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ABSTRACT
Introduction: Prolonged Hospital Length of Stay (PLOS) is an indicator of deteriorated efficiency 
in Quality of Care. One goal of public health management is to reduce PLOS by identifying its 
most relevant predictors. The objective of this study is to explore Machine Learning (ML) models 
that best predict PLOS. 
Methods: Our dataset was collected from the French Medico-Administrative database (PMSI) as 
a retrospective cohort study of all discharges in the year 2015 from a large university hospital in 
France (APHM). The study outcomes were LOS transformed into a binary variable (long vs. short 
LOS) according to the 90th percentile (14 days). Logistic regression (LR), classification and regres
sion trees (CART), random forest (RF), gradient boosting (GB) and neural networks (NN) were 
applied to the collected data. The predictive performance of the models was evaluated using the 
area under the ROC curve (AUC). 
Results: Our analysis included 73,182 hospitalizations, of which 7,341 (10.0%) led to PLOS. The GB 
classifier was the most performant model with the highest AUC (0.810), superior to all the other 
models (all p-values <0.0001). The performance of the RF, GB and NN models (AUC ranged from 
0.808 to 0.810) was superior to that of the LR model (AUC = 0.795); all p-values <0.0001. In 
contrast, LR was superior to CART (AUC = 0.786), p < 0.0001. The variable most predictive of the 
PLOS was the destination of the patient after hospitalization to other institutions. The typical 
clinical profile of these patients (17.5% of the sample) was the elderly patient, admitted in 
emergency, for a trauma, a neurological or a cardiovascular pathology, more often institutiona
lized, with more comorbidities notably mental health problems, dementia and hemiplegia. 
Discussion: The integration of ML, particularly the GB algorithm, may be useful for health-care 
professionals and bed managers to better identify patients at risk of PLOS. These findings 
underscore the need to strengthen hospitals through targeted allocation to meet the needs of 
an aging population.
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Introduction

In 2019, healthcare expenditure (consumption of care 
and medical goods, CSBM) amounted to €208 billion in 
France, of which €97 billion was for hospital care 
(46.7%) [1]. In addition to being the largest contributor 
to health-care spending, hospital expenditure acceler
ated in 2019 (+2.4%) to the point of increasing faster 
than the CSBM [1]. In France, as in other Western coun
tries, strategies to control health expenditure are similar 
and are notably based on the reduction in length of 
stay (LOS) [2]. Numerous studies show that some of the 

beds occupied in hospitals in France are inadequately 
occupied, with approximately 10% of medical and sur
gical beds being inadequately occupied on a given day 
(5% in surgery, 17.5% in medicine) [3]. LOS, defined as 
the interval time between admission and discharge (i.e., 
total bed-days occupied by a patient), is thus consid
ered as an important indicator to evaluate quality of 
care and hospital performance. Prolonged LOS (PLOS) is 
associated with more consumption of hospital 
resources and costs, more complications (e.g., hospital- 
acquired infection, falls), increased mortality and
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deteriorated patient experience [4,5]. In addition, PLOS 
may impact negatively on admission of critically ill 
patients and denies timely access to treatment [6]. For 
all these reasons, we need to better identify patients at 
high risk of PLOS to improve the quality of care and 
reduce associated health-care costs.

Over the last years, machine learning (ML) methods 
have gained momentum in health service research as 
an alternative to traditional statistical approaches such 
as logistic regression [7–10]. ML methods do not 
require most of the assumptions used in traditional 
models and are able to account for interactions without 
having to explicitly model them [11]. More and more 
ML models have now started to explore LOS. A recent 
study used a ML approach from a dozen different mod
els to predict LOS in patients hospitalized for COVID-19 
(N = 966 patients) [12]. Another recent study explored 
two ML methods, the Random Forest (RF) and the 
Gradient Boosting model (GB), using an open-source 
available dataset [13]. Last, Bacchi et al. applied neural 
network model to 313 patients admitted in general 
medical stay [14]. Altogether, these findings suggest 
that ML approach may help hospital systems prepare 
for bed capacity needs. These studies, however, have 
been limited to either relatively small or very specific 
datasets, or only to a few models.

Thus, the objective of this work was to predict LOS 
using ML methods on a large population-based study 
from a French hospital medico-administrative database, 
based on the area under the receiving operating char
acteristic curve. For this purpose, we selected the fol
lowing ML methods [15]: random forest (RF), neural 
networks (NN), gradient boosting (GB), decision trees 
(CART), Logistic Regression (LR).

Methods

Study design

The design is based on a retrospective cohort study of 
all acute-care inpatient hospitalization cases discharged 
from January 1 to 31 December 2015, from the largest 
university health center in the South of France 
(Assistance Publique – Hôpitaux de Marseille, APHM). It 
used a dataset collected from the French Hospital data
base for all hospitalizations (PMSI – Programme de 
Médicalisation des Systèmes d’Information) [16]. 
Research on retrospective data such as ours do not 
require compliance to the French Law Number 2012– 
300 of 5 March 2012 relating to the research involving 
human participants, as modified by the Order Number 
2016–800 of 16 June 2016. In this context, it does not 
require approval from the French competent authority 

(Agence Nationale de Sécurité du Médicament et des 
Produits de Santé, ANSM) nor from the French ethics 
committee (Comités de Protection des Personnes, CPP).

Study setting and inclusion criteria

The APHM with its four hospitals (La Timone, La 
Conception, Sainte-Marguerite, and Hôpital Nord) is 
a public tertiary-care center with 3,400 beds and 2,000 
physicians. It processes approximately 300,000 hospita
lizations and 210,000 patients every year. The inclusion 
criteria were all acute-care hospitalizations for patients 
older than 18 years old and with a length of stay (LOS) 
> 24 hours (to exclude ambulatory care such as ambu
latory surgery, radiotherapy, dialysis, chemotherapy, 
and transfusions that we did not want to predict). 
Were also excluded in-hospital mortalities and obstetri
cal stays.

Study outcomes

The study outcome was LOS transformed into a binary 
variable (short or ordinary LOS vs long or prolonged 
LOS – PLOS). There is no consensus on the choice of the 
cut point for PLOS and different cut points have been 
used in different studies [17]. Some use ad-hoc values 
such as 3 days [18], 7 days [18,19], or more frequently 
14 days [20–22], up to 21 days [23,24]. Others use 
statistical criteria such as 75th, 90th or 95th percentile 
[3,5,25]. Tukey’s criterion [26,27] is also statistical in 
nature. It defines a cut point beyond which observa
tions are considered outliers. It is computed as 
Quartile3þ 1:5� Quartile3 � Quartile1ð Þ which in our 
case coincides with the 90th percentile (14 days).

Collected data

The dataset collected from the PMSI used 27 predictor 
variables:

- sociodemographic features: age, gender, state- 
funded medical assistance (the French AME i.e., health 
coverage for unregistered migrants), and free universal 
health care (the French CMU i.e., universal health cover
age for those not covered by private or professional 
insurance);

- clinical features: category of disease based on the 
10th revision of the International Statistical 
Classification of Diseases and 17 comorbidities from 
the Charlson comorbidity index [28];

- hospitalization features: patient origin (home or 
other hospital institution), hospitalization via emer
gency departments, destination after hospital discharge
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(home or transfer to other hospital institution), and 
hospitalization via emergency departments in the pre
vious 6 months.

Statistical models

Five distinct types of ML models were trained with the 
data: LR, CART, RF, GB, and three-hidden layers NN. 
Although detailed explanations are given elsewhere 
[29], a brief summary is presented here.

LR is a general linear model of the exponential family 
such that ln π

1� π

� �
¼ βT x, where π ¼ Pðy ¼ 1jxÞ, y is 

a binary outcome, x the predictors and β is the weight 
vector to be estimated from the data by minimizing 
a given loss function.

CART [30] ‘is a binary decision tree (DT) method that 
involves segmenting the predictor space into a number 
of simple regions. CART can be applied to both regres
sion and classification problems, as in our study. A DT is 
constructed through an iterative process by applying 
a binary splitting rule. For each explanatory variable xj 

in the data, a rule of the form xj<a (a ∈ R is a threshold) 
is used to split the initial set of observations (denoted, 
the root of the tree) into two subsets tl and tr (the 
sibling nodes). Each observation falling in those regions 
is then predicted by the highest frequency class. The 
best split is defined as the one minimizing a loss func
tion (e.g., the Gini index, or the Entropy). Once the best 
split has been defined, the same process is applied to 
the two nodes tl and tr and repeated until a predefined 
minimum number of observations is reached. Then, 
a pruning algorithm can be used to search for an 
optimal subtree, given a penalty criterion (complexity 
parameter) applied to the objective function. A DT can 
be represented graphically and thus can be directly 
interpretable, given its simple structure’ 31.

RF [32] ‘is an ensemble learning method based on 
aggregating n_estimators trees similar to the ones con
structed with CART, each one grown using a bootstrap 
sample of the original data set. Each tree in the forest 
uses only a random subset of max_features predictors 
to determine the best split at each node. The trees are 
not pruned. The prediction by RF is the majority vote 
over the predictions made by the n_estimators trees. 
Other hyperparameters such as the minimum number 
of samples required to split an internal node (min_sam
ples_split) or the maximum depth of a tree (max_depth) 
may be used to tune further the RF model.’ 31.

GB [33] ‘is also an ensemble learning method based 
on DT but does not involve bootstrap sampling. It is 
built sequentially using a weak learner (e.g., shallow 
classification trees). The GB is initialized with the best 

guess of the response (e.g., the majority vote); then, the 
gradient is calculated, and a model is then fit to the 
residuals to minimize the loss function. The current 
model thus obtained is added to the previous model, 
adjusted by a learning_rate parameter. The user may 
specify the number of trees (n_estimators), a tree depth 
equal to max_depth and a given minimum number of 
observations in the trees terminal nodes, min_sample
s_leaf.’ [31, p. 3].

NN [34] ‘are nonlinear statistical models for regres
sion or classification. They are structured in layers of 
“neurons” where the input layer is made of the predic
tor variables, followed by intermediate layers called 
hidden layers, and the output layer. Each neuron is 
a linear combination of the neurons of the previous 
layer, to which is applied a non-linear activation func
tion, typically the relu function. Usually, the activation 
function used in the output layer is the softmax for 
multiclass classification and the sigmoid for binary clas
sification. Thus, the output layer contains as many neu
rons as there are classes, but only one for binary 
classification. The weights of the linear combinations 
are the parameters of the model, and they are esti
mated through an optimization algorithm called (sto
chastic) gradient descent. The loss function optimized in 
binary classification is the cross-entropy to which 
a decay penalty may be applied’ [31, p. 3].

Statistical analyses

Descriptive analyses for the sociodemographic, clinical, 
and hospitalization data were expressed as frequencies 
and percentages. For each predictor (sociodemo
graphic, clinical, and hospitalization data), the two cate
gories of LOS (long vs. short) were compared by 
estimating their difference in proportions through 
a statistical test of proportions. The effect size of this 
difference is then estimated with Cohen’s 
d standardized difference (SD). SD use effect size meth
ods to identify meaningful differences between groups 
that, unlike p-values, are not influenced by sample size. 
Values greater than 0.20 are clinically significant [35].

In the following, model performance is estimated 
through the area under the receiver operating charac
teristic curve (ROC, AUC). Indeed, given that our out
come class proportions are quite imbalanced (90% 
short vs 10% PLOS), threshold-dependent measures of 
performance such as the accuracy or the F1 are less 
reliable [36–38].

To train and evaluate the different models (i.e., LR, 
CART, RF, NN, and GB), the dataset was split into 80% 
full training sample and 20% hold out test sample, 
stratified on the outcome variable. The first step was
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to tune each of the different model (i.e., CART, RF, NN, 
and GB – LR, as the reference model has no hyperpara
meter to be tuned). The 80% full training sample is 
again split into 80% training set and 20% validation 
set. We performed a 10-fold cross validation to tune 
the hyperparameters with the training set, then 
assessed model performance with the validation set 
for that specific resampling split, and the optimal 
hyperparameters for that resampling split are saved. 
This process is repeated 10 times over 10 different 
resampling splits. The hyperparameters corresponding 
to the highest performance over these 10 resampling 
splits are now used to compare each of the 5 models 
100 times over 100 different resampling splits. The 
performance of each model is saved for each split and 
the mean performances of the different models over 
100 splits are compared using paired t-test (post hoc 
tests with Bonferroni correction). Given the large sam
ple size, the p-value of the test statistic is completed 
with the Cohen’s size effect, to appreciate the ampli
tude of the difference in performance. In addition, we 
computed the performance of each model (classifier) 
on the hold out test sample in which the model has 
never ‘seen’ – this is not only a supplementary indica
tion on the classifier’s performance but also provides 
the means to check for overfitting.

Lastly, we computed variable importance (VI), aver
aged over the 100 resampling splits. VI provides 
a simple way to inspect each model and gain insights 
on which variables are most influential in predicting 
the outcome, and to what extent. Here, permutation 
feature importance is used to estimate variable 
importance. Permutation feature importance is 
defined as the decrease in a model score when 
a single feature value is randomly shuffled [32,39]. 
The larger the decrease in score, the more important 
the variable.

All analyses were implemented in Python 3.7 [40] 
with Sci Kit Learn 0.24.1 [41] and Keras 2.4.0 [42]

Results

Characteristics of the population

The initial dataset of the 2015 cohorts contains 118,650 
admissions. After exclusion of non-adult stays with 
death and hospitalizations for ambulatory and obstetri
cal care, 73,182 hospitalizations were retained. The 
most common diseases were digestive disease and ner
vous system conditions. In total, 7341 (10.03%) hospi
talizations resulted in PLOS. The characteristics of the 
sample are presented in Table 1.

Factors associated with LOS

Based on the Cohen’s d standardized difference in pro
portions, the destination of discharge to other institu
tions shows a significant and sizeable higher proportion 
of PLOS than to home (d = 0.727 p-value <0.0001). Next 
comes those who are admitted for Chemotherapy and 
Radiotherapy who display a sizeable and significant 
lower level of PLOS (d = −0.390, p-value <0.0001), 
followed by the origin of patient where other institu
tions are associated to higher proportion of PLOS 
(d = 0.294, p-value <0.0001). Table 1 displays all the 
significant difference in proportion of LOS for which the 
size effect is at least equal to 0.2 (small effect).

Predictive model performance

The predictive performance of each model is presented 
in Table 2, and the comparison of each model’s AUC is 
presented in Table 3. The GB classifier was the most 
performant model with the highest AUC (0.810), super
ior to all the other models (all p-values <0.0001). The 
performance of the RF, GB and NN models (AUC ranged 
from 0.808 to 0.810) was superior to that of the LR 
model (AUC = 0.795); all p-values <0.0001. In contrast, 
LR was superior to CART (AUC = 0.786), p < 0.0001. As 
the values are close, the size effects are also provided 
by the Cohen’s d, which confirms small effects between 
GB and RF or NN but large effects between all others. 
Thus, the seemingly small difference in value between 
the AUC of LR and the other classifiers, when account
ing for their standard errors are in fact very large ones. 
However, the performance of NN and RF are identical. 
The ROC curve for the best model (i.e., GB) is presented 
in Figure 1.

Variable importance

The variable importance of the best model (i.e., GB) is 
presented in Figure 2. In the GB classifier as well as in all 
the others, the variable most predictive of the catego
rical LOS was the destination of the patient after hospi
talization. Destination to other institutions but not 
home was associated to PLOS. The typical clinical pro
file of these patients (17.5% of the sample) was the 
elderly patient, admitted in emergency, for a trauma, 
a neurological or a cardiovascular pathology, more 
often institutionalized, with more comorbidities, nota
bly dementia and hemiplegia (supplementary file #1). 
This is coherent with the bivariate analysis. Two of the 
other most important variables were also identified in 
the bivariate analysis: the origin of the patient from
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other institutions was predictive of PLOS, whereas the 
admission for chemotherapy or radiotherapy was asso
ciated with short LOS. The model also included admis
sion for orthopedic trauma and surgical type of hospital 
stay to be predictive of PLOS.

The variable importance of the other models is pre
sented in supplementary file #2.

Discussion

One of the strategies to address the sustainability of 
health-care systems is to reduce the length of inpatient 
hospital stay. Reducing LOS is expected to release bed 
capacity as well as staff time and to reduce costs asso
ciated with inappropriate patient days in hospital. In 
addition, PLOS is associated with more medical compli
cations and longer discharge delays. Therefore, improv
ing LOS prediction with the best artificial intelligence 
method remains a key challenge, especially to enable 
better bed planning, care delivery and cost optimiza
tion. Linear and logistic regression methods have been 
supplanted by ML and deep learning (DL) models, yet it 
remains challenging to identify, benchmark and select 
optimal prediction methods given the discrepancy in 
data sources, inclusion criteria, choice of input variables, 
and metrics used [43,44].

In our study, GB displays the best performance level 
for predicting LOS. In a recent study [45], LOS predic
tion was modeled with multiple linear regression, sup
port vector machine, RF and GB. GB outperformed all 
the other models using a basic training-test split with 
a 70–30% ratio. In another study, RF slightly outper
formed GB [13]. NN as a multiple layer perceptron (MLP) 
is often used as a benchmark to other ML models but 
GB consistently outperforms NN on tabular datasets 
[14,15]. This is verified again here for the three-hidden 
layers NN (5 layers MLP).

Scientific efforts to provide accurate prediction of 
LOS have been steady for half of a century [43]. While 
the use of ML in health-related research has become 
more and more popular, its application on LOS remains 
scattered. A recent systematic review conducted by 
Bacchi et al. [44] identified only 21 articles predicting 
LOS including regression and classification as well as 
different medical specialties group patients. Several 
shortcomings have been highlighted by the authors 
and considered in our work.

● The failure to provide the criteria of inclusion as 
well as the lack of demographic and clinical infor
mation such as disease prevalence details: this 
issue has been carefully considered in our work 
with detailed clinical and organizational 
information.

● The lack of information regarding the distribu
tion of the LOS outcome and the handling of 
the outliers: in our study, we considered as 
a prolonged stay any potential outlier of the 
quantitative LOS variable, according to a valid 
and reproducible criterion: Tukey’s criterion 
[26,27]. The distribution of long and short LOS 
is provided for the whole dataset and for each 
variable.

Table 2. Performance of the tuned classifiers over 100 (re) 
sampling experiments.

100 sampling experiments
Mean AUC

Logistic Regression (LR) 0,7947
Classification Trees (CT) 0,7858
Random Forest (RF) 0,8086
Gradient Boosting (GB) 0,8101
Neural Networks (NNET) 0,8085

Table 3. AUC paired T-tests of classifiers’ performance over 100 experiments (Bonferonni corrected, with effect size).

Classifier A Classifier B T Statistic dof p-uncorrected p-corrected Cohen’s d

CT GB −57,78 99 0,0000 0,0000 −3,75
CT LR −19,66 99 0,0000 0,0000 −1,34
CT NNET −52,98 99 0,0000 0,0000 −3,53

CT RF −60,60 99 0,0000 0,0000 −3,51
EN GB −71,35 99 0,0000 0,0000 −2,38

GB LR 72,95 99 0,0000 0,0000 2,43
GB NNET 6,90 99 0,0000 0,0000 0,26

GB RF 7,98 99 0,0000 0,0000 0,26
LR NNET −49,40 99 0,0000 0,0000 −2,19
LR RF −48,87 99 0,0000 0,0000 −2,18

NNET RF −0,04 99 0,9702 1,0000 0,00
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Figure 1. Best model: gradient boosting mean ROC curve.

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Cerebrovascular Disease (CH)

Age Category (85 ans et plus)

Diabetes without Chronic Complications (CH)

Age Category (65-84 ans)

Category Of Disease : Ophthalmology

Hemiplegia or Paraplegia (CH)

Category Of Disease : Gynecology-Breast

Category Of Disease : Vascular catheterization

Category Of Disease : Endocrinology

Congestive Heart Failure (CH)

Category Of Disease : Organ Transplant

Category Of Disease : Uronephrology and reproductive organs

Any Malignancy including Leukemia and Lymphomia (CH)

Category Of Disease : Ear Nose and Throat - Stomatology

Hospitalization via Emergency Departments : Yes

Category Of Disease : Orthopedic – Trauma

Origin of Patient : Other

Type of Hospital Stay : Surgical

Category Of Disease : Chemotherapy - radiotherapy

Destination on Discharge -Other

GB Variable Importance

Figure 2. Gradient boosting variable importance (20 highest).
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● The absence of separate datasets for training and 
assessment leading to overfitting (i.e., inflation of 
the model performance) [44]: model assessment 
must be implemented on a dataset never seen by 
the trained model. Selecting randomly a test- 
training split of the data set might lead to an 
overly optimistic or pessimistic outcome [29,43]. 
Hence, cross validation is recognized as an alter
native. However, k-fold cross validation may also 
lead to overfitting unless separate validation sets 
are used [44,46]. Thus, some authors suggest that 
rigorous performance evaluation requires multiple 
randomized partitioning of the available data, with 
model selection performed separately in each trial 
[35, p. 2103]. In this study, we have used separate 
validation sets for model selection and hyperpara
meter tuning and another different holdout test 
set to check for overfitting.

Beyond the limitations noted in these reviews, we 
suggest other areas in which improvements may be 
needed.

First of these is a systematic reporting of the feature 
importance. One reason why this is not implemented is 
that most of the learners use their inbuilt feature impor
tance computation, while others do not. Permutation 
importance may be called for estimating feature impor
tance in a way that is equivalent for all ML models. 
Thus, in our case, all the learners concur that the feature 
most predictive (by far) of PLOS is the Destination of 
Patient on Discharge to other but home.

Another potential area of improvement lies in the 
use of resampling-based statistical tests to compare 
performance. To account for any randomness involved 
in training-validation splits, we may supplement any 
performance comparison with, say 100 resampling of 
the training and validation set. From this perspective, 
each learner becomes comparable to an experimental 
condition and each resampling to a statistical unit. It 
now becomes possible to apply a means comparison 
between the learners over 100 samples, using for exam
ple post-hoc methods and Bonferroni correction. And 
the observed difference can not only be estimated in 
terms of statistical significance but also in terms of 
effect size [47]. Under this perspective, the use of the 
holdout test sample becomes at best a way of verifying 
the absence of overfitting.

Finally, our findings identify important levers for action 
for health-care professionals, planners and health policy. 
Destination to other institutions, especially for elderly 
patient, admitted in emergency, for a trauma, 
a neurological or a cardiovascular pathology, more often 
institutionalized and with more comorbidities were 

associated with substantial PLOS. Previous studies have 
shown that discharge destination have significant impact 
on LOS. In a sample of 313,144 medical records of all 
patients older than 18, discharge destination was one of 
the main LOS predictors [48]. In addition, another study 
confirmed that older patients’ PLOS (>17 days) was asso
ciated with discharge to places other than usual residence 
[49]. Indeed, hospitalizations are frequently associated in 
older people with an increased risk of functional decline 
both during hospitalization and following discharge [50]. 
These findings provide a rationale for increased staffing 
for elderly patients requiring intensive care in hospitals, 
particularly for those with cognitive impairment and mul
tiple comorbidities. Needing more caring time than usual 
was reported for 20% of older patients in general and for 
57% of the patients with dementia [51]. Considering the 
demographic change, this situation will worsen and there 
is thus an urgent need to strengthen hospitals with tar
geted allocation to meet the needs of an aging 
population.

Perspectives and limitations. Some of our variables are 
collected before or during hospitalization, whereas others 
are collected at or after discharge (different time sequence). 
However, as mentioned earlier, ours is a retrospective study; 
thus, all the data have been collected from the past anyway 
(2015). These are but only a part of all the challenges and 
limitations inherent to retrospective studies [52,53]. 
Furthermore, there are many other predictors that could 
have been relevant for this study, not the least of which are 
all the biology-related variables such as the vital constants 
and the lab analyses as well as the clinical notes. Some of 
these variables are time sequential (collected periodically 
every given number of hours). So indeed, the timing of the 
data collection is a central one, much easier to handle with 
retrospective studies than in any other design [52]. 
Unfortunately, only a subset of these variables was available 
for our study.

Over the last recent years, GB and its subsequent 
improvements, such as XGBoost, Light GBM and 
Catboost have proven to be superior to the traditional 
GB [54–56] which has consistently outperformed the 
best classical Machine Learning and Statistical Models 
[14,15]. More recently authors and researchers have 
made tremendous progress in the field of explainable 
AI, thus allowing for an interpretability of the ML pre
dictions no less relevant than the classical LR models 
[57,58]. Finally, some very accessible Auto Machine 
Learning models (AutoML) have also been developed 
over the last several months such as the AutoGluon 
package [59][] which offers the possibility of imple
menting rather advanced ML with the most current
and best performing models using only very few lines 
of code. ML is quickly becoming mainstream and may 

JOURNAL OF MARKET ACCESS & HEALTH POLICY 9



easily be deployed at least in a hospital’s information 
system to help detect risks in Quality of Care such as 
the deterioration of the patients’ experience or the 
efficiency of bed management .

Conclusion

The integration of ML, particularly the GB algorithm, 
may be useful for health-care professionals and plan
ners to better identify patients at risk of PLOS. These 
findings underscore the need to strengthen hospitals 
through targeted allocation to meet the needs of an 
aging population.
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Appendix

A github of the codes used in this article is available here:
https://github.com/jaotombo/jmahp_2022
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