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Omicron sublineage 
BQ.1.1 resistance to 
monoclonal antibodies 

Vaccination represents the key strategy 
to control the COVID-19 pandemic 
through induction of neutralising 
antibody responses and T cell-
associated immunity that substantially 
decrease the risk of developing severe 
disease.1,2 However, individuals 
who are immunocompromised (eg, 
because of comorbidities, high age, or 
immunosuppressive treatment) might 
not mount a full adaptive immune 
response and thus remain susceptible. 

For individuals at high risk, individual 
monoclonal antibodies (mAbs) or 
cocktails of mAbs are administered 
as prophylaxis or therapy.3,4 All mAbs 
currently approved by the US Food 
and Drug Administration (FDA) or 
European Medicines Agency (EMA) 
target the spike (S) protein (appendix 
pp 1–2).5 During the course of the 
COVID-19 pandemic, several SARS-
CoV-2 lineages evolved mutations that 
confer partial or full resistance against 
some mAbs.6–9 Consequently, only few 
mAbs remain suitable for treatment 
of individuals at high risk, and only 
bebtelovimab shows high efficacy 
against multiple omicron sublineages.8 

However, novel omicron sublineages 
have been detected, harbouring 
additional S protein mutations 
within the epitopes of bebtelovimab 
and other mAbs (figure A; appendix 
p 11). Novel sublineages include  
BA.4.6 (with increasing incidence 
in several countries worldwide), 
BA.2.75.2 (with increasing incidence 
in India), BJ.1 (mainly observed in 
India and Bangladesh; notably BJ.1 is 
one parental lineage of the currently 
increasing XBB recombinant), and 
BQ.1.1 (with increasing incidence in 
the USA and Europe).

We compared neutralisation of 
omicron sublineages BA.1, BA.4–5 
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Figure: Extensive resistance of omicron sublineage B.Q.1.1 to neutralisation by mAbs
(A) Location of mutations (blue and red) in the spike proteins of SARS-CoV-2 lineages B.1, BA.1, and BA.4–5 (which are identical at the amino acid level), BA.4.6, BA.2.75.2, BJ.1, and BQ.1.1 (numbered 
according to the spike protein of SARS-CoV-2 Wuhan-Hu-01). Mutations that are unique to only one of the omicron sublineages are highlighted in red and conserved mutations among omicron 
sublineages are indicated beneath the sequences in green. (B) Pseudovirus particles carrying the indicated S proteins were preincubated with different concentrations of single mAbs or cocktails of 
mAbs, before being inoculated onto Vero cells. Pseudovirus entry was analysed at 16–18 h post-inoculation, by measuring firefly luciferase activity in cell lysates, and was normalised against samples 
without any antibodies (0% inhibition). The EC50 was calculated by use of a non-linear regression model. Data represent the mean of three biological replicates (performed with four technical 
replicates). For additional information see the appendix (p 12). (C) Heatmap indicating the fold change in EC50 compared with B.1 pseudovirus particles. EC50=the concentration required for 50% of 
maximum inhibition. mAbs=monoclonal antibodies. Pre S1–S2=the domain between the receptor-binding domain and the S1–S2 cleavage site. S=spike. *The BA.1 spike protein contains a unique 
insertion at position 214 (EPE). 
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r o m l u s e v i m a b  c a u s e d  p o o r 
neu tra lisation. Finally, none of the 
tested mAbs or mAb cocktails caused 
appreciable neu tralisation of BQ.1.1pp 
(figure B–C; appendix p 12).

Our data reveal that emerging 
omicron sublineages are resistant to 
most (ie, BA.4.6, BA.2.75.2, and BJ.1) 
or all (BQ.1.1) clinically used mAbs. As 
a consequence, in patients at high risk, 
treatment with mAbs alone might 
not provide a therapeutic benefit in 
regions of the globe in which BQ.1.1 is 
spreading, suggesting that additional 
treatment options (eg, paxlovid or 
molnupiravir) should be considered. 
Furthermore, novel, broadly active 
mAbs are urgently needed for 
prophylactic or therapeutic treatment, 
or both, in patients at high risk.
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(in which the amino acid sequence 
of the S protein is identical), 
BA.4.6, BA.2.75.2, BJ.1 and BQ.1.1 
by single mAbs or mAb cocktails 
that are currently in clinical use, 
mAbs for which clinical use has 
been restricted or discontinued, and 
mAbs currently being evaluated in 
clinical trials. We used pseudovirus 
particles (pp) that represent a suitable 
model to investigate SARS-CoV-2 
cell entry and its neutralisation.10 
As we expected, pseudovirus par-
ticles bearing the BA.1 S protein 
(BA.1pp) were efficiently neutralised 
by bebtelovimab, adintrevimab, 
a n d  c i l g a v i m a b – t i x a g e v i m a b 
(50% effective concentration 
[EC50] <100 ng/ml), moderately 
neu tra  l i sed by  t ixagevimab, 
romlusevimab, sotrovimab, and 
a m u b a r v i m a b – r o m l u s e v i m a b 
(EC50 100–1000 ng/ml), and 
poorly neutralised by casirivimab, 
cilgavimab, amubarvimab, and 
casir ivimab–imdevimab (EC50 
1000–10 000 ng/ml).7 Furthermore, 
BA4–5pp were efficiently neutralised 
by bebtelovimab and cilgavimab, 
moderately neutralised by imdevimab 
and cilgavimab–tixagevimab, and 
poorly neutralised by amubarvimab, 
r o m l u s e v i m a b ,  s o t r o v i m a b , 
c a s i r i v i m a b – i m d e v i m a b ,  a n d 
a m u b a r v i m a b – r o m l u s e v i m a b , 
in line with expectations.8 For 
BA.4.6pp, bebtelovimab caused 
efficient neutralisation, whereas 
poor neutralisation was noted 
for imdevimab, amubarvimab, 
casirivimab–imdevimab, cilgavimab–
tixagevimab, and amubarvimab–
romlusevimab. With BA.2.75.2pp, 
bebtelovimab caused efficient neu-
tralisation, whereas regdanvimab 
and sotrovimab caused poor neu-
tralisation. For BJ.1pp, none of the 
tested mAbs or mAb cocktails 
caused high neutralisation, whereas 
casirivimab, tixagevimab, sotrovimab, 
a n d  c i l g a v i m a b – t i x a g e v i m a b 
showed moderate neutralisation, 
and amubarvimab, casirivimab–
imdevimab, and amubarvimab–

Decline of RSV-specific 
antibodies during the 
COVID-19 pandemic

Hospitalisations due to respiratory 
syncytial virus (RSV) infections largely 
decreased after social distancing 
measures were introduced to control 
the COVID-19 pandemic. Lifting these 
measures resulted in out-of-season 
RSV activity, sometimes exceeding 
the incidence of hospitalisations 
observed in regular seasons.1–3 
Declining immunity due to reduced 
exposure to the virus may contribute 
to this altered epidemiology.1,4,5 
Bardsley and colleagues1 showed 
that the combination of laboratory, 
clinical, and syndromic data capture 
the impact of RSV activity, yet did 
not provide insight into the proposed 
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