Skip to main content
. 2022 Nov 29;17(11):e0278217. doi: 10.1371/journal.pone.0278217

Table 10. Time performance comparison of ACS prediction models and FS method.

Index Model Original time (s) Time after FS (s) Improvement (%)
1 Logistic Regression 0.057(±0.0057) 0.030(±0.0022) 47.5%
2 Random Forest 0.770(±0.0343) 0.461(±0.0134) 40.1%
3 Gradient Boosting 1.730(±0.0158) 0.515(±0.0200) 70.2%
4 XGBoost 0.306(±0.0452) 0.144(±0.0101) 53.1%
5 Deep Neural Network 13.855(±0.4814) 13.502(±0.1782) 5.2%
6 1D-CNN 128.373(±3.6955) 70.287(±1.0336) 45.2%
Index FS Method Processing time (s)
7 RFE 7.211(±0.3250)
8 RFECV 68.607(±0.9883)
9 XGboost 25.640(±0.2424)
10 Proposed 38.823(±0.3643)