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Abstract

Objective: Imaging evaluation of the cerebral ventricles is important for clinical decision-making 

in pediatric hydrocephalus. While quantitative measurements of ventricular size, over time, 

can facilitate objective comparison, automated tools for calculating ventricular volume are not 

structured for clinical use. We aimed to develop a fully automated deep learning (DL) model 

for pediatric cerebral ventricle segmentation and volume calculation for widespread clinical 

implementation across multiple hospitals.
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Methods: The study cohort consisted of 200 children with obstructive hydrocephalus from 

four pediatric hospitals and 199 controls. Manual ventricle segmentation and volume calculation 

served as ground truth. An encoder-decoder convolutional neural network (CNN) architecture, 

using T2-weighted MRIs as input, automatically delineated the ventricles and output volumetric 

measurements. On a held-out test set, segmentation accuracy was assessed using Dice similarity 

coefficient (0 to 1) and volume calculation using linear regression. Model generalizability was 

evaluated on an external MRI dataset from a fifth hospital. DL model performance was compared 

against FreeSurfer (FS), research segmentation software.

Results: Model segmentation performed with an overall Dice score of 0.901 (0.946 in 

hydrocephalus, 0.856 in controls). The model generalized to external MRIs from a fifth pediatric 

hospital with a Dice score of 0.926. The model was more accurate than FS, with faster operating 

times (1.48 seconds per scan).

Conclusions: We present a DL model for automatic ventricle segmentation and volume 

calculation that is more accurate and rapid than current available methods. With near immediate 

volumetric output and reliable performance across institutional scanner types, our model can be 

adapted to the real-time, clinical evaluation of hydrocephalus and improve clinician workflow.
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Introduction:

Over 100 years ago, Walter Dandy reported the first technique for visualizing the cerebral 

ventricles in his seminal paper on pneumoencephalography1. Since then, imaging of 

the ventricles on computed tomography (CT) or magnetic resonance imaging (MRI) 

has become routine in caring for patients with hydrocephalus and other cerebrospinal 

fluid (CSF) abnormalities2. Ventricular access procedures, from placement of external 

ventricular drains to insertion of ventricular shunts, are some of the most common and 

critical neurosurgical interventions3,4. Changes in ventricular size and shape can help 

clarify a patient’s clinical status and thus guide neurosurgical decision-making. However, 

radiologists and neurosurgeons typically assess ventricular size by visual inspection alone. 

The evaluation of ventricular size, over time, is also complicated by differences in slice 

thickness, head angulation, and sequence type between different scans, which often limit 

direct comparison. Furthermore, linear estimates, such as frontal-occipital horn ratio, can 

be used to assess ventricle size but do not fully capture changes in ventricular volume5–7. 

Volume calculations, in turn, depend on segmentation of the cerebral ventricles, which is 

time-consuming and labor-intensive when manually performed. Nevertheless, consistently 

and accurately tracking ventricle volumes would significantly improve and standardize the 

life-long clinical management of patients with hydrocephalus.

Limited automated tools for ventricular segmentation exist, but they are primarily research 

software that is not well suited for real-time clinical use. They require volumetric 3D 

T1-scans with lengthier acquisition times, time-consuming image processing, and manual 
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quality control8–11. Additionally, most are tailored to healthy adult brains, and do not have 

high fidelity in pediatric brains or in brains with distortion, such as from an underlying 

tumor. Automated methods for evaluating pediatric brain substructures have also been 

limited to small cohorts8,12,13.

To address the clinical need for an efficient, reliable, and quantitative method to evaluate 

the cerebral ventricles, we developed a clinical tool to consistently evaluate ventricular 

volume, over time, for patients with hydrocephalus. We developed deep learning (DL) 

model using T2-weighted MRIs (T2-scans) because they are routinely obtained within many 

pediatric imaging protocols. We leverage a state-of-the-art 2D convolutional neural network 

(CNN) architecture, and trained the model on a multi-institutional dataset of patients across 

all pediatric ages, with anatomically normal brains as well as brains with obstructive 

hydrocephalus. Our results generalized to an external dataset not seen during model 

development. Finally, the DL model was faster and more accurate than FreeSurfer v.5.0 

(FS), a publicly available research software that can be used for subcortical segmentation.

Methods:

Cohort selection and study design

After Institutional Review Board approval at each institution, data use agreements were 

developed between the host institution (Stanford Lucile Packard Children’s Hospital) and 

four pediatric hospitals for this multi-center study. A retrospective review of patients with 

brain MRIs between 2002 and 2018 was used to identify patients less than 22-years old with 

posterior fossa (PF) brain tumors (Figure 1). The primary hydrocephalus cohort comprised 

of 200 patients with PF tumors causing obstructive hydrocephalus [host institution, n = 

50; Seattle Children’s Hospital, n = 75; The Hospital for Sick Children, n = 60; and 

Dayton Children’s, n = 15]. All patients were clinically symptomatic (headache, nausea 

or vomiting) with MRIs prior to tumor treatment. We included patients who had emergent 

external ventricular drain placement, but excluded patients who had undergone permanent 

shunting, third ventriculostomy, or tumor debulking prior to their first available MRI. From 

our database of neurologically normal children with negative MRIs, 200 scans from 199 

control patients were selected using random stratified sampling by age14. All patients had 

T2-scans. All controls and a subset of the hydrocephalus patients obtained 3D T1-weighted 

SPGR, MPRAGE, or BRAVO images (T1-scans). A board-certified neuroradiologist (KY, 

over 11 years’ experience) performed image quality control.

The study cohort (400 T2-scans) was divided into: training (266; 125 controls and 141 

hydrocephalus) and validation (67; 34 controls and 33 hydrocephalus) sets for model 

development and optimization, and a held-out test set (67; 29 controls, 38 hydrocephalus) 

for final evaluation of model performance. To further evaluate model generalizability, 

performance was prospectively tested on T2-scans from patients with hydrocephalus from 

a fifth institution (Utah Primary Children’s Hospital, n = 9). Scans from this independent 

institution were not used for model development.
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MRI acquisition

Across the five institutions, MRI was performed at either 1.5 or 3T using the following 

magnets: GE (GE Healthcare, Waukesha, WI); Siemens (Siemens AG, Erlangen, Germany); 

Philips (Philips Healthcare, Andover, MA); and Toshiba (Canon Medical Systems USA Inc., 

Tustin, CA). The T2-scans were: T2 TSE clear/sense, T2 FSE, T2 propeller, T2 blade, T2 

drive sense (TR/TE 2475.6-9622.24/80-146.048); slice thickness 1–5 mm with 0.5 or 1mm 

skip; matrix ranges of 224-1024 × 256-1024. The T1-scan protocol comprised: T1-SGPR, 

T1-BRAVO, or T1-MPRAGE, TR/TE 6.94-8.536/3.02-3.824, slice thickness 0.8–1.2 mm, 

matrix (256-512) x (256-512).

Ground truth labels

Manually segmentation of ventricles was performed on all axial slices by a neurosurgery 

resident (JQ) and a medical student (LK). Segmentations were reviewed by a board-certified 

pediatric neuroradiologist (KY). Ventricle segmentations began superiorly at the first axial 

slice with visible lateral ventricles and continued inferiorly to the foramina of Magendie 

and Luschka. The lateral, third, and fourth ventricles were segmented, including the choroid 

plexus. When visible, the subarachnoid cisterns and cavum pellucidum were excluded. For 

the hydrocephalus cohort, the visible ventricular system (including the fourth ventricle) not 

obliterated by the PF tumor was segmented. Manual segmentations were performed using 

ITK-SNAP software15.

Image processing and data augmentation

Axial DICOM images were pre-processed using the Python programming language. Skull 

stripping was not performed. Axial slices were resampled to 256 × 256 pixels. Data 

augmentation was performed by incorporating random rotations and flips.

Deep learning model architecture and training

We adapted a 2D U-net16, a state-of-the-art CNN architecture, to automatically segment 

the cerebral ventricles using T2-scans as input. Our model consisted of an encoder-decoder 

structure: an encoder maps a volume to an abstract low-resolution encoding, and a decoder 

expands this encoding back to a full-resolution segmentation image, which specifies the 

probability that each pixel in a slice is ventricle or not ventricle (Supplementary Figure 1). 

The encoder weights were adapted from a visual geometry group (VGG-11) architecture 

pre-trained on the ImageNet dataset, a consortium of over 1.2 million 2D images17. The 

model was trained to minimize Dice loss18 of the segmentation output. Training was carried 

out on four Titan Xp graphics processing units (NVIDIA Corp, CA).

FreeSurfer

After visual inspection of 3D T1-scans to parcellate the brain into tissue classes 

and derive quantitative estimates of volume, an automated, non-biased atlas-based 

Bayesian segmentation procedure, was applied in FreeSurfer (FS) v.5.0 (http://

surfer.nmr.mgh.harvard.edu/)19. FS preprocessing was performed using a previously 

published methodology19,20. Quantitative estimates of volume were derived for spatially 

distinct region of interests (ROIs), as specified in the Desikan-Killiany Atlas21. FS was run 
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using a central processing unit due to the lack of active support for graphics processing unit 

use.

Ventricular volume calculation

Ground truth volumes were derived from manual segmentations of the ventricles, 

whereas model predicted ventricular volume was calculated using the predicted ventricle 

segmentation mask. Ventricle volume was calculated by multiplying the segmentation 

area of each axial slice by the slice thickness and summing the contribution from all 

slices. Volume calculations included “skip” in scans of non-contiguous slices. For FS, 

ventricular volume was automatically calculated by the software using the FS-derived 

ventricle segmentation mask.

Statistical Analyses

Predicted ventricle segmentations were compared to ground truth using Dice similarity 

coefficient ([2 x true positives/(2 x true positives + false positives + false negatives)])18. 

Linear regression was used to evaluate volume calculations derived from T2-scans versus 

3D T1-scans, as well as predicted versus ground truth segmentations. Analysis of variance 

(ANOVA) was performed on a multiple regression of Dice score with cohort group, 

ventricular volume, and age as independent variables. Dice coefficients from FS and the DL 

model were compared using a paired two tailed t-test. Statistics calculations were performed 

using R version 3.5.1.

Results:

Study cohort

The control cohort (199 patients, 200 scans) ranged from 0 to 19-years old (median = 8), 

with 48.5% (n = 97) males. We visualized the ventricular volumes across ages to get an 

approximation of a normal population curve. In our cohort, dramatic increases in volume 

occurred during the first 50 months of life, with a plateau between four and eight years, after 

which volume increased until approximately 14-years old (Supplementary Figure 2).

The obstructive hydrocephalus cohort (n = 200) ranged from 0 to 22-years old (median = 

5) with 56% (n = 112) males. Twenty-seven hydrocephalus patients had emergent external 

ventricular drain placement prior to MRI due to clinical instability but continued to have 

imaging findings of hydrocephalus.

Calculation of ventricular volume on 3D-T1 is comparable to T2-scans

Three-dimensional T1-scans, with thinner slices and greater anatomic detail, have 

commonly been chosen for volumetric analysis. Given that T2-scans have wider clinical use, 

we demonstrate that ventricle volumes manually determined using T2-scans are comparable 

to manual calculations based on 3D T1-scans (Supplementary Figure 3). Despite the larger, 

and more variable slice thickness for T2-scans (2–6 mm) compared to 3D T1-scans (1 mm), 

volume calculations derived from the two sequences correlated closely (r2 coefficient = 

0.76).
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DL model performance

On a held-out test set of T2-scans, model segmentation was very accurate with an 

overall Dice score of 0.901. Segmentation and volume calculation was more accurate in 

hydrocephalus (Dice coefficient 0.946) versus control patients (Dice coefficient 0.856) (F 

= 375.4, p < 2.2 × 10−16) (Figure 2, Figure 3, videos 1 and 2). Within each group, model 

performance was better in patients with higher ventricle volumes (control: r = 0.39, p = 7.3 

× 10−9; hydrocephalus: r = 0.59, p < 2.2 × 10−16). Segmentation accuracy did not vary with 

age (F = 1.39, p = 0.24).

To further test the generalizability of our model, we evaluated segmentation accuracy on 

nine hydrocephalus patients from a fifth institution that was not used for initial model 

development. Accuracy was maintained even on this completely external test set (Dice 

coefficient 0.926, Figure 3). Model evaluation took 1.48 seconds per scan at the graphics 

processing unit level (projected to 25 minutes at the central processing unit level).

Comparison to FS

FS22 was used for ventricular segmentation and volume calculation on a subset of the 

held-out test set with available 3D T1-scans. Given only 12 hydrocephalus patients from the 

held-out test set had 3D T1-scans, we selected 11 age-matched controls to evaluate with FS. 

Ages ranged from several months to 13-years old for both groups (median = 7 in controls; 

6.5 in hydrocephalus patients). FS was only able to segment eight out of eleven control 

and nine out of twelve hydrocephalus 3D T1-scans, with processing errors generated on the 

remaining scans. Of scans that FS successfully processed, the Dice coefficients were 0.55 

for control and 0.86 for hydrocephalus 3D T1-scans (Figure 4, Figure 5). The DL model was 

more accurate for the exact same patients (Dice coefficients of 0.83 for controls (p = 6.4 × 

10−5) and 0.94 for hydrocephalus (p = 8.5 × 10−5)). Per scan, FS took 8.2 to 207.3 hours 

(median = 20.3) for ventricular segmentation and volume output, compared to 1.48 seconds 

per scan for the DL model.

Discussion:

In this study, we present a DL model to calculate ventricular volume for pediatric patients 

with and without obstructive hydrocephalus using T2-weighted MRIs. We trained and tested 

a state-of-the-art DL architecture on a large cohort of 400 patients from four different 

hospitals, representing the largest study of its kind to date. Our heterogeneous imaging 

dataset consisted of scans from geographically distinct institutions, as well as multiple 

scanner vendors and magnet strengths. To simulate clinical implementation and evaluate 

model performance at an entirely new venue, we prospectively applied our model to a fifth 

institution that made no contributions to model development. Our model could therefore be 

reliably implemented across MRI scanners without degradation of its performance.

Pediatric hydrocephalus has a prevalence of approximately 6 in 10,000 live births, and 

up to half of shunted patients experience shunt malfunction within the first year of 

placement23,24. Children with shunted hydrocephalus therefore undergo numerous imaging 

studies for routine surveillance and clinical evaluation, but these are not always directly 
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comparable depending on the slice thickness, head angulation or rotation, and sequence type 

of each scan. For patients with shunts, ventricular monitoring would undoubtedly benefit 

from an objective, consistent, quantitative method for gauging ventricular volume change 

or stability over time25. Yet, manual ventricle segmentation is cumbersome, and current 

automated methods are time-consuming and require significant oversight8–10,26–28. These 

methods have included explicit handcrafted feature extraction to segment specific tissue 

types, with additional human input for regions of interest, coregistration of reference atlases, 

thresholding, or further parameter modifications8–10,26–28. Other research segmentation 

tools, including FS, have been applied mostly to small cohorts of healthy adult volunteers, 

and have not been validated for use in children7,22,27–31. Additionally, these approaches have 

relied on volumetric 3D T1-scans, which take more time to acquire and are not routinely 

collected in the clinical setting.

While there have been reports of pediatric brain segmentation, particularly in neonates, these 

studies have also been limited to small cohorts of healthy subjects8,12,26,32. Most have also 

required significant manual input, relied on predetermined intensity and spatial information, 

used tissue probability mapping, or atlas-based approaches8,12,13,26,32. These methods limit 

their applicability across institutions, where variations in magnet field strength and imaging 

protocols can create bias in volume measurements33. Their fidelity is also largely unknown 

in cases where brain pathology causes significant deformation and limits spatial registration, 

such as in patients with tumors or ventricular shunts. Additionally, changes in T1 and T2 

signal that accompany brain development and myelination from infancy to adolescence31 

have posed unique challenges to existing segmentation methods8,34, which have not been 

developed using pediatric patients of all ages.

In contrast, by using DL, which does not depend on extraction of hand-crafted features, 

our model requires minimal preprocessing and human oversight after training is complete. 

Although one prior study has demonstrated the feasibility of DL for classifying brain tissue 

subtypes in a small cohort of normal infants35, our dataset is much larger and consisted 

of scans from infants, children, and adolescents with and without hydrocephalus. Despite 

age-related white matter T2 signal changes, our model’s accuracy did not vary with age, 

suggesting that the DL model is agnostic to myelination status. Importantly, head angulation 

and rotation, often an issue for neonates and smaller children in the scanner, did not degrade 

the ability to measure ventricular volume. Despite the presence of ventricular catheters in 27 

patients, the DL model still reliably calculated ventricular volume, suggesting it would be 

able to do so even after permanent ventricular shunt placement.

Interestingly, our model showed better performance in the hydrocephalus cohort compared 

to controls. This is possibly attributable to larger ventricle sizes in patients with 

hydrocephalus, which was shown to improve segmentation accuracy within each cohort. 

However, this higher accuracy also implies that the model learned to reliably distinguish 

ventricular CSF from periventricular edema in patients with PF tumors. It is possible that 

the larger ventricles in the setting of PF tumors provided richer information for higher 

dimensional inferences by the DL model.
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Our model has several limitations. Because our training data did not distinguish between 

the different ventricular compartments, our model does not identify compartment-specific 

volumes, which would be useful in cases of ventricular entrapment. Trapped cystic pockets 

or other CSF abnormalities such as porencephalic and arachnoid cysts would not necessarily 

be parcellated from the remainder of the ventricular system. We also did not train our 

model to determine the presence or absence of hydrocephalus, since this determination 

often requires additional clinical correlation. Therefore, this technique would still need to 

be associated with the clinical status of the patient, in order to make the best decisions. 

In addition, our training data only included children with normal ventricular anatomy 

and those with symptomatic obstructive hydrocephalus from PF tumors causing obvious 

ventriculomegaly. Nevertheless, we recognize that many etiologies and manifestations of 

hydrocephalus exist, such as normal pressure hydrocephalus, hydrocephalus ex vacuo, slit 

ventricles, aqueductal stenosis, communicating hydrocephalus and more. Thus, while our 

model would likely be able to calculate ventricular volume in these cases, its performance 

accuracy needs to be validated in the context of these other etiologies. Notably, the model 

was trained to include the visible fourth ventricular volume using images from the control 

cohort. In cases of PF tumors obliterating the fourth ventricle, the model was trained 

to include the volume of the visible fourth ventricle, and exclude tumor tissue from the 

ventricular volume calculation. While fourth ventricle volume would likely be included in 

the overall ventricular volume calculation of other hydrocephalus etiologies, performance 

would again need to be validated in those cohorts. Our DL model nonetheless lays the 

groundwork for more widespread applications and could be used to pre-train future model 

iterations. Future studies could also examine model performance using other T2-derivatives, 

such as single shot spin echo or various T2-weighted imaging used for fast MRI for even 

more widespread applicability.

Despite its limitations, our model quickly and accurately segments the ventricles in 

commonly acquired T2-scans, across a wide range of ventricle sizes, regardless of 

differences in myelination, degrees of brain deformation, or the presence of periventricular 

edema. Questions often arise regarding generalizability of AI models derived from a single 

institution. In this study, we aimed at creating a generalizable model using data from various 

hospitals and geographic regions that use different MRI vendors, magnet strengths, and 

imaging parameters. While our results suggest model generalizability, additional prospective 

investigations are nevertheless needed to further validate model performance across global 

centers.

Conclusions:

We developed an artificial intelligence-based clinical tool to automatically segment the 

cerebral ventricles and calculate ventricular volume such that ventricular volume can 

be consistently measured in pediatric patients with obstructive hydrocephalus. Clinical 

deployment would facilitate neurosurgical decision-making and be reliable across different 

institutional scanners. While its use in various clinical scenarios still requires correlation 

with symptomatology, and even brain volume, our model automatically provides useful 

volumetric data for the ventricles. Future directions involve evaluating model performance 

Quon et al. Page 8

J Neurosurg Pediatr. Author manuscript; available in PMC 2022 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the context of other hydrocephalus etiologies and CSF compartments as well as further 

evaluation of prospective performance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow diagram demonstrating patient selection
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Figure 2. 
DL model (blue) and ground truth manual (green) segmentation of representative control (A) 

and hydrocephalus (B) T2-weighted MRIs.
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Figure 3. 
Correlation between the DL model and manually derived ventricular volume for control (A) 

(r2 = 0.90) and hydrocephalus (B) (r2 = 0.997) T2-weighted MRIs from the held-out test 

set. Blue circles denote MRIs from the held-out test set. Red triangles denote external MRIs 

from the fifth instution, not used for model development.
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Figure 4. 
FS (purple) and ground truth manual (green) segmentation of representative control (A) and 

hydrocephalus (B) 3D T1-weighted MRIs.
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Figure 5. 
Correlation between the FS and manually derived ventricular volume for a sub-cohort of 

control (A) (r2= 0.44) and hydrocephalus (B) (r2 = 0.994) 3D T1-weighted MRIs.

Quon et al. Page 15

J Neurosurg Pediatr. Author manuscript; available in PMC 2022 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Video 1. 
DL model (blue) and ground truth manual (green) segmentation of representative control 

T2-weighted MRI.
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Video 2. 
DL model (blue) and ground truth manual (green) segmentation of representative obstructive 

hydrocephalus T2-weighted MRI.
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