
RESEARCH ARTICLE

Acute coronary syndrome risk prediction

based on gradient boosted tree feature

selection and recursive feature elimination:

A dataset-specific modeling study

Huizhong Lin1☯, Yutao Xue2☯, Kaizhi ChenID
2, Shangping Zhong2, Lianglong ChenID

1*

1 Department of Cardiology, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian

Medical University Union Hospital, Fuzhou, PR China, 2 College of Computer and Data Science, Fuzhou

University, Fujian, China

☯ These authors contributed equally to this work.

* 200327100@fzu.edu.cn

Abstract

Acute coronary syndrome (ACS) is a serious cardiovascular disease that can lead to cardiac

arrest if not diagnosed promptly. However, in the actual diagnosis and treatment of ACS,

there will be a large number of redundant related features that interfere with the judgment of

professionals. Further, existing methods have difficulty identifying high-quality ACS features

from these data, and the interpretability work is insufficient. In response to this problem, this

paper uses a hybrid feature selection method based on gradient boosting trees and recur-

sive feature elimination with cross-validation (RFECV) to reduce ACS feature redundancy

and uses interpretable feature learning for feature selection to retain the most discriminative

features. While reducing the feature set search space, this method can balance model sim-

plicity and learning performance to select the best feature subset. We leverage the interpret-

ability of gradient boosting trees to aid in understanding key features of ACS, linking the

eigenvalue meaning of instances to model risk predictions to provide interpretability for the

classifier. The data set used in this paper is patient records after percutaneous coronary

intervention (PCI) in a tertiary hospital in Fujian Province, China from 2016 to 2021. In this

paper, we experimentally explored the impact of our method on ACS risk prediction. We

extracted 25 key variables from 430 complex ACS medical features, with a feature reduction

rate of 94.19%, and identified 5 key ACS factors. Compared with different baseline methods

(Logistic Regression, Random Forest, Gradient Boosting, Extreme Gradient Boosting, Mul-

tilayer Perceptron, and 1D Convolutional Networks), the results show that our method

achieves the highest Accuracy of 98.8%.

1. Introduction

The World Health Organization reports that more than 12 million people worldwide die from

cardiovascular problems. Cardiovascular disease (CVD) is very common in China. According
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to relevant data, the number of people suffering from cardiovascular disease in China is approx-

imately 290 million [1], with more than 2 million new patients every year and a high mortality

rate. It ranks first in cancer and other diseases. According to incomplete statistics, the medical

cost of cardiovascular diseases in China has reached $2.86 billion, and the high treatment cost

has put a serious medical burden on patients. Acute coronary syndrome (ACS), a frequent but

serious form of coronary artery disease [2, 3], is distinguished by primary atherosclerotic plaque

rupture and secondary completely or partially occlusive thrombus that cause ST-segment eleva-

tion myocardial infarction (STEMI), non-STEMI, and unstable angina (UA) [4]. Not only is

there a high mortality rate, but patients are also at an equally high risk of recurrence after dis-

charge from the first treatment, both of which are drivers of poor prognosis.

Relevant studies have shown [5] that when fat or harmful cholesterol accumulates in the

arterial wall, the arterial wall is narrowed and eventually blocked. ACS depends on the acute-

ness and severity of coronary occlusion. Risk factors associated with ACS can be a combina-

tion of controllable factors (e.g., lifestyle) and uncontrollable factors (e.g., age, gender, family

history, etc.). At present, the clinical methods used for ACS detection mainly include [6]: elec-

trocardiogram, dynamic electrocardiogram, hematology examination, CT angiography, etc.

These inspection methods are limited to a certain extent by the doctor’s personal subjective

judgment and long-term experience. A thorough evaluation of these risks is crucial to the clini-

cal management of each patient’s health and offers alternatives to the best secondary preven-

tive medications.

Establishing an appropriate disease risk assessment model is a critical step in ACS risk

assessment and subsequent management decisions. Major adverse cardiovascular events

(MACE) prediction has been widely used in the early prevention and intervention of ACS

patients [7, 8], and it is an important tool to assess the likelihood of ACS risk. Similar to the

MACE practice, the current risk scoring tools with high awareness in clinical medicine also

include the Global Registry of Acute Coronary Events (GRACE) [9], Framingham Risk Score

[10], etc., which are also often used to evaluate ACS patients’ severity. However, these risk

scores have some limitations, such as only considering prognostic factors in a subset of

patients, and none of the patients received the current standard of care. In addition, prior stan-

dard risk score methods were unable to accurately predict outcomes for ACS patients [9, 11].

Therefore, it is necessary to reconsider new methods to effectively predict the risk of ACS

patients.

In recent years, machine learning has performed well for ACS prediction [11], and can sig-

nificantly improve the performance. Various machine learning modeling methods, including

Naive Bayes, Random Forest, Gradient Boosting, Logistic Regression, and Support Vector

Machines, have been employed in numerous studies for the diagnosis and risk assessment of

ACS [12–14]. Machine learning can also mine potential risk factors for disease. In the study of

[15], by building a coronary heart disease prediction model based on a decision tree algorithm,

it was found that an important variable for coronary heart disease is the serum hs-CRP level.

PRAISE [16] is a machine learning-based risk stratification model that combines clinical, ana-

tomical, and procedural features to predict all-cause mortality, recurrent acute myocardial

infarction, and major bleeding in patients with ACS. But they almost all ignore the use of effec-

tive feature selection methods to filter the high-dimensional features of the original data.

Currently, there are still the following challenges in actual ACS risk prediction: (1) there are

a large number of missing values, irrelevant and redundant features in the original ACS data-

set, which may negatively affect the model training process [17]; (2) there are many risk factors

that lead to ACS, but there is no effective feature selection method to identify these factors; (3)

poor interpretability is also one of the challenges [18], especially for deep learning models; and

(4) the experimental data faces the problem of imbalance, which affects the research.
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To address the above challenges, the main contributions of this paper are summarized as

follows:

1. We use a new ACS dataset from a hospital in Fujian Province, China, and perform a lot of

complex data cleaning, data extraction, missing values, and other preprocessing work.

2. We used a hybrid (interpretable gradient boosting tree model + cross-validated RFE) fea-

ture selection method to screen out key features of ACS, which helped us discover impor-

tant prognostic factors. This fusion method a) overcomes the problems of unstable feature

selection and random division of nodes in gradient boosting trees; b). Compared with the

direct use of the RFECV method, it improves the execution efficiency.

3. We statistically analyzed the high correlations between variables in the experimental data

and used XGBoost, GB, and RF model feature importance to visualize the contribution of

key features of ACS to interpretability.

4. We use a hybrid sampling SMOTETomek approach to improve model performance for

predicting ACS risk in imbalanced datasets and compare it to other sampling techniques in

experiments.

The structure of the paper is as follows: Section 2 introduces the related work of applying

machine learning to predict ACS and feature selection in the medical field. Section 3 intro-

duces our method. Section 4 presents the experimental data and results. Section 5 discusses the

results. Finally, Section 6 presents the conclusion.

2. Related work

2.1 Disease prediction using machine learning

In the past decade, some medical organizations and institutions have studied disease predic-

tion models based on machine learning (ML) methods. Machine learning is a discipline that

uses intelligent techniques to learn predictive and descriptive models from data [19]. ML

methods can perform risk assessment and prediction of diseases based on clinically abnormal

data, and they can accurately find hidden effects in data instead of manual work. For ML

methods, the conventional approach is to extract features and train a predictive model on

them to automatically classify patients. Giri et al. [20] used the discrete wavelet transform to

decompose the heart rate signal and applied principal component analysis, linear discriminant

analysis, and independent component analysis to the wavelet coefficient set to reduce the data

dimension. Then they use the support vector machine, Gaussian mixture model, probabilistic

neural network, and K-nearest neighbor four classifiers to identify patients with coronary

heart disease and normal people; Alickovic et al. [21] used an autoregressive model to extract

features from ECG data, using K-nearest neighbors, support vector machines, multilayer per-

ceptrons, and the radial basis function network to distinguish arrhythmia patients from nor-

mal people; For an automatic diagnosis system for Parkinson’s disease, Lamba et al. [22] used

four transfer learning architectures: ResNet, DensNet, VGG, and AlexNet to classify spiral

images of trainee populations; Kumar et al. [23] systematically introduced a decision support

system (DSS) for diagnosing cardiac disease, analyzing various current problems and chal-

lenges in predicting cardiac disease.

2.2 Strategy for feature selection

Many studies have focused on providing new mechanisms to improve the performance of

ACS modeling. Among them, feature selection (FS) is one of the most effective ways to
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improve model performance because it can mitigate the effects of noise and redundant vari-

ables. Feature selection focuses on selecting a subset of variables from the input multidimen-

sional features that can effectively describe the input data while reducing the influence of noise

or irrelevant variables. Therefore, it can improve model performance, reduce computational

requirements, and better understand the goals of the data [24]. Among them, Rani et al. [25]

used clinical data to diagnose coronary artery disease (CAD) and used the Extra Tree feature

selection method to select relevant features. Zhang et al. [26] proposed a feature selection

method for Holter by introducing the ovo combination method and using a support vector

machine classifier to select an effective feature subset. This method has been used for heartbeat

classification of ECG data.

In recent years, relevant scholars have also studied the hybrid feature selection method,

which can usually combine the advantages of the two feature selection methods. Rani et al.

[27] proposed a novel Hybrid Pearson Correlation and Backward Elimination (HPCBE) fea-

ture selection method, which achieved a feature reduction rate of over 50% in heart disease

diagnosis. In [28], Rani et al. then proposed a hybrid feature selection method called CFGA

that fuses CFS (Correlated Feature Selection) and GA (Genetic Algorithm), which has the

advantage that it can be coupled with any classifier. Lamba et al. [29] proposed a hybrid

MIRFE feature selection method for Parkinson’s disease patient classification.

3. Materials and methods

3.1 Data source

The dataset used in this study was real hospital patient data, and the data was partly provided

by the Department of Cardiovascular Medicine of a tertiary hospital in Fujian Province,

China. The dataset includes data on ACS patients collected through follow-up visits during the

five-year period from 2016 to 2021. This included 5,850 patients who were discharged from

the hospital after undergoing surgery (coronary angiography and revascularization PCI). Each

patient had 430 records of various indicators, for a total of approximately 2,515,500 records.

But the actual dataset contains a large number of missing patient records and the data is noisy

and irregular, so the actual valid records are much lower than this number. We conducted this

study in August 2021. The dataset consists mainly of structured and unstructured text data.

Structured data includes basic information such as the patient’s age, gender, and living habits.

Unstructured text data includes patients’ ECG examinations, doctors’ diagnostic records, and

surgical operation records. In general, the content of the data set can be divided into seven cat-

egories: basic patient information; past medical history; electrocardiogram indicators; cardiac

color Doppler ultrasound indicators; blood test indicators; medication status; and coronary

vascular lesions. The clinical and therapeutic characteristics of the study population are pre-

sented in Table 1.

3.2 Outcomes

The results of this paper are intended to predict the likely outcome (death from all causes) in

patients with ACS. The records of all-cause death are the ACS patients in our hospital who

were followed up within 1 year after surgery (Table 2). These include cardiac and non-cardiac

deaths. Before data preprocessing, 139 (2.4%) of 5764 patients died and 5625 (97.6%) patients

were healthy within 1 year of follow-up; after data preprocessing, 120 (4.4%) of 2702 patients

died and 2582 (95.6%) patients were healthy. The dataset is divided into two parts, and Table 3

shows the division of different cohorts: The training (60%) cohort, which is used to train six

machine learning models and adjust their parameters; The test (40%) cohort, which is used to

test unknown data generalization ability and evaluation performance.
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Table 1. Clinical characteristics of the experimental dataset.

Characteristics Descriptive statistics

All(N = 2702) Alive (N = 2582) Death(N = 120) p-value

Basic clinical variables

Age (years) 65(57–72) 65(57–71) 72(64–78) <0.001�

Gender Female 495(18.3%) 455(17.6%) 40(33.3%) <0.001�

Male 2207(81.7%) 2127(82.4%) 80(66.7%) <0.001�

BMI 24.0(22.7–26.0) 24.0(22.7–26.1) 24.0(22.8–24.6) 0.026

Smoking 1171(43.3%) 1129 (43.9%) 42(38.5%) 0.343

Past medical history

Diabetes 794 (30.0%) 748 (29.4%) 46(42.6%) 0.001

Hypertension 1542 (57.5%) 1473 (57.2%) 69(65.1%) 0.179

History of renal insufficiency 26 (1.0%) 20 (0.8%) 6(5.7%) <0.001�

ECG

Heart rate (bpm) 68(61–76) 68(61–76) 75(60–86) 0.042

Heart

E ’wave rate 0.06(0.04–0.07) 0.06(0.04–0.07) 0.03(0–0.05) 0.610

LV ejection fraction 63.3(55.1–68.6) 63.5(55.7–68.8) 38.1(0–61.0) <0.001�

LV mass index 103.4(86.5–121.0) 113.8(87.4–121.0) 32(0–117.2) 0.005

Blood test index

Total cholesterol 3.95(3.24–4.85) 3.97(3.25–4.88) 3.46(2.07–4.32) 0.674

LDL cholesterol 2.48(1.85–3.28) 2.50(1.88–3.29) 2.10(1.02–2.85) 0.226

Triglycerides 1.43(1.03–2.00) 1.44(1.04–2.01) 1.09(0.72–1.77) 0.794

NT-proBNP 129(37–538) 125(37–486) 641(9–3531) 0.988

Apolipoprotein A 1.19(1.04–1.33) 1.20(1.05–1.34) 0.94(0.70–1.19) 0.692

Medical therapy

Statins 2099 (78.6%) 2046 (79.5%) 53(55.8%) <0.001�

Spironolactone 252 (9.6%) 234 (9.2%) 18(19.8%) <0.001�

Aspirin 2617 (98.2%) 2528 (98.3%) 89(95.7%) <0.001�

Coronary angiopathy variables

Bifurcation position 100(4.1%) 96(4.1%) 4(4.0%) 0.391

CTO 128(4.9%) 119(4.8%) 9(8.1%) 0.015

Angulation 3(0.1%) 3(0.1%) 0(0%) <0.001�

Calcification 20(0.8%) 20(0.8%) 0(0%) 0.011

Lesion type 2610(96.6%) 2501(96.9%) 109(90.8%) 0.272

Target vessel 2640(97.7%) 2528(97.9%) 112(93.3%) 0.001

Note: The above structured data are all cases of ’yes’. BMI: body mass index; LV: left ventricle; NT-proBNP: N-terminal of the prohormone brain natriuretic peptide;

ECG: electrocardiogram; LDL: low density lipoprotein. An asterisk (�) with a p-value less than 0.001 indicates a statistically significant difference in the variable between

the survival and death groups. The information in the table is presented as n (%) and median value (IQR). The qualitative indicators of the data are expressed as the

proportion of the population (missing values are not counted), and the quantitative indicators are expressed as the median and the first quartile (Q1) and third quartile

(Q3) of the data (25–75%).

https://doi.org/10.1371/journal.pone.0278217.t001

Table 2. Patient outcomes.

Outcome Variable Before preprocessing (N = 5764) After preprocessing (N = 2702)

All-cause mortality alive 5625(97.6%) 2582(95.6%)

death 139(2.4%) 120(4.4)

feature dimension 87(20%) 25(5.8%)

https://doi.org/10.1371/journal.pone.0278217.t002
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3.3 Risk factors

Ultimately, clinical features with high risk factors for ACS included 25 variables: among them

clinical variables (sex, age, BMI, smoking); medical history variables (diabetes, hypertension,

history of renal insufficiency); electrocardiographic variables (heart rate); cardiac ultrasound

variables (e’ wave velocity, left ventricular ejection fraction, left ventricular weight index);

blood test index variables (low density lipoprotein, total cholesterol, triglyceride, NT-proBNP,

apolipoprotein A); medication variables (statin, spironolactone, aspirin); coronary vascular

disease variables (bifurcation site, chronic total occlusion (CTO), angulation of diseased ves-

sels, calcification of diseased vessels, type of diseased vessels, and location of diseased vessels).

Among them, e’ wave velocity, history of renal insufficiency, left ventricular mass index,

and apolipoprotein A are variables that we did not find in the data sets of other literature [13,

14], but actually have some influence on ACS. Renal insufficiency will activate the renin-angio-

tensin system (RAAS) and sympathetic nervous system, aggravate cardiac insufficiency, and

affect long-term prognosis and survival. The left ventricular mass index is used as a diagnostic

index related to left ventricular diastolic dysfunction, and thus is related to long-term progno-

sis and survival. Low apolipoprotein A makes it easy to have high blood lipids, which increases

the risk of coronary heart disease and affects survival. The e’ wave velocity is one of the diag-

nostic indicators of left ventricular diastolic dysfunction.

3.4 The overall pipeline procedure

Fig 1 depicts the process from raw data to predictive model development and their evaluation

process to determine a subject’s risk probability of developing ACS. The pipeline consists of

three distinct operational stages: 1) data mining and modeling; 2) model development; and 3)

model evaluation. Our ACS model development and validation strictly follows the process of

this pipeline. First, we extracted experimental data from ACS patients discharged after PCI,

statistically analyzed the association of each variable, and then preprocessed the dataset and

coded categorical variables. Second, we screened ACS key features using a hybrid feature selec-

tion method and divided the training cohort (60%) and test cohort (40%) into different pro-

portions by experimental data. Third, we use the SMOTETomek hybrid sampling method to

deal with class imbalance in the experimental dataset. We then applied five widely used

machine learning algorithms and convolutional neural network model for predicting the post-

operative risk of ACS. Finally, we evaluate the performance and comparison results of all

models.

3.5 ACS Hybrid Feature Selection (XGBoost + RFECV)

XGBoost [30] is an optimized and improved gradient boosted tree system, and this paper

adopts XGBoost for the implementation of the gradient boosted tree model. Due to the high

dimensionality and sparsity of ACS features, we consider tree models to build interpretable

feature branches. To maximize the gain value of the entire tree after splitting, each layer

chooses a feature split point as a leaf node while developing the tree model. Accordingly, the

Table 3. Division of training queue and test queue.

Queue Variable Number Proportion

Training set (60%) alive 1552 95.7%

death 69 4.3%

Test set (40%) alive 1030 95.3%

death 51 4.7%

https://doi.org/10.1371/journal.pone.0278217.t003
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more times a feature is divided, the more value it adds to the overall tree and the more signifi-

cant it becomes. The tree growth process is a process of heuristically searching for feature sub-

sets, so tree models are often combined with feature importance ranking to achieve

interpretable feature learning.

After the gradient boosted tree (GB) is created, it is relatively straightforward to get the

importance score of each attribute. Similar to GB, XGBoost can also quickly and efficiently

obtain the importance of each feature during the node splitting process of all established trees.

where L represents the loss function, ft represents the t-layer tree, and Ω(ft) is the regulariza-

tion term. The second-order Taylor series of L at the t-th iteration is shown in Eq 1.

LðtÞ ¼
Xk

i¼1

l yi; y
ðt� 1Þ

i
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þ giftðxiÞ þ
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2
hif
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t ðxÞ
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Here, gi and hi represent the first and second order gradient statistics. When we train XGBoost,

we usually use Gain to determine the best split node.
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where IL and IR represent the sample nodes on the left and right after segmentation, respec-

tively (see Eq 2). I denotes the intersection of IL and IR; λ and γ are penalty parameters. Gain
represents the gain score after each split of the tree. The gain is not a calculated split, but a

measure of the reduction in impurities in the actual node, which is the average gain of all splits

using that feature. The average gain is calculated by dividing the overall gain for all trees by the

total number of feature splits. The average gain is used to determine the final feature signifi-

cance score. After the XGBoost model is constructed, the feature ranking based on the impor-

tance of gain can be obtained, including all feature importance scores that may affect the

results [31]. This score indicates the usefulness or value of each feature in building the model’s

boosted decision tree. For recursive feature elimination (REF), the large drop in accuracy indi-

cates that this feature is highly relevant and useful.

Fig 1. Model development and evaluation pipeline. Process flowchart for visual data processing and model

development.

https://doi.org/10.1371/journal.pone.0278217.g001
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3.5.1 Feature selection process. Our proposed hybrid feature selection method is shown

in Algorithm 1. The reason why this paper does not directly use the above feature selection

method is as follows: Among the existing feature selection methods, tree-based ensemble

learning algorithms (such as random forests, gradient boosting trees, etc.) can automatically

generate feature importance rankings according to Gini importance (mean reduction in impu-

rities, MDI) after model estimation [24]. This feature selection strategy is characterized by fast

execution but randomness, which is easy to cause the existence of a small number of redun-

dant features. Whereas for recursive feature elimination (RFE) where permutation importance

(Mean Precision Degradation, MDA) is used, the best feature combination can be found by

recursively removing the least important features to improve generalization performance [32].

It is more accurate to iteratively select features using RFE with cross validation (RFECV). But

the defect of RFECV feature selection is that it takes a lot of time in the search process. And we

hope to make up for the weaknesses of each algorithm by combining these two FS methods.

Fig 2 shows the process of hybrid feature selection proposed in this paper. The process first

filters a set of relatively important features based on XGBoost. Where the threshold {tn} repre-

sents the possible value of the importance score (rn) of the calculated feature, and the range is

[0, rn]. For each threshold ti, there is a set of feature subsets {fi} corresponding to it. By fitting a

sub-model at each threshold ti, the performance of the model at that threshold is evaluated.

Then compare all the evaluation results and select the ti with the best performance, and then

the feature set filtered based on the gradient tree FS can be initially obtained. The next step is

to find the optimal subset from the filtered features using recursive feature elimination with

cross validation (RFECV). This reduces a lot of unnecessary time compared to using RFECV

directly while also improving the quality of the features being screened. Therefore, this hybrid

feature selection method can remove redundant and irrelevant features at the expense of a

small amount of accuracy, so as to obtain efficient and streamlined optimal features as much

as possible.

3.5.2 Algorithm.

Algorithm 1: Proposed Hybrid Feature Selection

1. Input: training set S ¼ fðfn; ynÞg
N
n¼1
, N is the amount of data, Ω is

the entire feature set;

2. Feature selection using XGBoost:

3. Fit the XGBoost model with all features {fn};

4. Feature importance ranking and partition threshold to select
features:

a. Calculate the relative importance score {rn} of Ω and sort
in descending order;

b. Filter features by thresholds;

1. Define threshold tn = {0,0.001,. . .,rn};

2. for every {ti}, do:

a. Remove all features fi with ri < ti;

b. Get the subset with remaining features Si = Ω -fi;

c. Retrain the subset Si using the XGBoost model;
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d. Ai Obtain the current validation model AUC evaluation
performance Ai;

3. end for

4. Select the threshold τi and the number of features n under
the best evaluation performance Ai;

5. Select the final feature set ff �ng according to the thresh-
old τi and the number of features n;

5. Feature selection using RFE-?CV:

6. Recursive feature elimination selects the optimal set:

a. N is the number of feature sets ff �ng, C is the number of
k-fold cross-validation;

b. for every i = N, . . ., 2, do:

1. for every j = 1, . . ., i, do:

a. Remove the feature fj
ðiÞ to obtain a subset with remaining

features Sj 0 ¼ ff
�

ng � fj;

b. Retrain the subset Sj 0;

c. Cross-validation to obtain the current Accuracy assess-
ment performance Accj;

2. end for

3. Select the best evaluation performance {Accj}, and elimi-
nate the feature f ðiÞ

j
;

Fig 2. Flowchart of the hybrid feature selection method.

https://doi.org/10.1371/journal.pone.0278217.g002
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4. Retain i-1th important features, obtain subset Si0 and
evaluate performance Acci;

c. end for

d. Compare the best evaluation performance {Acci}, and select
the final feature set f��n

� �
with n features;

7. Output: Important features after feature selection f ��n
� �

.

3.5.2.1. Time complexity. The number of known data is N, the number of features is D, the

number of spanning trees is K, the depth of the tree is L, and the number of threshold itera-

tions is T. The complexity of pre-sorting for global features is O(DN log N); the complexity of

building K trees isO(KLND); the complexity of sorting importance scores isO(D logD); select-

ing features after iterating over all thresholds The complexity is O(T(D + DN log N + KLND)).

The time complexity of RFE-CV feature selection is O(D3): Finally, the total time complexity

of XGBoost and RFE-CV feature selection is: O (DT + (1 + T)DN log N + (1 + T)KLND + D
log D + D3)).

3.6 Medical data imbalance

Our final ACS dataset showed a data class imbalance between the patients’ survival and death

groups. In practical medical problems, especially data samples for binary classification prob-

lems, real data often produces missing values, including values related to privacy issues,

incomplete data extraction, etc. This will result in an uneven ratio between normal and abnor-

mal samples. This imbalance can lead to biased model learning performance, allowing the

model to learn only a small amount of information from data with low proportions. Generally,

data sampling techniques to deal with data imbalance can be divided into three categories:

oversampling, undersampling, and hybrid methods [33, 34]. BorderlineSMOTE [33] is a typi-

cal oversampling technique. Since the survival group to death group ratio in this study is

around 23:1, we use the SMOTETomek [35] hybrid strategy to address the issue of class imbal-

ance when training the prediction model. SMOTETomek is a common hybrid sampling strat-

egy that is used to balance the class size impact by increasing the number of minority classes

while lowering the number of majority classes. After adding new artificially synthesized

minority class samples using the SMOTE technique, the majority class data is reduced using

the Tomek Links [36] technique. Better categorization is achieved by eliminating class overlap

via Tomek Link, which enables all nearest neighbor samples to belong to the same class.

3.7 ACS interpretable machine learning model

In our study, we utilized five supervised learning models to classify high-risk patients—logistic

regression (LR) [37], random forest (RF) [38], gradient boosted tree (GBDT) [39], deep neural

network (DNN), and Extreme Gradient Boosting (XGBoost) [30]—were used to predict

research results. The implementation of the DNN model is a multilayer perceptron (MLP),

which consists of multiple fully connected network layers. In addition, we also use a one-

dimensional convolutional neural network (1D-CNN) model [40], which works well in

sequence models, natural language processing (NLP), etc. Among them, logistic regression

and tree models are commonly used interpretable models. Linking the feature representation

learned by the model with specific medical prior knowledge is beneficial to help domain

experts understand the model’s decision-making process. This interpretable knowledge is

introduced into the process of model design and modification through feedback to improve

the performance of the model in medical scenarios.
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3.8. Ethics approval

This research was approved by the Institutional Review Board (IRB) of Fujian Medical Univer-

sity Union Hospital (Approval number: 2021KJCH082). Interviews were conducted following

confirmation of informed consent, which was recorded verbally prior to the interview ques-

tions. This consent process was approved by the ethics committee. H.Z.L. had access to infor-

mation that could identify individual participants during or after data collection.

4. Experimental results and analysis

4.1 Data processing

The data processing of ACS aims to perform operations such as data cleaning, data transfor-

mation, missing value filling, and redundant data deletion on the original data. This ensures

the quality of the data, so that the accuracy of the results can be obtained during data analysis

and large deviations in predictions can be avoided.

1. Data cleaning. There is a lot of redundant and confusing data in the original phenotype

data. We manually screened important factors with the advice of doctors, and eliminated

characteristic factors that had little impact on the classification results. This includes: name,

hospital number, date of surgery, and data records of some surgical operations. We initially

selected 87 relatively important features. According to the related research on high risk fac-

tors for ACS [5], we also set basic characteristics in this dataset, including age, gender, BMI,

smoking status, history of diabetes, and history of hypertension.

2. Data deduplication. We select the patient ID number as the unique attribute, delete the data

whose ID number does not exist, and retain 5764 valid records. Then, the ID number attri-

bute is deduplicated, and the patient data record at the latest time point (take the last record

as an example) is retained. There are 4562 pieces of data remaining.

3. Handling of missing values and outliers. First, all patients whose information loss rate

exceeds 80% are filtered, and the patient data with relatively complete information is

retained, with a total of 2702 pieces of data. Then we sequentially process these 87 columns

of data features, using the interquartile range to detect outliers and setting the default value

to be the outlier. Then, the upper and lower limits of the standard are set for the indicators

of each feature to constrain outliers. For outliers out of bounds, the upper and lower bounds

under the current column properties will be used instead.

4. Data conversion. The multi-dimensional features of the dataset are discretely distributed,

so it is necessary to uniformly standardize the data. To keep each feature in the range [0,1]

with a mean of 0 and a variance of 1, we use the Z-score normalization method (Z ¼ X� �X
s

).

4.2 Statistical analysis

From the information collected in Table 1, we observed the statistical distribution of data

between the survival and death groups from different perspectives. Among the clinical features

with a p value of less than 0.001 were age, gender, history of renal insufficiency, left ventricular

ejection fraction, statin, spironolactone, aspirin use, and angulation of diseased vessels. The

differences in these variables were statistically significant.

In the gender distribution of the ACS patient population, the number of male patients was

2207 (81.7%), 2127 were at low risk, and 80 died (high risk); the number of female patients was

495 (18.3%), 455 were at low risk, and 40 died. In the BMI distribution of the ACS patient pop-

ulation, the median BMI in the low-risk group was 24.0, the upper quartile (Q3) was 31.3, the
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lower quartile (Q1) was 17.5, and the number of outliers was 48. In the high-risk group, the

median BMI was 24.0, Q3 was 27.3, Q1 was 20.1, and the number of outliers was 10. In the age

distribution of ACS patients, the median age of the low-risk group was 65, with the largest

number of patients between the ages of 57 and 71, showing a dense distribution; The median

age of the high-risk group is 72, and 64–78 years is the high-frequency period of all-cause mor-

tality, and the number of deaths in this range is higher than that in other ranges; In the distri-

bution of lifestyle habits (smoking, history of diabetes, and history of hypertension) in the ACS

patient population, the number of smokers in the low-risk group was 1129 (43.9%), and the

number of smokers in the high-risk group was 42 (38.5%); the low-risk group had diabetes,

748 people (29.4%), and 46 people (42.6%) in the high-risk group; 1473 (57.2%) people in the

low-risk group had hypertension, and 69 (65.1%) in the high-risk group.

The main predictors varied by study results. Fig 3 interpretably illustrates the correlation

heatmap of selected features (top 15). The correlation heatmap drawn observes the correlation

of multiple features with each other from the data table that is effective for prediction. The

darker the color, the higher the correlation coefficient, that is, the larger the value in the graph.

4.3 Performance evaluation

In the final stage of the pipeline shown in Fig 1, the scores of the models are compared to eval-

uate their performance in risk prediction. Binary model evaluations (case and non-case) are

based on sensitivity ( TP
TPþFN) and specificity ( TN

TNþFP), where TP, FP, TN, and FN represent true

positives, false positives, true negatives, and false negatives, respectively. False positives are

observations that are predicted to be positive but are not actually positive. A false negative is a

result that is predicted to be a counterexample but is not actually a counterexample. Area

under the curve (AUC) and receiver operating characteristic (ROC) were used to understand

the relationship between the two performance variables. The F1-score [41] is the harmonic

mean of precision and recall, which allows comparing the performance of different models in

identifying true disease predictions when compared to false positives. F1 = ð
2�precision�recall
precisionþrecall Þ,

where precision = ð TP
TPþFPÞ and recall = ð TP

TPþFNÞ. In our experiments, we use macro precision and

macro recall as evaluation criteria.

4.4. Hyperparameter tuning

In order to develop accurate predictive models and minimize classification errors for all-cause

death in ACS patients, we optimized several important parameters of the applied ML algo-

rithm using hyperparameter tuning. Table 4 shows the hyperparameter tuning of the applied

ML algorithm. Moreover, in order to obtain the optimal hyperparameter value, we select the

final value by fine-tuning. To ensure fair results for the original dataset ML experiments, we all

use the same parameters as the FS and mixed sampling experiments. All experiments were per-

formed on a fixed random number seed of 21. For the deep model, the training batches are all

300 epochs and the learning rate is 0.01. The model’s optimizer uses adam.

4.5 Feature selection

4.5.1 Feature importance ranking and recursive elimination. The data set obtained after

preliminary data processing needs further feature selection. We evaluated the significance of

each XGBoost model feature and ranked them in descending order of significance to identify

the key predictors of each research outcome in the patient group. The importance score is cal-

culated by node splitting, that is, the influence of the corresponding feature on the result.
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Fig 3. Interpretability of the correlation heatmap.

https://doi.org/10.1371/journal.pone.0278217.g003

Table 4. Hyperparameter tuning of machine learning algorithms.

Algorithm Parameter Configuration Value

Logistic Regression {penalty, solver, C, max_iter} {‘l2’, ‘liblinear’, ‘1.0’, ‘100’}

Random Forest {criterion, n_estimators} {‘gini’, ‘100’}

Gradient Boosting {criterion, n_estimators, learning_rate} {‘friedman_mse’, ‘100’,’0.1’}

XGBoost {booster, gamma, n_estimators, learning_rate} {‘gbtree’, ‘1’, ‘100’,’0.1’}

Deep Neural Network {epoch, batch_size, activation, loss, network layer} {‘300’, ‘100’, ‘relu’, ‘binary_crossentropy’, [12-50-50-50-1]}

1D-CNN {epoch, batch_size, activation, loss, network layer} {‘300’, ‘100’, ‘relu’, ‘categorical_crossentropy, [25–32–32–64–64–64–64–2]}

https://doi.org/10.1371/journal.pone.0278217.t004
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Then, we pick a fixed number of features based on a threshold (t). After each iteration, the top-

ranked features with scores higher than t are selected to be added to the feature set.

Fig 4A depicts the feature filtering of the relative importance ranking. As the threshold t

increases, the number of selected features n is decreasing. By observing the AUC performance

under different feature-thresholds, we found that the AUC of the XGboost evaluation model

before feature selection (n = 87) was 84.1%. The AUC performance did not change as the

threshold was increased to 0.001 (n = 72), indicating that the 15 features in between had no

effect on the results. When the threshold is 0.009 and the number of features is 41, the AUC

achieves the best effect of 87.4%; when the threshold is 0.009 and the number of features is 15,

the AUC is 84.7%.

For the better feature subset obtained in XGBoost, we filtered a total of 31 impurity features.

In order to further obtain fewer features and better performance, we also need to eliminate fea-

tures according to the 3-fold cross-validation RFE method (see Fig 4B). By model retraining

and iteratively pruning the features in the current set with the least importance, the optimal

feature combination is chosen from the filtered features in the RFE process. Recursively elimi-

nating the less correlated features from the 41 features yielded the best-performing combina-

tion with 15 features, achieving 96.4% accuracy. Compared with the original features (n = 87),

the number of features is reduced by 72, and the AUC is increased by 0.6%, while the AUC is

only decreased by 2.7% compared to the best effect (n = 41). Considering the trade-off between

complexity and performance, we therefore recommend choosing the 15 factors with the opti-

mal number of features.

4.5.2 Interpretability feature contributions. In addition to the important factors calcu-

lated by feature selection, we also manually added surgery-related factors for ACS, which were

combined into the total feature set. The final result is 25 variables with important weights to

the classification results (see Section 4.1.3), which provide most of the overall importance

weights.

Importance scores interpretably demonstrate the degree to which features are associated

with ACS survival-death, with each feature contributing differently (see Fig 5). And the e’

wave velocity explained the largest contribution to the prediction, exceeding 0.2. This suggests

that this feature makes a diagnosis of ACS a 2-fold higher chance of death than survival when

other features are held constant. Finally, it can be found that e’ wave velocity, target vessel

angulation, gender, left ventricular ejection fraction, etc. play an important role in all-cause

mortality.

4.6 Model comparison results

Tables 5 and 6 show the prediction results of different machine learning models on the ACS

dataset. The results in Table 5 are the performance only before or after data preprocessing. The

results in Table 6 are the performance after XGBoost feature selection and SMOTETomek

hybrid sampling based on Table 5. The time performance comparison of the model in

Table 10 is the mean result calculated by 5 experiments, and the value in (�) is the variance

result of the experimental data.

5. Discussion

In this study, we developed and tested a machine learning-based risk model to predict all-

cause mortality (cardiac and non-cardiac) 1 year after discharge using data from 2702 ACS

patients discharged after PCI. Thrombolysis in Myocardial Infarction (TIMI score) and Global

Registry of Acute Coronary Events (GRACE score) scores are currently the most widely used

predictive scoring models in clinical practice, but none of the study populations at that time
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Fig 4. Hybrid feature selection. (a) feature filtering by relative importance ranking; (b) feature combination selection

by RFECV.

https://doi.org/10.1371/journal.pone.0278217.g004
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Fig 5. Feature importance scores calculated by information gain. (a) ranking of the XGBoost top 12 ACS feature contributions; (b) ranking of the XGBoost

bottom 12 ACS feature contributions; (c) ranking of the GB model’s feature contributions; and (d) ranking of the RF model’s feature contributions.

https://doi.org/10.1371/journal.pone.0278217.g005

Table 5. Evaluation performance of the original ACS prediction model before/after preprocessing.

Model Accuracy AUC Precision Recall F1 score

Logistic Regression 96.9 79.8 66.3 54.3 56.4

Random Forest 97.2 78.1 86.1 52.3 56.3

Gradient Boosting 96.5 78.9 59.8 54.1 55.6

XGBoost 97.2 80.3 79.9 53.7 56.1

Deep Neural Network 96.1 68.5 57.0 53.9 54.9

1D-CNN 97.1 58.3 70.9 52.9 54.6

Logistic Regression 96.1 87.1 79.5 72.8 75.7

Random Forest 97.1 90.7 94.5 71.5 78.6

Gradient Boosting 97.1 89.3 89.4 75.2 80.6

XGBoost 96.9 89.8 90.6 70.4 76.8

Deep Neural Network 95.1 80.3 72.4 69.5 70.8

1D-CNN 96.5 76.8 82.5 73.9 77.5

https://doi.org/10.1371/journal.pone.0278217.t005
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received the current standard treatment. Our included study population received standard

care and revascularization surgery, and surgery-related indicators were added to the predic-

tors, thus providing high accuracy in detecting the risk of all-cause mortality after acute coro-

nary syndrome (ACS).

For logistic regression (LR), the Accuracy, AUC, and F1 scores before feature selection are

96.1%, 87.1%, and 75.7%. After feature selection (FS) and hybrid sampling (HS), AUC perfor-

mance improved by 2.8%, and the rest of the performance decreased by 13.1% and 26.8%,

respectively; For random forest (RF), the Accuracy, AUC, and F1 scores before feature selec-

tion are 97.1%, 90.7%, and 78.6%. After FS and HS, the Accuracy performance improved by

1.5%, the AUC performance improved by 9.2%, and the F1 performance improved by 14.5%;

For gradient boosting (GB), the Accuracy, AUC, and F1 scores before FS are 97.1%, 89.3%,

and 80.6%. After FS and HS, the AUC performance is improved by 8.0%, the F1 performance

is improved by 2.9%, and the Accuracy performance is decreased by 0.5%; For deep neural net-

works (DNN), after FS and HS, the Accuracy performance is improved by 3.0%, the AUC per-

formance is improved by 19.3%, and the F1 performance is improved by 20.1%; for extreme

gradient boosting (XGBoost), the Accuracy performance is improved after FS and HS by 1.9%,

the AUC performance increased by 10.0%, and the F1 performance increased by 17.0%. For

one-Dimensional Convolutional Neural Network (1D-CNN), after FS and HS, the Accuracy

performance is improved by 0.3%, the AUC performance is improved by 23.0%, and the F1

performance is improved by 8.9%.

Through comparison, it is found that, except for the obvious decline in the performance of

LR, the performance of other models after XGBoost feature selection and SMOTETomek

hybrid sampling has been improved to a certain extent. This is the shortcoming of LR in deal-

ing with nonlinear problems. Table 7 shows the AUC comparison results of different feature

selection methods. We chose the chi-square test, gradient boosting, and recursive elimination

feature selection method and this paper for comparison experiments. In order to ensure fair

results, we performed four feature selection experiments on the 87-dimensional ACS dataset,

respectively, and finally retained the same number of features (25) across both datasets. We

can observe that the performance of the method proposed in this paper is generally better than

the other FS methods mentioned above, except that the performance of the LR and GB models

Table 6. Evaluation performance of the ACS prediction model after feature selection and hybrid sampling.

Model Accuracy AUC Precision Recall F1 score

Logistic Regression 83.0 89.9 58.8 80.8 60.3

Random Forest 98.6 99.9 89.0 98.3 93.1

Gradient Boosting 96.6 97.3 79.7 88.9 83.5

XGBoost 98.8 99.8 90.7 97.5 93.8

Deep Neural Network 98.1 99.6 85.4 99.0 90.9

1D-CNN 96.8 99.8 79.7 98.3 86.4

https://doi.org/10.1371/journal.pone.0278217.t006

Table 7. AUC comparison results for different feature selection methods.

Model LR RF GB XGBoost DNN 1D-CNN

Chi-square test 79.9 79.5 82.5 77.9 74.4 75.3

GBDT-FS 78.5 83.8 83.3 83.1 66.5 70.0

RFE-FS 82.2 84.5 85.0 84.1 67.7 74.5

RFECV-FS 87.2 84.7 88.0 84.8 73.4 74.9

Proposed 87.1 88.4 86.2 85.0 78.7 77.2

https://doi.org/10.1371/journal.pone.0278217.t007
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is slightly worse. Therefore, the ACS features screened by the FS method in this paper are

effective.

We found that the model performance degrades after adopting FS under imbalanced data,

so we choose the sampling technique. Table 8 shows the AUC comparison results of different

sampling methods. We chose undersampling, oversampling, and BorderlineSMOTE for com-

parative experiments. From this, we can observe that SMOTETomek has the best AUC perfor-

mance in terms of improving the prediction performance of the model after FS. Therefore, we

chose SMOTETomek as the sampling method to be effective in this paper.

Table 9 shows the ablation experiments of our method. We investigate the variation in

Accuracy of different models after removing (a) FS; (b) hybrid sampling; and (c) FS and hybrid

sampling, respectively. It can be observed that after removing FS and SMOTETomek, the

Accuracy of most models (RF, XGBoost, DNN, and 1D-CNN) dropped significantly, reflecting

the effectiveness of this method; After removing SMOTETomek (only using FS), some models

(RF, XGBoost, and DNN) have more Accuracy drops than (c), indicating the importance of

FS; After removing FS (using only mixed sampling), the model accuracy works well. However,

the problem of too many features has not been solved, and the interpretability is poor, so this

article does not adopt it.

The results in Table 10 show that the temporal dimension of each model is somewhat

reduced after using our hybrid feature selection. Compared with the results of RFE and

RFECV in Table 7 and Table 10, it is found that the AUC effect of RFECV is better than that of

RFE, but the time performance is far inferior to that of RFE. This means that it requires more

time for cross-validation to screen features, thereby improving the predictive performance of

the model. Compared with the feature selection method in this paper, both the AUC perfor-

mance and the time performance are better than the RFECV method. The AUC is close to the

latter, and even some models are better than the latter. Therefore, the method in this paper is

effective in the process of selecting ACS features. The method in this paper reduces the num-

ber of features from 87 to 25, with a reduction rate of 71.3%. And the time performance is

between XGboost and RFECV. After removing a large number of irrelevant and unimportant

features, we shifted our focus to the main factors of the study. The ROC curve will be plotted

below to visualize this change.

It can be observed from the ROC curves of Fig 6A~6E that, except for the large deviation of

the XGBoost (analyzed in the previous section) model (0.85–0.90), the ROC curves of the

other models after FS are basically close to the original curve. After SMOTEtomek hybrid sam-

pling, it is found that the area of the ROC curve of most models greatly exceeds the original

area. For the ROC curve on LR, the area of the curve after FPR > 0.4 exceeds the original part

for the first time; the area of the ROC curve of GB exceeds the original part before FPR 0.7 and

fits the original curve at 0.7; for the rest of the models (RF, DNN, and XGBoost), ROC curves

reach the optimal level; overall, the method proposed in this paper is remarkably effective.

Fig 7 is an explanatory confusion matrix showing the prediction results after only data pre-

processing/feature selection and mixed sampling. It assesses the predicted number of survival

and death groups in the ACS test cohort. It can be found that after applying the method

Table 8. AUC comparison results for different sampling techniques.

Model LR RF GB XGBoost DNN 1DCNN

UnderSampler 88.0 94.7 82.5 92.5 88.1 87.3

OverSampler 84.1 87.6 82.0 80.9 78.9 77.2

BorderlineSMOTE 87.1 99.1 95.7 98.6 98.9 98.8

SMOTETomek 89.9 99.9 97.3 99.8 99.6 99.8

https://doi.org/10.1371/journal.pone.0278217.t008
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Table 9. Ablation experiments of the proposed method (accuracy comparison).

Model LR RF GB XGBoost DNN 1D-CNN

Proposed 83.0 98.6 96.6 98.8 98.1 96.8

(w/o) FS+SMOTETomek 96.1 97.1 97.1 96.9 95.1 96.5

(w/o) FS 85.6 99.0 98.0 99.3 97.6 98.9

(w/o) SMOTETomek 96.3 97.3 95.7 97.2 95.4 95.7

https://doi.org/10.1371/journal.pone.0278217.t009

Table 10. Time performance comparison of ACS prediction models and FS method.

Index Model Original time (s) Time after FS (s) Improvement (%)

1 Logistic Regression 0.057(±0.0057) 0.030(±0.0022) 47.5%

2 Random Forest 0.770(±0.0343) 0.461(±0.0134) 40.1%

3 Gradient Boosting 1.730(±0.0158) 0.515(±0.0200) 70.2%

4 XGBoost 0.306(±0.0452) 0.144(±0.0101) 53.1%

5 Deep Neural Network 13.855(±0.4814) 13.502(±0.1782) 5.2%

6 1D-CNN 128.373(±3.6955) 70.287(±1.0336) 45.2%

Index FS Method Processing time (s)

7 RFE 7.211(±0.3250)

8 RFECV 68.607(±0.9883)

9 XGboost 25.640(±0.2424)

10 Proposed 38.823(±0.3643)

https://doi.org/10.1371/journal.pone.0278217.t010

Fig 6. ROC curves of the model under non-feature selection, feature selection, and mixed sampling.

https://doi.org/10.1371/journal.pone.0278217.g006
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proposed in this paper, the number of correct predictions of the LR model for the ACS death

group in (a)~(b) increased from 24 to 40, but the number of misjudgments in the survival

group increased from 15 to 173; In the Fig 7C and 7D, the number of correct predictions of

the ACS death group by the RF model has increased from 22 to 50, and the effect is more accu-

rate; In the Fig 7E and 7F, the number of correct predictions by the GB model for the ACS

Fig 7. The confusion matrix includes. (1) only each prediction model after data preprocessing, where (a) LR, (c) RF, (e) GB, (g)

DNN, (i) XGBoost, (k) CNN; and (2) each prediction model after using feature selection and mixed sampling techniques, where (b)

LR, (d) RF, (f) GB, (h) DNN, (j) XGBoost, (l) CNN.

https://doi.org/10.1371/journal.pone.0278217.g007
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death group increased from 26 to 41, while the number of misjudgments in the survival group

increased from 6 to 27; In the Fig 7G and 7H, the number of correct predictions of the DNN

model for the ACS death group has increased from 21 to 51, and all the death groups are cor-

rectly predicted; In the Fig 7I and 7J, the number of correct predictions of the XGBoost model

for the ACS death group increased from 21 to 49, and the number of misjudgments in the sur-

vival group increased from 4 to 11; In the Fig 7K and 7L, the number of correct predictions by

the one-dimensional convolutional neural network model for the ACS death group increased

from 25 to 51, and the number of misjudgments in the survival group increased from 12 to 35.

In conclusion, the combination of the feature selection method and the mixed sampling

technique proposed in this paper can predict the death group correctly to the maximum extent

under the condition of a low false positive rate, and the performance is better than that of the

original group.

6. Conclusion

In the actual diagnosis and treatment of acute coronary syndrome, there are a large number of

redundant related features, and the research on the features is not yet thorough. So this paper

mainly studies a hybrid feature selection (based on gradient boosting trees and RFECV) to

assist in screening the ACS for important factors. The method has used XGBoost to filter a set

of relatively important features and select the feature set with the best evaluation result at the

moment. RFECV is then used again to find the best subset of features from the filtered fea-

tures. The method of this study successfully extracted 25 factors that play an important role in

ACS death from the multi-dimensionally complex medical records (430 factors) in medicine.

To better understand the contribution of different features to ACS, this study statistically ana-

lyzes the high correlation of features and then uses the interpretability of gradient boosting

trees to explain key features.

In the experimental part, this study conducts experiments using six ML models incorporat-

ing mixed sampling techniques to predict outcomes for different control groups (survival and

death). The experimental results show that we have made breakthroughs in the accuracy and

F1 score indicators of each model and have successfully classified the ACS dataset. Therefore,

the feature selection method in this paper, combined with the hybrid sampling technique, can

provide an automatic identification mechanism for patients at risk of ACS disease. We found

that it can improve the predictive performance, and the excellent predictive ability will opti-

mize its application in the diagnosis and treatment of postoperative recurrence while simplify-

ing the diagnosis process. It has significance to a certain extent in the study of ACS.

Our method is very effective for predicting ACS, but there are still some potential limita-

tions in this study, such as the interpretability and performance of this method, which still

have a lot of room for improvement. In future work, we will focus on interpretable deep learn-

ing models (such as CNN) to improve prediction performance and assist doctors in making

timely and correct decisions on ACS diagnosis and treatment. The authors also plan to develop

a visual ACS medical decision support system in the future and test the automated system on

other ACS datasets.
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