Table 10. Time performance comparison of ACS prediction models and FS method.
Index | Model | Original time (s) | Time after FS (s) | Improvement (%) |
1 | Logistic Regression | 0.057(±0.0057) | 0.030(±0.0022) | 47.5% |
2 | Random Forest | 0.770(±0.0343) | 0.461(±0.0134) | 40.1% |
3 | Gradient Boosting | 1.730(±0.0158) | 0.515(±0.0200) | 70.2% |
4 | XGBoost | 0.306(±0.0452) | 0.144(±0.0101) | 53.1% |
5 | Deep Neural Network | 13.855(±0.4814) | 13.502(±0.1782) | 5.2% |
6 | 1D-CNN | 128.373(±3.6955) | 70.287(±1.0336) | 45.2% |
Index | FS Method | Processing time (s) | ||
7 | RFE | 7.211(±0.3250) | ||
8 | RFECV | 68.607(±0.9883) | ||
9 | XGboost | 25.640(±0.2424) | ||
10 | Proposed | 38.823(±0.3643) |