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Research Paper

Cellular Autophagy Machinery is not Required for Vaccinia Virus
Replication and Maturation

ABSTRACT
The origin of the primary membrane of the vaccinia virus, a double-membrane structure

that surrounds the immature virions (IV), is not fully understood. Here we investigated
whether the primary membrane originates from the autophagic membrane. Morphologic
studies by electron microscopy (EM) showed no apparent difference in viral maturation
in the autophagy-deficient cell lines, the atg5-/- mouse embryonic fibroblasts (MEFs) and
the beclin1-/- embryonic stem (ES) cells, compared to their isogenic wild-type counterparts.
Moreover, viral growth curves demonstrated that vaccinia viruses replicate and mature in
the autophagy-deficient cell lines as efficiently as they do in their isogenic wild type
counterpart cells. This study indicates that the cellular autophagy machinery is not
required for the life-cycle of vaccinia virus, suggesting that the primary vaccinia viral
membrane does not originate from the autophagic membrane.

INTRODUCTION
Vaccinia virus is the best-studied member of the family Poxviridae, which includes the

small pox virus. Poxviruses are large DNA viruses and they differ from most other DNA
viruses in that their genome replication and virion assembly occur entirely in the cytoplasm.
Vaccinia virus matures through a series of intermediate structures that have been visualized
by electron microscopy.1 The viral morphogenesis begins with the formation of a double-
layered, crescent-shaped membrane that engulfs dense viroplasm to form spherical immature
virions (IV). A series of subsequent events transform the spherical immature virions into
the infectious intracellular mature virions (IMV), which further mature to form extracel-
lular cell-associated virions (CEV) that attach to the cell surface as well as free extracellular
enveloped virions in the medium.2,3

The origin of the first membrane structure, the double-layered membrane surrounding
spherical immature virions (also referred to as the primary membrane, see ref. 4), has been
intensively investigated.4 More than 25 years ago, Dales and coworkers5 considered a de
novo origin of this membrane, whereas others6-9 suggested that it was derived from the
ER-Golgi intermediate compartment. However, physical connections between viral crescents
and cellular membranes were not found.10 In addition, recent data demonstrated that
cargo transport from the endoplasmic reticulum to the endoplasmic reticulum-Golgi
intermediate compartment is not essential for the formation of intracellular mature virions.11

Therefore, the origin of the primary membrane is still not fully understood. 
Macroautophagy, which will be referred to as autophagy in this paper, is a membrane

trafficking process that leads to lysosomal degradation.12 The hallmark of autophagy is the
emergence of double-membrane autophagic vacuoles (AV). The autophagic vacuole
originates from a crescent-shaped double-layered membrane structure, which engulfs a
portion of the cytosol and forms a closed vesicle, the autophagic vacuole. These vesicles
then dock and fuse to lysosomes, where the cargos are further degraded. The molecular
components that are essential for autophagy were first identified in yeast by genetic
screening13 (named APG—autophagy—genes, which were later changed to ATG for
autophagy-related genes14). The functions of those autophagy genes were subsequently
characterized.15

Most of the yeast autophagy gene product orthologs have been identified in other organ-
isms ranging from worms to mammals,16 and the autophagy machinery is highly conserved
in eukaryotes. Autophagy plays important roles in various physiological processes,17

including neonatal survival,18 development and aging (ref. 17 and references wherein),
and tumor suppression.19,20 In addition, autophagy is a part of the innate immune response.
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Upon viral or bacterial infection, autophagy is activated.
The autophagic vacuoles sequester the microbes and deliver
them to the lysosome for degradation.21,22 This is an
important cellular defense mechanism against the infection
of Sindbis virus,23 tobacco mosaic virus,24 as well as
Mycobacterium tuberculosis and group A Streptococcus in
various host organisms.25,26 Moreover, the autophagy-
mediated lysosomal degradation of viruses contributes to
the MHC-II antigen presentation.27 Apparently, some
microbes have evolved to evade autophagy. For example,
Shigella secrets a protein called IcsB to escape the entrapment
inside autophagic vacuoles.28 Interestingly, some viruses
even take advantage of the autophagy system. For example,
the double membrane structures associated with the replica-
tion complex of the poliovirus29,30 and coronavirus mouse
hepatitis virus31 originate from autophagic membranes and
the cellular autophagy machinery is required for the efficient
replication and maturation of these viruses.

The morphological resemblance between the maturation
of the autophagic vacuole and the formation of vaccinia
immature virons, as well as the involvement of the
autophagic membrane in the replication and maturation of
a number of viruses, prompted us to investigate whether the
vaccinia primary membrane originates from autophagic
membrane and whether the cellular autophagy machinery is
required for the replication and maturation of the vaccinia
virus. In the current study, morphological analysis by
electron microscopy showed no apparent difference in
terms of vaccinia viral maturation between the autophagy
deficient cells, the atg5-/- mouse embryonic fibroblasts
(MEFs) or the beclin1-/- mouse embryonic stem (ES) cells,
and their wild type counterpart cells. Further viral growth
analysis indicated that the kinetics of viral replication and
infection in the autophagy deficient cells is similar to that
in the wild type counterparts. Our results demonstrated
that the cellular autophagy machinery is not required for
the vaccinia virus replication and maturation, which suggests
that the membrane of the vaccinia virus does not originate
from autophagic membrane.

MATERIALS AND METHODS
Viruses and cell lines. The vaccinia virus is a modified version

of a wild type virus (New York City Board of Health strain of
vaccinia (Centers for Disease Control, Atlanta, GA)), in which a
β-galactosidase gene is inserted into the viral thymidine kinase
gene for easy plaque analysis.32 Atg5+/+ and atg5-/- murine embry-
onic fibroblast (MEF) cells were generated from C57BL/6 wild
type or C57BL/6 Atg5 knockout mice,18 transformed with SV-40
T antigen as described previously.18 They were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal calf serum (FCS), 2 mM L-glutamine, 100
IU/ml penicillin and 100 µg/ml streptomycin. Beclin-/- embryonic stem
(ES) cells were generated as described.20 The wild type or the beclin1-/- ES
cells were cultured in gelatin coated plates in complete ES medium: DMEM
supplemented with 15% FCS, 2 mM L-glutamine, 100 IU/ml penicillin, 100
µg/ml streptomycin, 0.1 mM MEM nonessential amino acids, 1X nucleo-
sides, and 1X 2-mercaptoethanol (diluted from 100X stock, Specialty Media,
NJ) and 1000 U/ml LIFC leukemia inhibitory factor, (Chemicon, Inc., CA).

Electron microscopy. Electron microscopy was performed by the University
of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical
School electron microscopy core facility. Cells were inoculated with the

vaccinia virus at multiplicity of infect (MOI) of 2 pfu/cell for 1 h, then
normal medium was added. Twenty four h after viral infection, cells were
then fixed and embedded. Thin sections (90nm) were cut on a Reichert
Ultracut E microtome. Sections were examined at 80 kV with a JEOL
1200EX transmission electron microscope.

Viral growth analysis. Cells were seeded in 6-well plates at 1.5 x 106

cells/well 8 h prior to infection and inoculated with the vaccinia virus for
2 h at MOI = 0.1 pfu/cell for multiple-step growth curve (complete growth
curve) or at MOI = 5 pfu/cell for one-step curve growth. Medium was then
removed and replaced with normal medium. Cells were collected with 2 ml

Figure 2. The morphogenesis of vaccinia virus in atg5-/- MEFs.  Representative electron
microscopy pictures of atg5-/- MEFs 24 h after vaccinia virus infection (MOI=2.0).
Three morphologically distinct forms of virons, the immature viron (IV), the intracellular
mature viron (IMV), and the exracellular cell-associated viron (CEV) are shown in
Frame 1, 2, and 3, respectively in (A), and enlarged to see the detail in (B), (C), and
(D), respectively. Scale bars were included in each panel; N, nucleus.

Figure 1. The morphogenesis of vaccinia virus in atg5+/+ MEFs.  Representative elec-
tron microscopy pictures of atg5+/+ MEFs 24 h after vaccinia virus infection
(MOI=2.0). Three morphologically distinct forms of virons, the immature viron (IV), the
intracellular mature viron (IMV), and the exracellular cell-associated viron (CEV) are
shown in Frame 1, 2, and 3, respectively in (A), and enlarged to see the detail in (B),
(C), and (D), respectively. Scale bars were included in each panel; N, nucleus.
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PBS/BSA every 4 h consecutively for a total of 48 h and viruses were released
by three rounds of freezing and thawing cells followed by sonication. The
viral titer was determined by a plaque assay. Briefly, the viruses were diluted
in series. One-hundred-microliter viral samples were added into a well of
6-well plates coated with 143B cells, a human osteosarcoma line.32 The
medium was removed the next day, 1 ml 2X DMEM with 1ml 1.8% agarose
was added into each well, and cells were further incubated for two days. One-
mililiter β-galactosidase substrate-X-Gal (300 µg/ml) was added, which
produces a dark blue precipitate on enzymatic hydrolysis, and the colored

plaques were counted. Each dilution of a sample was measured in
triplicate.

RESULTS
Vaccinia virus replicates and matures in both wild type and

autophagy-deficient cells. To investigate a possible role of cellular
autophagy machinery in the vaccinia virus life cycle, we inoculated
autophagy-deficient cells as well as their isogenic wild type cells
with vaccinia virus. Two different types of autophagy-deficiency
cells were chosen, one was the transformed atg5-/- MEFs and the
other was the beclin1-/- ES cells. The ATG5 protein is conjugated
to ATG12, an ubiquitin-like protein, upon autophagy activation.33

The ATG12—ATG5 conjugation is required for the activation of
the ATG8 ubiquitin-like protein conjugation system,34,35 which is
essential for AV formation.36,37 In the atg5-/- cells, the ATG8
(MAP-LC3 in mammals) conjugation is impaired and no
autophagic vacuoles can be formed.18,34 The Beclin 1 protein is
the mammalian ortholog of the yeast ATG6, which forms a
complex with VPS34. Deletion of the beclin 1 gene also severely
impairs autophagic vacuole formation.20 The viral life cycle
(maturation) in these cells was then examined with electron
microscopy. As a control, Figure 1A shows a typical EM picture of
atg5+/+ MEFs infected with the vaccinia virus. The three morpho-
logical distinct viron forms representing different stages during
viral morphogenesis can be readily detected, which include the
spherical immature virons (Fig. 1A, frame 1, and enlarged in Fig. 1B),
the intracellular mature viron (Fig. 1A, frame 2, and enlarged in
Fig. 1C), and the extracellular cell-associated virions (Fig. 1A,
frame 3, and enlarged in Fig. 1D). Similarly, in typical vaccinia
virus infected atg5-/- MEFs, as shown in Figure 2, all three
morphologically-distinct viron forms are present (Fig.  2A, frames
1–3 and Fig. 2B–D). Moreover, there is no apparent difference in
terms of the cellular distribution of virons and viral load in an
individual cell between the atg5+/+ and the atg5-/- MEFs. The viral
maturation was also analyzed in the beclin1+/+ and the beclin1-/- ES
cells. Again, all three morphologically distinct forms of virons were
detected in both the beclin1+/+ ES cells (Fig. 3) and the beclin1-/-

ES cells (Fig. 4). No apparent differences in terms of the cellular
distribution of virons and the viral load were detected between the
beclin1+/+ cells and the beclin1-/- cells. Clearly, the morphogenesis
of vaccinia virus is normal in both types of autophagy deficient
cells. Thus, cellular autophagy is not essential for the maturation
of vaccinia virus in these cells.

Viral production kinetics is similar in wild type and the
autophagy-deficient cells. To further address the possibility that
vaccinia viral replication and maturation are quantitatively affected
by autophagy, the viral growth was measured in the autophagy
deficient cells, the atg5-/- MEFs and the beclin1-/- ES cells, as well
as their isogenic wild type counterparts. As shown in Figure 5A, a
viral growth curve at a low multiplicity of infection (a multiple-step
growth curve using an MOI of 0.1) was obtained in the atg5+/+

MEFs as well as in the atg5-/- MEFs. The two growth curves show
no significant difference. Moreover, single-step growth curves
using an MOI of 5 were also measured in the pair of MEFs (Fig. 5B)
and these two curves are almost identical. Similarly, the multi-step

viral growth curves (MOI = 0.1) as well as the single-step growth curves
(MOI = 5) were determined in the beclin1+/+ and beclin1-/- ES cells, as
shown in Figure 5C and D respectively. The ES cells are more sensitive to
the vaccinia virus infection and an increasing number of ES cells died over
the time after infection. Consequently, the viral yield was lower in the ES
cells compared to that in the MEFs. Nevertheless, the viral production
kinetics in the beclin1+/+ ES cells is the same as that in the beclin1-/- ES cells.
Taken together, these results demonstrate that vaccinia viruses are able to
replicate and mature into infectious virons in the autophagy deficient cells

Figure 4. The morphogenesis of vaccinia virus in beclin1-/- ES cells.  Representative
electron microscopy pictures of beclin1-/- ES cells 24 h after vaccinia virus infection
(MOI=2.0). The immature viron (IV) and the intracellular mature viron (IMV) are shown
in Frame 1 and 2, respectively in (A), and enlarged to see the detail in (B) and (C),
respectively. The exracellular cell-associated viron (CEV), which is from a different cell,
is shown in (D). Scale bars were included in each panel; N, nucleus.

Figure 3. The morphogenesis of vaccinia virus in beclin1+/+ ES cells.  Representative
electron microscopy pictures of beclin1+/+ ES cells 24 h after vaccinia virus infection
(MOI=2.0). The immature viron (IV) and the intracellular mature viron (IMV) are shown
in Frame 1 and 2, respectively in (A), and enlarged to see the detail in (B) and (C),
respectively. The exracellular cell-associated viron (CEV), which is from a different cell,
is shown in (D). Scale bars were included in each panel; N, nucleus.
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and the kinetics of production of the infectious virons in the autophagy
deficient cells is similar to that in the isogenic wild type cells. 

DISCUSSION
The origin of the primary membrane of the poxviruses has been

a mystery, and so is the origin of the autophagic membrane. The mor-
phologic resemblance between the maturation of vaccinia IV and the
maturation of autophagic vacuoles led us ask whether the virus has
hijacked the cellular autophagy machinery to make their primary
membrane. We tested this hypothesis in two well-characterized genetic
model systems, the atg5 knockout MEFs and the beclin1 knockout
ES cells, by asking whether the cellular autophagy machinery is
essential for the life cycle of vaccinia virus. Surprisingly, both
morphologic studies and viral growth assays indicate that vaccinia
virus replicated and matured indistinguishably in the autophagy-
deficient cells, both the MEFs and the ES cells, as compared to in
their isogenic wild type counterpart cells. The ATG5 and Beclin 1
proteins are involved in processes that are independently required for
autophagy15,17 and they have no apparent homologs in the vaccinia
viral genome, which encodes around 200 proteins. Our results
strongly argue that the cellular autophagy machinery is not involved
in the vaccinia life cycle; hence the primary vaccinia viral membrane
does not originate from autophagic membrane. However, we cannot
rule out the possibility that the viral genome might encode some
functional homologs of both ATG5 and Beclin1 proteins.
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