 

nutrition, adiposity, and metabolic state on child behavior, medical conditions that might 

affect inflammation or be confounded with obesity were also exclusionary criteria. This 

included a current diagnosis of Diabetes Type I/II, Cancer, Kidney Disease, Polycystic 

Ovarian Syndrome (as confirmed by hyperandrogenism or a history of medication used to 

treat the condition), and autoimmune diseases (e.g., Crohn’s disease).

ADHD Family History.—Parents reported on family history of ADHD (either suspected 

or diagnosed) in biological parents, full and half siblings, biological aunts and uncles, and 

grandparents. A weighted ADHD Family History variable was calculated according to the 

follow equation: ADHD Family History = (# first degree relatives with ADHD/ total # first 

degree relatives)*.5 + (number second degree relatives with ADHD/ total # second degree 

relatives)*.25. For the current analyses, both diagnosed and suspected cases were counted as 

ADHD.

EEG recording procedures

EEG was recorded with either 32 (infant n= 69 and adolescents n= 168) or 64 (adolescent n= 

96) Ag-AgCl active electrodes placed based on an extended international 10–20 system 

using an Easycap (Easycap GmbH; configurations available at https://www.easycap.de/

author/easycap/). The EEG signal was amplified with Brain Products’ ActiCHamp system 
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and digitally recorded at 500 Hz using PyCorder v1.0.9. Impedance levels for each electrode 

were at or below 50kΩ during data collection. EEG was referenced online to the central 

midline electrode site (Cz).

Oregon ADHD 1000 EEG Recording.—Participants completed a resting baseline EEG 

recording as the first task in a longer laboratory protocol. EEG was continuously recorded 

during an eight-minute baseline task, which was divided into four two-minute blocks. 

Adolescents were instructed to keep their eyes open (EO) on two of the blocks during which 

they looked at a central fixation cross presented on a computer monitor and to keep eyes 

closed (EC) for the other two blocks. Blocks alternated between EC and EO conditions (EC, 

EO, EC, EO).

PEACH EEG Recording.—EEG data were recorded for 3 minutes. All infants were 

awake at the time of recording. They were held by their mothers facing away from the parent 

in most cases; however, when this position caused the infant to be distressed, parents were 

able to turn their child to face them or to a side-facing position. Parents were encouraged to 

remain quiet and still for the duration of recording while holding their child.

EEG data processing

EEG data were down sampled to 250 Hz and re-referenced to the average of all 

electrodes offline. Adolescent data were cleaned and processed using EEGLAB and 

ERPLAB (Brunner, Delorme, & Makeig, 2013; Lopez-Calderon & Luck, 2014) toolboxes 

in MATLAB. Infant data were preprocessed using identical procedures in Brain Vision 

Analyzer (v. 2.2.0, 2019), except where noted.

All data were filtered with an infinite impulse response bandpass filter with a half-amplitude 

cutoff of 0.1 Hz and 50 Hz, and a 12 dB/octave roll-off to the data. An independent 

components analysis was used to correct eye blink artifacts in adolescents. The data were 

segmented into 2-second non-overlapping epochs. Epochs were discarded from the analyses 

if they contained baseline drift or movement artifacts greater than 90 μV in the adolescents 

and 100 μV in the infants. Individual channels were interpolated if greater than 20% of 

epochs were flagged after artifact rejection. A Hanning window was applied and all artifact 

free 2-second epochs were analyzed using a fast Fourier transform (FFT). Power output 

(μV2) was generated in 0.5Hz bins from 2–50 Hz for adolescents and 1–30Hz for infants for 

each epoch.

Analytic Approach

Aperiodic exponent.—EEG power spectral features were parameterized using the 

specparam algorithm (version 1.0.0), an automated algorithm that disentangles periodic 

and aperiodic signals, although periodic activity was not considered in the current study. A 

detailed description of the specparam algorithm (see Donoghue et al., 2020b) and tutorials 

for use (Ostlund et al., 2021b) are available elsewhere.

We extracted aperiodic exponents from the 2–50 Hz frequency range for the adolescent 

data and 1–30 Hz frequency range for the infant data. Age-specific frequency ranges were 
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selected to adhere to recommendations to fit the models over broad frequency ranges and 

to conform to prior studies. Prior research in children and adolescents has calculated the 

aperiodic exponent over 2–50 Hz range (Ostlund et al., 2021a; Robertson et al., 2019; 

Waschke et al., 2021). In infants, low frequency activity is dominant and concerns with 

muscle contamination at high frequencies are greater. Consistent with the only other study 

in very early development (Schaworonkow & Voytek, 2021), we parameterized the exponent 

from 1–30 Hz for infants.

For both infants and adolescents, the following spectral parameterization parameters were 

used: aperiodic_mode = ‘fixed’; peak_width_limits = [1, 8]; max_n_peaks = 6; default 

settings otherwise. Aperiodic exponent was calculated at each electrode site then all sites 

averaged to provide a grand average value across the scalp. Figure 2 shows scalp variation 

in exponent values. (Note that this approach differs from the approach used in our prior 

analyses in the adolescent sample; Ostlund et al., 2021, in which aperiodic slope was 

calculated at a single electrode site— Cz. We address these differences the Discussion.) 

In analyses reported here, slope estimates for adolescents did not differ based on whether 

recording was with 32 or 64 electrodes (EC p = .11, EO p = .73). This is perhaps not 

surprising. Unlike neural oscillations, the putative generator of aperiodic activity is not 

known to be locally defined. As such, researchers vary in the number of electrode channels 

considered in their analyses, ranging from a single site (Immink et al., 2021) to data 

averaged within a region (Cellier, Riddle, Petersen, & Hwang, 2021; Pertermann et al., 2019; 

Robertson et al., 2019) and across the scalp (Donoghue et al., 2020a; He et al., 2019; Molina 

et al., 2020). There are currently no specific recommendations regarding the number of 

channels to include when parameterizing aperiodic activity, and the selection of electrodes 

will ultimately depend on the recording context and questions of interest (e.g., in task-based 

studies of specific processes versus resting state recordings).

Internal Consistency.—We assessed reliability of the aperiodic exponent with 15 

seconds to 2 minutes of available data for infants and 1–3 minutes of available data 

in adolescents. To assess effects of available data on internal consistency, we used a 

bootstrapping procedure similar to Towers & Allen (2009). First, for each participant with 

the minimum necessary data available, epochs were randomly selected from all available 

epochs. The randomly selected epochs were then split in half and the specparam algorithm 

described above was run on each half to obtain two estimates of the aperiodic exponent (one 

from each half of the data). This procedure was repeated 500 times. Scripts used to perform 

these analyses have been posted on OSF at: https://osf.io/hqyue/.

We next concatenated each participant’s 1st bootstrap runs into a single dataset and 

computed the Pearson’s correlation between the halves, then repeated this procedure 500 

times (once for each bootstrap run). The resulting 500 Pearson’s r values were converted 

to Fisher’s z values, averaged, then converted back to Pearson’s r, and corrected via 

the Spearman-Brown prophecy formula. This approach yielded an average estimate of 

internal consistency along with an estimate of the standard deviation across runs. Estimates 

were derived separately for 1) eyes-open condition for adolescents with 32-channel data, 

2) eyes-closed condition for adolescents with 32-channel data, 3) eyes-open condition 

for adolescents with 64-channel data, 4) eyes-closed condition for adolescents with 64-
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channel data and 5) infants. To test for differences in reliability between clinical groups, 

the continuous family history of ADHD variable (infants) or current ADHD diagnosis 

(adolescents) was included as a moderator.

Relationship to ADHD.—The relationship between either ADHD family history (infants) 

or current ADHD diagnosis (adolescents) was tested using standard regression approaches 

implemented in MPLUS v.8.5 (Muthén & Muthén, 1998–2020) with full information 

maximum likelihood procedures used to handle missing data and the robust maximum 

likelihood (MLR) estimator to handle non-normality of data. For the adolescent sample, 

we also tested whether lifetime history of treatment with stimulant medications as reported 

by parents moderated the relationship between current ADHD status and the aperiodic 

exponent. The exponent value for these analyses was estimated based on all available data 

for each person. Infant analyses were restricted to children with at least 30 seconds of 

available data. Sex, income, and age at EEG based on expected due date (infants) or age in 

months (adolescents) were used as covariates in analyses.

Results

Descriptive information for both samples is provided in Table 1. All reliability estimates are 

provided in Table 2 and shown in Figure 3.

Reliability of adolescent data.

Estimates of the aperiodic exponent showed excellent reliability, 0.97 or greater in all 

cases. Notably, all of the adolescents in our sample had at least 1 minute of available data 

and nearly 90% had at least 2 minutes (95% of those with 32-channel data and 89% of 

those with 64-channel data). Internal consistency of the aperiodic exponent was excellent in 

adolescents at amounts of data that are readily obtainable at this age, even in clinical groups. 

Reliability was not moderated by current ADHD diagnosis (β = .002, p = .394).

Reliability of infant data.

As expected, internal consistency of the infant aperiodic slope was lower than for the 

adolescents; however, internal consistency was still good for all amounts of available data 

(range 0.82–0.87). Reliability increased with 30 seconds versus 15 seconds of data (.82 

versus .84). There was no additional improvement in reliability when going from 30 seconds 

to 1 minute of recording (both rs = 0.84) but reliability again increased when 2 minutes of 

data were available (r = .87). Reliability was not moderated by family history of ADHD (β = 

−.08, p = .176).

Relationship to ADHD Diagnosis in Adolescents.

Consistent with prior findings in a subset of this adolescent sample, adolescents with a 

current ADHD diagnosis had a smaller exponent (flatter power spectrum) than those without 

ADHD (β = −.29, p = .002). However, this relationship was moderated by history of 

stimulant medication treatment (β =1.3, p = .007). Children with ADHD and no history of 

stimulant treatment had smaller exponents than their non-ADHD peers. In contrast, children 
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with ADHD who had been treated with stimulants did not differ from their non-ADHD 

peers. Figure 4 shows these effects.

Relationship to ADHD Family History in Infants.

In the 1-month-old infants, the aperiodic exponent was significantly related to the 

dimensional measures of ADHD family history (β = .39, p = .010). In contrast to 

the adolescents, among infants, a larger aperiodic exponent (steeper power spectrum) 

predicted higher ADHD family history scores. Figure 5 shows the association, and Figure 6 

schematically depicts the developmental trend from steeper to flatter spectral slope, which 

we address further in the Discussion.

Discussion

EEG-recorded measures of brain activity are ideal as candidate biomarkers due to the low 

cost, ease of clinical translation, and applicability across a wide range of development. The 

aperiodic exponent of the EEG power spectrum has received growing interest as a marker 

of neurodevelopmental psychopathology, including ADHD (Mamiya, Arnett, & Stein, 2021; 

Ostlund et al., 2021a; Voytek & Knight, 2015). Here, we demonstrate for the first time 

that the aperiodic exponent has good to excellent internal consistency in both infancy and 

adolescence. We further demonstrate that the aperiodic exponent is associated with ADHD 

risk in children as young as 1-month-old and this association persists (yet reverses) through 

adolescence in untreated children with ADHD.

High internal consistency is an important psychometric property for candidate biomarkers. 

While periodic activity in canonical frequency bands has adequate to excellent internal 

consistency across a wide age range (e.g., Hill et al., 2020; Towers & Allen, 2009), this 

is the first study demonstrating good or better internal consistency of aperiodic features 

of the EEG power spectrum at any age. Internal consistency in adolescents was excellent, 

even with relatively short recording lengths. Unsurprisingly, internal consistency was lower 

in infants than in adolescents, but even in the infant group internal consistency was good 

with modest amounts of available data. Reliability estimates for the aperiodic exponent are 

similar or better than those obtained for periodic EEG power spectrum measures at the same 

ages (Hill et al., 2020). Internal consistency was not moderated by ADHD in either the 

adolescents or infants, adding to its appeal as a putative marker for neurodevelopmental risk.

Adolescents with a current ADHD diagnosis had a smaller aperiodic exponent (flatter power 

spectrum) than those without an ADHD diagnosis. This finding is consistent with prior 

work in a large subset of the sample here, which identified the same pattern (Ostlund et 

al., 2021a). The effect observed here is larger than that observed in the prior analyses (β = 

−.29 versus −.16). Only a small number of subjects were added to the dataset, so the larger 

effect is most likely attributable to the averaging of multiple electrode sites in the current 

study versus the use of a single site (Cz) in the prior publication. The topographical maps in 

Figure 2 suggest that the aperiodic exponent is relatively smaller (flatter PSD) as it moves 

away from the midline of the scalp; however, this pattern appears similar across electrode 

montages, age groups, and clinical groups. Thus, averaging across electrodes may have 

increased reliability of the final exponent measure without sacrificing important localized 
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differences. Alternatively, it may be that the overall pattern of aperiodic activity across 

the scalp bears a stronger relationship to ADHD than aperiodic activity at the single Cz 

electrode. Future research focused on electrode selection for various types of studies will be 

important.

The relationship between aperiodic exponent and ADHD was specific to adolescents who 

had never received stimulant treatment. Results partially converge with at least one other 

recent study that also found differences in the aperiodic exponent specifically between 

stimulant naïve children with ADHD and controls (Robertson et al., 2019). Critically, in 

both studies children were on stimulant washout during EEG recording. Thus, results cannot 

be attributed to the acute effects of treatment and suggest that stimulant treatment may 

normalize the EEG power spectrum over the course of development, at least for some 

children. Such a finding would be consistent with studies showing long-term changes in 

brain structure and function with stimulant treatment using other brain imaging modalities, 

including small but provocative studies specifically showing normalization of aperiodic 

activity among individuals with schizophrenia (Molina et al., 2020) and ADHD (Pertermann 

et al., 2019) undergoing acute medication treatments.

Treatment of an excitatory/inhibitory imbalance, as reflected in the aperiodic exponent, 

during middle childhood may have the potential to normalize and optimize brain 

development in a way that mitigates neurodevelopmental risk. Critically, given the potential 

side effects and risk of stimulants, we do not intend to suggest stimulants as an appropriate 

intervention in very early development. However, other treatments may effectively lead 

normalization as well. For example, in a sample enriched for ADHD Sullivan and colleagues 

demonstrate that maternal omega-3 fatty acid levels may partially mitigate the effects 

of other early neurodevelopmental risk factors (Gustafsson et al., 2019). Future studies 

addressing similar dietary and other non-stimulant interventions, as well as developmental 

windows in which such effects might be most potent will be critical for informing treatment 

recommendations.

Although there is some convergence across studies that the aperiodic exponent of the EEG 

power spectrum differs between children with and without ADHD, the directions of effects 

have differed. Whereas here we observed a flatter power spectral slope (smaller aperiodic 

exponent) in adolescents with ADHD than in controls, Robertson et al. (2019) identified a 

steeper power spectral slope in stimulant-naïve ADHD children than in typical development 

at much younger ages (3–7 years-olds). Interestingly, the pattern of steeper spectral slopes 

identified in younger children is consistent with our own findings here that in very young 

infants (1-month-old) greater familial ADHD risk is also related to steeper (rather than 

flatter) power spectral slopes. Taken together, results suggest a dynamic disruption to 

patterns of cortical development. In ADHD, the normative pattern of broadband “flattening” 

of the EEG power spectrum (He et al., 2019; Schaworonkow & Voytek, 2021; Voytek & 

Knight, 2015) seems to be exaggerated. At younger ages, children with ADHD show an 

even steeper power spectral slope than would be expected. However, the power spectrum 

also flattens more rapidly across development than is typical, such that by early adolescence 

the power spectrum is flatter than would be expected. Figure 6 shows the cross-sectional 

decrease in exponent values with age in our sample (consistent with age-based flattening) 
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and a schematic representation of the cross-over trend we describe. This cross-over pattern 

implies not only that the direction of effect will differ based on age, but that at some 

points in development (i.e., during cross-over) groups may not be distinguishable using the 

aperiodic exponent.

Recent evidence from animal and computational models suggests that the aperiodic 

exponent reflects the relative balance of cortical excitation and inhibition (Gao et al., 

2017). This excitatory/inhibitory balance undergoes rapid changes starting very early in 

development (Zhang, Jiao, & Sun, 2011). A smaller aperiodic exponent is thought to index 

a relative shift towards cortical excitation, consistent with studies in older children with 

ADHD that show reduced GABA and increase glutamate concentrations in motor and 

prefrontal cortical regions, respectively (for recent review see Mamiya et al., 2021). This 

pattern is consistent with the flattened ADHD power spectrum observed here in adolescents. 

The current results suggest that early over-inhibition of cortical activity may shift to 

over-excitation in later development. Of course, the current results are cross-sectional, and 

additional longitudinal studies that span early childhood, adolescence, and into adulthood 

will be needed to confirm such developmental effects.

Although we focus on ADHD risk, excitatory/inhibitory imbalance and differences in the 

aperiodic exponent of the power spectrum have been observed in other neurodevelopmental 

disorders as well. Racz et al. (Racz et al., 2021) identified a trend towards shallower 

exponents in a small sample of adults with schizophrenia as compared to typically-

developing adults, and there is interest in whether disruptions appear in autism spectrum 

disorder (Levin et al., 2020). Crucially, as others have highlighted (Donoghue et al., 2020b; 

Mamiya et al., 2021; Voytek & Knight, 2015), the excitatory/inhibitory balance is critical 

for optimal synaptic plasticity and neuronal developmental, generally, and for maximizing 

signal to noise ratio in neural circuitry, specifically. Thus, one possibility is that early 

differences in the aperiodic exponent reflect a general neurodevelopmental risk factor that 

could contribute to genetic and phenotypic correlations among these disorders. An early 

general factor could also interact with other features to lead to disorder-specific symptom 

presentations in later childhood and adolescence.

Integrating the findings here with prior work using canonical frequency bands will also be 

important. Theta:beta ratio has been of particular interest in ADHD because of several early 

studies suggesting a higher theta:beta ratio in individuals diagnosed with ADHD compared 

to controls (Monastra et al., 1999). The empirical support for elevated theta:beta ratio in 

ADHD, however, has been inconsistent. The most recent meta-analysis of this literature 

(Arns, Conners, & Kraemer, 2013) and studies since the meta-analysis (Arns et al., 2018; 

Bussalb et al., 2019) primarily find no between-group effects for theta:beta ratio in ADHD. 

Critically, the vast majority of studies have used samples with large age ranges that span 

childhood through adolescence and have not taken into account lifetime history of stimulant 

treatment (Arns et al., 2013), both of which we find here to be critical.

Interestingly, when age effects have been considered, there are intriguing suggestions of the 

developmental reversal we suggest here. For example, Loo and colleagues (2013) found no 

difference in theta:beta ratios for children and adolescents, but the means suggested higher 
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theta:beta ratio for ADHD in childhood, consistent with the steeper aperiodic slope observed 

in our study. (Note lifetime history of stimulant use was not considered which may explain 

lack of significance.) In the same study, they also found that adults with ADHD had lower 

theta:beta ratios than controls, consistent with a flatter slope later in development. More 

recently, in a study including individuals ages 5–21 years-old Bussalb et al (2019) found that 

a subgroup of people with ADHD and high theta:beta ratio were significantly younger than 

those with normal or low theta:beta ratios (though representation at the extremes of their age 

range was too small to further characterize developmental effects). Thus, the results of the 

current study may align with and help clarify prior work using canonical frequency bands to 

study ADHD.

While the reported associations between the aperiodic EEG power spectrum in infancy are 

promising, they are based on a small sample that was not intentionally recruited for ADHD 

risk. Only a small number of infants had family history scores greater than zero. It is not 

unusual that large effects in small samples fail to replicate in larger samples. In addition, 

the infant sample had high family income (and a relatively restricted range of income). 

While the sample demographics overall reflected the local area, the majority of participants 

identified as white/Caucasian. The ADHD effects observed in the adolescents may be more 

robust in that they come from a larger sample; however, even in the adolescents, family 

income was relatively high. In the adolescents, even more participants identified as White 

compared to the infant sample. Both the small infant sample and the lack of income and 

racial representation limit the generalizability of the findings reported here.

Conclusion

The aperiodic exponent of the EEG power spectrum has received growing attention 

as a putative marker of neurodevelopmental psychopathology. Current findings confirm 

good to excellent internal consistency of this EEG feature in both very early infancy 

and adolescence, critical to its application as a biomarker for ADHD and other 

neurodevelopmental conditions. Further, results confirm a relationship between ADHD 

diagnosis and a flatter power spectrum in adolescence but only for children who have 

not received stimulant medication treatment. In contrast, a larger aperiodic exponent 

(indicative of a steeper power spectrum) was associated with family history of ADHD 

in very early infancy. Together results suggest a dynamic developmental shift in which 

the normative flattening of the EEG power spectrum is exaggerated in ADHD, potentially 

reflecting imbalances in cortical excitation and inhibition that could contribute to long-

lasting differences in brain connectivity. These disruptions in cortical development may be 

detectable shortly after birth via this approach.
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Figure 1. 
Parameterized adolescent EEG power spectrum from a single exemplar adolescent in an 

eyes-closed 32-channel resting state recording. In this example, two oscillatory peaks are 

identified with center frequencies at 9.37 Hz and 18.45 Hz. These peaks rise above the 

aperiodic signal (exponent = 1.63) that affects all frequencies.

Karalunas et al. Page 19

Dev Psychobiol. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
shows the variation in the aperiodic exponent across the scalp for adolescents (average of 

eyes-open and eyes-closed) and infants. Steeper exponents are observed in infants than in 

adolescents across the scalp. In general, exponents appear smaller as you move away from 

central midline sites. This effect appears similar across ages and diagnostic groups. Current 

analyses used an average of all electrodes. Additional consideration of how aperiodic 

exponents vary across the scalp will be important.
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Figure 3. 
shows the internal consistency estimates (Spearman-Brown corrected spilt-half correlations) 

based on 500 bootstrap samples with varying amounts of available data. Panel A shows all 

data and Panel B shows only the range >.95 in order to visualize differences at the upper end 

of the reliability dimension.
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Figure 4. 
shows group differences in aperiodic exponent estimates for typically-developing children, 

stimulant-naïve children with ADHD, and children with ADHD and a lifetime history of 

treatment with stimulants. Children with ADHD who had not received stimulant treatment 

had smaller aperiodic exponents (flatter spectral slope) than typically-developing children; 

children who had been treated with stimulants did not differ from typically-developing 

children.
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Figure 5. 
shows the linear relationship between the aperiodic exponent and a dimensional measure 

of ADHD family history. Greater ADHD family history scores were associated with higher 

aperiodic exponents (steeper spectral slope).
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Figure 6. 
shows cross-sectional age effects in our sample (panel A) and schematically represents 

the developmental trend implied by the current findings (panel B). Early in development, 

children at high risk for ADHD demonstrate steeper spectral slopes than their low-risk peers; 

however, the developmentally normative flattening of the spectral slope is exaggerated in 

the high-risk children, such that by adolescence, the ADHD group has flatter spectral slopes 

than their typically-developing peers.
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Table 1.

Sample Demographics

Typically-Developing (n = 152) ADHD (n=107) Infant (n=69)

Age (years/weeks; mean (SD))a 14.1 (1.3) 14.0 (1.4) 5.7 (1.6)

Sex (% male) 55.9% 72.3% 51.5%

Annual Family Income (median range) $75–100,000 $50–75,000 $100–199,000

 Median in lowest earning quartile $50–75,000 $25–35,000 $50–75,000

 Median in highest earning quartile $100–130,000 $75–100,000 $100–199,000

Ethnicity (% Hispanic/Latinx) 6.8% 6.30% 8.6%

Raceb

% American Indian/Alaskan Native 4.2% 0.9% 3.0%

% Asian/East Indian 5.9% 5.4% 12.1%

% Native Hawaiian/Pacific Islander 2.5% 1.8% 6.1%

% Black/African American 5.9% 11.6% 6.1%

% White 98.3% 94.6% 86.4%

Current Stimulant Treatment --- 53.6% ---

Lifetime History of Stimulant Treatment 7.60% 75% ---

Birthweight (kg; mean (SD)) --- --- 3.4 (0.5)

Family History Score (mean (SD)) --- --- 0.06 (0.15)

Note:

†
Adolescent sample age reported in years; infant sample age reported in weeks

‡
Sex assigned at birth is report; data on gender identity were not available for the Year of EEG data collection

§
Percentage of participants who identified with specific NIH race categories. Because some people endorsed more than one option, numbers may 

add to >100%.

Dev Psychobiol. Author manuscript; available in PMC 2023 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karalunas et al. Page 26

Table 2.

Internal consistency of Aperiodic Slope Exponents

Condition and Amount Available Data Mean r across bootstrap runs SD r across bootstrap runs N
†

Eyes closed - 32 - 1 minute available data 0.97 0.08 167

Eyes closed - 32 - 2 minute available data 0.98 0.09 159

Eyes closed - 32 - 3 minute available data 0.98 0.09 139

Eyes closed - 64 - 1 minute available data 0.97 0.10 95

Eyes closed - 64 - 2 minute available data 0.98 0.10 93

Eyes closed - 64 - 3 minute available data 0.99 0.12 79

Eyes open - 32 - 1 minute available data 0.97 0.08 166

Eyes open - 32 - 1 minute available data 0.99 0.07 162

Eyes open - 32 - 1 minute available data 0.99 0.08 143

Eyes open - 64 - 1 minute available data 0.98 0.09 95

Eyes open - 64 - 2 minute available data 0.99 0.09 92

Eyes open - 64 - 3 minute available data 0.99 0.09 82

Infant resting baseline - 15 seconds available data 0.82 0.18 42

Infant resting baseline - 30 seconds available data 0.84 0.22 30

Infant resting baseline - 1 minute data available 0.84 0.30 21

Infant resting baseline - 2 minutes data available 0.87 0.47 7

Note:

†
Number of channels varied between subjects for the adolescent sample (no children had both 32- and 64-channel recordings). Total N for each 

amount of available data can be obtained by adding Ns for the 32- and 64-channel conditions.
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