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Abstract

Parvoviruses (family Parvoviridae) are small DNA viruses that cause numerous diseases of

medical, veterinary, and agricultural significance and have important applications in gene

and anticancer therapy. DNA sequences derived from ancient parvoviruses are common in

animal genomes and analysis of these endogenous parvoviral elements (EPVs) has demon-

strated that the family, which includes twelve vertebrate-specific genera, arose in the distant

evolutionary past. So far, however, such “paleovirological” analysis has only provided

glimpses into the biology of ancient parvoviruses and their long-term evolutionary interac-

tions with hosts. Here, we comprehensively map EPV diversity in 752 published vertebrate

genomes, revealing defining aspects of ecology and evolution within individual parvovirus

genera. We identify 364 distinct EPV sequences and show these represent approximately

200 unique germline incorporation events, involving at least five distinct parvovirus genera,

which took place at points throughout the Cenozoic Era. We use the spatiotemporal and

host range calibrations provided by these sequences to infer defining aspects of long-term

evolution within individual parvovirus genera, including mammalian vicariance for genus

Protoparvovirus, and interclass transmission for genus Dependoparvovirus. Moreover, our

findings support a model of virus evolution in which the long-term cocirculation of multiple

parvovirus genera in vertebrates reflects the adaptation of each viral genus to fill a distinct

ecological niche. Our findings show that efforts to develop parvoviruses as therapeutic tools

can be approached from a rational foundation based on comparative evolutionary analysis.

To support this, we published our data in the form of an open, extensible, and cross-platform

database designed to facilitate the wider utilisation of evolution-related domain knowledge

in parvovirus research.
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Introduction

Parvoviruses (family Parvoviridae) are a diverse group of small, nonenveloped DNA viruses that

infect a broad range of animal species [1,2]. The family includes numerous important pathogens of

humans and domesticated species, including erythroparvovirus B19 (fifth disease) [3], carnivore

protoparvovirus 1 (canine parvovirus) [4], and carnivore amdoparvovirus 1 (Aleutian mink disease)

[5]. Parvoviruses are also being developed as next-generation therapeutic tools: Adeno-associated

virus (AAV) has been successfully adapted as a gene therapy vector, and other parvoviruses are lead-

ing candidates for human gene therapy [6,7]. Rodent protoparvoviruses show natural oncotropic

and oncolytic properties and are being explored as potential anticancer therapeutics [8–10].

Parvoviruses have highly robust, icosahedral capsids (T = 1) that contain a linear, single-

stranded DNA genome approximately 5 kilobases (kb) in length. Their compact genomes are

typically organised into two major gene cassettes, one (Rep/NS) that encodes the nonstructural

replication proteins, and another (Cap/VP) that encodes the structural coat proteins of the

virion [11]. However, some genera contain additional open reading frames (ORFs) adjacent to

these genes or overlapping them in alternative reading frames. All parvovirus genomes are

flanked at their 30 and 50 ends by palindromic inverted terminal repeat (ITR) or “telomere”

sequences that are the only cis elements required for replication.

In recent years, high-throughput sequencing and new metagenomic analytical methods

have led to the discovery of numerous novel parvovirus species, and the taxonomy of the fam-

ily Parvoviridae has now been extensively reorganised to accommodate this newly discovered

diversity [1,2]. The availability of genome sequence data from a wide range of diverse parvovi-

rus species provides unprecedented opportunities to utilise comparative approaches to investi-

gate parvovirus biology. Furthermore, progress in whole genome sequencing (WGS) has

revealed that DNA sequences derived from parvoviruses (and many other virus groups) are

widespread within metazoan genomes [12–14]. Such “endogenous viral elements” (EVEs) arise

when infection of germline cells results in virus-derived DNA sequences being incorporated

into chromosomes and inherited as host alleles. EVE sequences can sometimes persist in the

gene pool over many generations with the result that some are genetically “fixed” (i.e., they

reach a frequency of 100%). Fixed EVEs have unique value to studies of virus evolution

because—much like a virus “fossil record”—they preserve retrospective information from

which the evolutionary interactions of viruses and hosts across geologic timescales can be

inferred. For example, identification of orthologous EVE loci in multiple related host species

demonstrates that virus integration occurred in the common ancestor of those species, prior to

their divergence [12,13]. A robust minimum age estimate for EVE integration can therefore be

inferred from host species divergence times (which are in part derived from fossil evidence).

Comparative studies have shown that endogenous parvoviral element (EPV) sequences

occur frequently in vertebrate genomes, and many of these derive from germline incorpo-

ration events that occurred million years ago (Mya) [15–18]. In this study, we perform broad-

scale comparative analysis of 752 published vertebrate genomes to recover 364 distinct EPV

sequences representing at least 199 unique loci and involving at least five distinct parvovirus

genera. Through broad-scale phylogenetic and genomic analysis—encompassing all known

vertebrate EPVs and parvovirus species—we reveal the long-term evolutionary interactions

between parvoviruses and their vertebrate hosts.

Results

Open resources for comparative genomic analysis of parvoviruses

To facilitate greater reproducibility and reusability in comparative genomic analyses, we previ-

ously developed GLUE (Genes Linked by Underlying Evolution), a bioinformatics software
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framework for the development and maintenance of “virus genome data resources” [19].

Here, we used the GLUE framework to create Parvovirus-GLUE [20], an openly accessible

online resource for comparative analysis of parvovirus genomes (S1 and S2 Figs). Data items

collated in Parvovirus-GLUE include the following: (i) a set of 135 reference genome

sequences (S1 Table) each representing a distinct parvovirus species and linked to isolate-asso-

ciated data (isolate name, time and place of sampling, host species); (ii) a standardized set of

51 parvovirus genome features (S2 Table); (iii) genome annotations specifying the coordinates

of these genome features within reference genome sequences (S3 Table); and (iv) a set of mul-

tiple sequence alignments (MSAs) constructed to represent distinct taxonomic levels within

the family Parvoviridae (Table 1 and S3 Fig).

The Parvovirus-GLUE project is built by using GLUE’s native command layer to create a

bespoke MySQL database that not only contains the data items associated with our analysis,

but also maps the semantic links between them (e.g., the associations between specific

sequences, genome features, and MSA segments) (S1 and S2 Figs). Standardised, reproducible

Table 1. Summary of MSA hierarchy constructed for the family Parvoviridae.

# Scope/Name Parent Children Constraining reference Coveragea Number of taxab

Virusesc2. EVEs

Family (root MSA)

1 Parvoviridae none 3 CPV NS (13%) 3 0

Subfamily

2 Parvovirinae Parvoviridae 2 CPV NS (63%) 13 4

3 Hamaparvovirinae Parvoviridae 2 PPV7 NS 5 0

4 Densoparvovirinae Parvoviridae 0 JcDNV NS 9 (1) 0

Cross-genus

5 Boca-Ave Parvovirinae 2 ChPV Genome (70%) 2 0

6 Amdo-Proto Parvovirinae 2 CPV Genome (77%) 2 0

7 EDCT Parvovirinae 3 HPV4 Genome (57%) 4 0

8 Chaphama-Icthama Hamaparvovirinae 2 PPV7 Genome 2 0

Genus

9 Aveparvovirus Boca-Ave 0 ChPV Genome (88%) 4 0

10 Bocaparvovirus Boca-Ave 0 BPV Genome (75%) 16 0

11 Erythroparvovirus EDCT 0 B19 Genome (80%) 8 (2) 2

12 Tetraparvovirus EDCT 0 HPV4 Genome (80%) 9 0

13 Dependoparvovirus EDCT 0 AAV2 Genome (84%) 28 81

14 Copiparvovirus EDCT 0 BPV2 Genome (62%) 7 0

15 Amdoparvovirus Amdo-Proto 0 AMDV Genome (85%) 7 6

16 Protoparvovirus Amdo-Proto 0 CPV Genome (90%) 20 106

17 Chaphamaparvovirus Hamaparvovirinae 0 PPV7 Genome (85%) 14 (4) 0

18 Icthamaparvovirus Hamaparvovirinae 0 SyIPV Genome (62%) 1 1

aCoverage relative to constraining reference.
bNote that linking alignments (i.e., those representing internal nodes within the alignment tree hierarchy) contain only the reference sequences for their “child”

alignments.
cNumbers shown in brackets indicate proportion of viral taxa that are putatively exogenous viruses identified in the present study by screening whole genome sequence

databases.

AMDV, Aleutian mink disease virus; BPV, bovine parvovirus; B19, human erythroparvovirus B19; ChPV, chicken parvovirus; CPV, canine parvovirus; EDCT, Erythro-

Dependo-Copi-Tetra group; EVE, endogenous viral element; HPV4, human parvovirus 4; JcDNV, Junonia coenia densovirus; MSA, multiple sequence alignment; NS,

non-structural gene; PPV7, porcine parvovirus 7; SyIPV, Syngnathus scovelli ichthamaparvovirus.

https://doi.org/10.1371/journal.pbio.3001867.t001
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comparative genomic analyses can then be implemented by using GLUE’s command layer to

coordinate interactions between the project database and bioinformatics software tools.

Parvovirus-GLUE aims to provide a platform through which researchers working in differ-

ent areas of parvovirus genomics can benefit from one another’s work. The project can be

installed on all commonly used computing platforms and is also fully containerised via Docker

[21]. In the interests of maintaining a lightweight, flexible approach, the published project con-

tains only a single reference genome for each parvovirus species. However, it can readily be

extended to allow in-depth analysis at the species level (a tutorial included with the published

resource demonstrates how this can be done; [20]). Parvovirus-GLUE is hosted in an openly

accessible online version control system (GitHub), providing a platform for its ongoing devel-

opment by the research community, following practices established in the software industry

(S1C Fig) [22]. To facilitate its use across a broad range of analysis contexts, the resource

adheres to a “data-oriented programming” paradigm that directly addresses issues of reusabil-

ity, complexity, and scale in the design of information systems [23].

Comprehensive mapping of endogenous parvoviral elements in published

vertebrate genomes

To identify EPV loci in published vertebrate genomes, we performed systematic, similarity

search-based in silico screening (see S4 Fig) of WGS data representing 752 vertebrate species.

This led to the recovery of a total of 595 EPV sequences (Fig 1), which we resolved into a set of

199 distinct orthologous loci via sequence comparisons (Fig 2). We identified flanking genes

for EPV loci (S4–S6 Tables) and compiled the robust, orthology-based minimum age calibra-

tions we obtained from EPVs to generate an overview of parvovirus and vertebrate interaction

over the past 100 My (Fig 3).

EPVs were identified in all major groups of terrestrial vertebrates except agnathans, croco-

diles, and amphibians (Table 2). Overall, however, they were found to occur significantly

more frequently in mammalian WGS assemblies than in those of other vertebrate groups,

based on a two-sample proportion test implemented in the R software package [24], as follows:

Mammalia versus Sauria: (178 loci in 353 mammalian genomes, prop = 0.50 versus 16 loci in

200 saurian genomes, prop = 0.08; p-value = 2.4 × 10−23); Mammalia versus Actinopterygii (3

loci, 175 genomes, prop = 0.02; p-value = 3.69 × 10−28).

To taxonomically classify EPVs, we used a combination of sequence similarity-based com-

parisons and phylogenetic analysis. We found the vertebrate EPVs were predominantly

derived from viruses similar to protoparvoviruses (genus Protoparvovirus) and dependoparvo-

viruses (genus Dependoparvovirus). Meanwhile, the Amdo-, Erythro- and Ichthamaparvovirus
genera are also represented in the parvovirus “fossil record” (Fig 1). Meanwhile, the Ave-,

Boca-, Tetra-, Copi-, and Chaphamaparvovirus genera—all of which infect vertebrates—are

conspicuously absent.

We identified 121 protoparvovirus-related EPV sequences in mammals, which we estimate

to represent at least 105 distinct germline incorporation events (S5 Table). Several genome-

length elements were identified, and most elements spanned at least approximately 50% of the

genome (Fig 2). We also identified 213 dependoparvovirus-related EPV sequences, which we

estimate to represent at least 80 distinct germline incorporation events (S4 Table). Dependo-

parvovirus EPVs were identified in a broad range of vertebrate classes, including mammals,

birds, and reptiles (Table 2). Relatively few genome-length or gene-length elements are found

among dependoparvovirus-derived EPVs (Figs 2 and S11).

We identified the first reported examples of EPVs derived from genus Erythroparvovirus in

the genomes of the Patagonian mara (Dolichotis patagonum)—a New World rodent—and the
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Indri (Indri indri), a Malagasy primate (Figs 2 and S12). Amdoparvovirus-like EPVs have

been reported previously [25]; however, our screen identified novel orthologous copies

of EPV-Amdo.101-Serpentes, thereby providing a robust minimum age estimate of>100

Mya for this insertion and calibrating the evolutionary timeline of amdoparvoviruses (Tables 3

and S5).

Fig 1. Summary of EPV diversity identified via in silico screening. (a) Number of genomes screened per host class. Sauria is comprised of birds (144 genomes) and

reptiles (56 genomes). (b) Number of unique EPV loci identified in each host class. (c) Number of sequences identified in each parvovirus group. (d) Number of

sequences identified in each parvovirus group. Graphs were plotted with GraphPad Prism9. The data underlying this figure can be found in https://zenodo.org/

record/6968218#.Yu115vHMIUY.

https://doi.org/10.1371/journal.pbio.3001867.g001
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Subfamily Hamaparvovirinae contains two genera known to infect vertebrates—Chapha-
maparvovirus and Ichthamaparvovirus [1]. We previously reported an Ichthamaparvovirus-
derived EPV locus in fish [26]. Here, we report an additional locus in snakes (suborder Ser-

pentes). This sequence demonstrates that Ichthamaparvovirus host range extends to reptiles

(Figs 2 and S13) and, via orthology across multiple snake species, establishes a minimum age

of 62 My for the genus (Table 3).

Phylogenetic analysis reveals the evolutionary history of subfamily

Parvovirinae

Via Parvovirus-GLUE, we implemented a reproducible and extensible process (S6 Fig) for

reconstructing evolutionary relationships across the entire Parvoviridae, at a range of taxo-

nomic levels. Phylogenies were reconstructed using maximum likelihood (ML), firstly among

viruses only (S7 Fig), and secondly among both viruses and EPVs (Figs 4–8 and S8-S13). For

subfamily Parvovirinae, we reconstructed phylogenies from polypeptide-level MSAs spanning

the highly conserved tripartite helicase domain of Rep (Fig 4). These phylogenies reveal three

robustly supported sublineages each encompassing multiple genera as follows: (i) “ETDC”:

Erythro-, Tetra-, Dependo-, and Copiparvovirus; (ii) “Ave-Boca”: Ave- and Bocaparvovirus; and

(iii) “Amdo-Proto”: Amdo- and Protoparvovirus.
The EDTC and “Amdo-Proto” clades are demonstrably ancient as they both include EPVs

that were incorporated into the germline >80 Mya. The “Ave-Boca” lineage does not have fos-

sil representatives, but, notably, it comprises entirely distinct mammalian and saurian lineages,

raising the possibility of ancient host–virus codivergence along the Mammalia-Sauria split

approximately 200 Mya (Table 3 and Fig 3). Similarly, we identified EPVs derived from the

“Amdo-Proto” and “ETDC” lineages in basal vertebrates including lobe-finned fish (class Sar-

copterygii) and sharks (class Chondrichthyes) (Fig 4). Consistent with ancient codivergence

(rather than recent, interclass transmission), these sequences group basally, suggesting that the

emergence of Parvovirinae genera might predate the deeper divergences among terrestrial ver-

tebrates (Table 3 and Fig 3).

While the majority of EPV loci identified in our study are unambiguously related to con-

temporary parvoviruses, several could not be classified beyond the subfamily level (all derive

Fig 2. Genomic structures of unique EPV loci. (a) Protoparvovirus-derived EPV loci shown relative to the canine parvovirus (CPV) genome; (b) Dependoparvovirus-

derived EPVs loci shown relative to the adeno-associated virus 2 (AAV-2) genome; (c) EPV loci derived from Amdoparvovirus-like viruses shown relative to the Aleutian

mink disease (AMDV) genome; (d) Erythroparvovirus-derived loci shown relative to the parvovirus B19 genome; (e) EPVs derived from unclassified parvoviruses shown

relative to a generic parvovirus genome. (f) Icthamaparvovirus-derived loci shown relative to Syngnathus scovelli parvovirus (SscPV). Solid bars to the right of each EPV

set show taxonomic ranks below genus level. Numbers shown to the immediate right indicate a consensus and the number of orthologs used to create it. Asterisks indicate

where this number includes sequences obtained in previous studies. Boxes bounding EPV elements indicate either (i) the presence of an identified gene (see S4–S6

Tables); (ii) an uncharacterised genomic flanking region; or (iii) a truncated contig sequence (see key). EPV locus identifiers are shown on the left. EPV were assigned

unique identifiers (IDs) constructed from three components following a convention proposed for endogenous retroviruses [61]. The first component is the classifier

“EPV.” The second component comprises the name of the lowest level taxonomic group (i.e., species, genus, subfamily, or other clade) into which the element can be

confidently placed by phylogenetic analysis and a numeric ID that uniquely identifies the insertion, separated by a period. The third component specifies the group of

species in which the sequence is found. Six letter abbreviations are used here to indicate host species. Genome feature abbreviations: NS, nonstructural protein; VP,

capsid protein; ORF, open reading frame; ITR, inverted terminal repeat; PLA2, phospholipase A2 motif. Species name abbreviations: PhaCin, Phascolarctos cinereus;

GymLea, Gymnobelideus leadbeateri; SarHar, Sarcophilus harrisii; MacEug, Macropus eugenii; VomUrs, Vombatus ursinus; MonDom, Monodelphis domestica; OryAfe,

Orycteropus afer; ChrAsi, Chrysochloris asiatica; ProCap, Procavia capensis; HetMeg, Heterohyrax brucei; EchTel, Echinops telfairi; TamTet, Tamandua tetradactyla;

BraVar, Bradypus variegatus; DasNov, Dasypus novemcinctus; MegLyr, Megaderma_lyra; PipPip, Pipistrellus pipistrellus; EllLut, Ellobius lutescens; PedCap, Pedetes

capensis; RatNor, Rattus norvegicus; MusSpr, Mus spretus; MusSpi, Mus spicelagus; ApoSyl, Apodemus sylvaticus; CapPil, Capromys pilorides; OctMim, Octomys

mimax; CteSoc, Ctenomys sociabilis; EreDor, Erethizon dorsatum; GraMur, Graphiurus murinus; NanGal, Nannospalax galili; CunPac, Cuniculus paca; HydHyd,

Hydrochoerus hydrochaeris; MyoCoy, Myocaster coypus; DinBra, Dinomys branickii; CasCan, Castor_canadensis; MusAve, Muscardinus avellanarius; ApoSyl,

Apodemus sylvaticus; CraTho, Craseonycteris thonglongyai; OctDeg, Octodon degus; ChiLan, Chinchilla lanigera; CunPac, Cuniculus paca; GliGli, Glis glis; DolPat,

Dolichotis patagonum; DauMad, Daubentonia madagascariensis; IndInd, Indri indri; ColAng, Colobus angolensis; ThaEle, Thamnophis elegans; PelCas, Pelusios

castaneus; PelCri, Pelecanus crispus; EgrGar, Egretta garzetta; GuaGua, Guaruba guarouba; OpiHoa, Opisthocomus hoazin; HipCom, Hippocampus comes; PtyMuc,

Ptyas mucosa; ScyCan, Scyliorhinus canicular; TetNig, Tetraodon nigroviridis. The data underlying this figure can be found in https://zenodo.org/record/6968218#.

Yu115vHMIUY.

https://doi.org/10.1371/journal.pbio.3001867.g002
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from viruses in subfamily Parvovirinae) (S6 Table). Some were very short and ancient (i.e.,

>80 Mya) and hence difficult to classify using phylogenetic approaches. These included a

short VP-derived insert previously reported in the limbin gene locus of mammals belonging to

superorder Euarchontoglires (Supraprimates) [15], and two short Rep-derived elements found

in mammals belonging to superorder Laurasiatheria. Longer yet still unclassifiable EPVs were

identified in lower vertebrate groups (e.g., lobe-finned fish). These EPVs might derive from

members of extant parvovirus groups that are yet to be described.

Some herpesvirus (family Herpesviridae) lineages contain a homolog of the parvovirus rep
gene in their genomes—called “U94” in human herpesvirus 6 (HHV6). This sequence—which

is presumed to have arisen via parvovirus integration into an ancestral herpesvirus genome—

groups in a nonspecific position within the Parvovirinae clade (Fig 4). U94 homologs occur in

multiple members of genus Roseolovirus (subfamily Betaherpesvirinae) [27], suggesting inser-

tion occurred following the divergence of Herpesviridae subfamilies approximately 200 Mya

[28] (Table 3).

Viruses belonging to the ‘Amdo-Proto’ lineage have only been isolated from mammals, sug-

gesting that both amdo- and protoparvoviruses might have originated in this host class, per-

haps even relatively recently (e.g., within the past 20 My). However, the presence of a basal,

ancient, amdoparvovirus-derived EPV (Amdo.101-Serpentes) in a squamate reptile (S3B Fig)

suggests a more distant evolutionary separation between these groups (Table 3). Previous

studies had suggested that Amdo.101-Serpentesmight represent an intermediate lineage

between the Amdo- and Protoparvovirus genera. However, this EPV exhibits several character-

istic amdoparvoviral features including a putative M-ORF and a capsid gene that lacks a PLA2

domain [25]. Furthermore, Amdo.101-Serpentes groups more closely with amdo- than proto-

parvoviruses in the Rep phylogenies reconstructed here, supporting the view that it represents

a reptilian lineage within an expanded Amdoparvovirus genus (Fig 4).

Fig 3. Incorporation of EPVs into the vertebrate germline. A time-calibrated evolutionary tree of vertebrate species examined in

this study, illustrating the distribution of germline incorporation events over time. Colours indicate parvovirus genera as shown in

the key. Diamonds on internal nodes indicate minimum age estimates for EPV loci endogenization (calculated for EPV loci found

in>1 host species). Coloured circles adjacent to tree tips indicate the presence of EPVs in host taxa, with the diameter of the circle

reflecting the number of EPVs identified (see count key). Brackets show taxonomic groups within vertebrates. The phylogeny shown

here was obtained from TimeTree, a database of organism timelines, timetrees, and divergence times [35]. The data underlying this

figure can be found in https://github.com/MacCampbell/parvoviridae-coevolution.

https://doi.org/10.1371/journal.pbio.3001867.g003

Table 2. Incorporation of parvovirus DNA into the vertebrate germline.

Parvovirus genus Host species group

Chondrichthyes

species = 5
Actinopterygii

species = 175
Sauria

species = 200
Mammalia

species = 353
Vertebrata

species = 752�

loci ratio loci ratio loci ratio loci ratio loci ratio
Ichthamaparvovirus 0 - 1 0.01 2 0.01 0 - 2 0.003

Erythroparvovirus 0 - 0 - 0 - 2 0.01 2 0.003

Amdoparvovirus 0 - 0 - 1 0.01 2 0.01 3 0.004

Dependoparvovirus 0 - 0 - 13 0.07 66 0.19 80 0.108

Protoparvovirus 0 - 0 - 0 - 105 0.3 105 0.142

Novel clades 1 0.2 2 0.01 0 - 3 0.01 7 0.009

Totals 1 0.2 3 0.02 16 0.08 178 0.5 199 0.263

�Agnathans (n = 3), Amphibians (n = 15), and Lungfish (Latimeria chalumnae) were also screened, but results are

not shown since no species in these groups were found to have EPVs. Ratio = unique loci/genomes screened.

https://doi.org/10.1371/journal.pbio.3001867.t002
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Phylogenetic analysis of protoparvoviruses revealed previously unappreciated diversity

within the Protoparvovirus genus: Three major subclades are present, which we labelled

“Archaeoproto,” “Mesoproto,” and “Neoproto” (Fig 6). The “Archaeoproto” clade is com-

prised exclusively of EPVs and is highly represented in the genomes of Australian marsupials

(Australidelphia), American marsupials (Ameridelphia), and New World rodents. The “Meso-

proto” clade is also comprised exclusively of EPVs and was sparsely represented in the EPV

fossil record, only being detected in the genomes of basal placental mammal groups (Xenar-

thra and Afrotheria). Finally, the “Neoproto” clade contains all known contemporary proto-

parvoviruses and a small number of EPV elements derived from these viruses (Fig 6).

Table 3. Dates and age estimates used to calibrate parvovirus evolution.

Parvovirus lineage Host species lineage(s) High Low

Ortholog-based�

Primate AAVs (Dependo-A) OW Primates 23 16

Neodependo- Glires 88 76

Neodependo- Lagomorpha 77 23

Neodependo- Vespertilionidae 49 38

Neodependo- Elephantidae 23 9

Neodependo- Eulemur 9 6

Neodependo- Hyracoidea 14 7

Lemuriadependo- Whippomorpha 56 52

Lemuriadependo- Rhinocerotidae 51 15

Lemuriadependo- Phyllostomidae 39 35

Oceaniadependo- Macropus 45 27

Amdo- Serpentes 111 100

Amdo- Hyracoidea 14 7

EDTC Laurasitheria 84 73

Ichthama Serpentes 74 49

Archaeo-Proto- Ctenomyidae-Octodontidae 24 16

Codivergence based��

Proto-Amdo lineage Sharks/Bony fish 497 450

Neoprotoparvovirus Eutherian mammals 200 150

Boca-Ave lineage Aves/Mammalia 393 297

Amdoparvovirus Sauria/Mammalia 326 297

Protoparvovirus Actinopterygii/Mammalia 446 425

Copiparvovirus Eutherian mammals 111 100

Tetraparvovirus Eutherian mammals 111 100

Erythroparvovirus Eutherian mammals 111 100

Dependoparvovirus Euteleostii 446 425

Biogeography-linked

Protoparvovirus Mammalia/Pangaea 200 180

Archeoproto- NW rodent clade NW Rodents/S. America 50 30

Erythroparvo- Rodent clade Malagasy rodents/Madagascar 30 20

U94 gene transfer

EDTC lineage Betaherpesvirinae origins 200 80

�Not all ortholog-based calibrations are shown, only the oldest for each virus lineage in which we identified orthologous sets of EPV sequences.

��Divergence dates obtained from TimeTree [35]. Complete records of ortholog-based dates can be found in S5 and S6 Tables.

https://doi.org/10.1371/journal.pbio.3001867.t003
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Fig 4. Evolution of subfamily Parvoviridae. An ML phylogeny showing the reconstructed evolutionary relationships

between contemporary parvoviruses of subfamily Parvovirinae and the EPVs derived from subfamily Parvovirinae. The

phylogeny, which is midpoint rooted for display purposes, was reconstructed using an MSA spanning 270 amino acid

PLOS BIOLOGY Origin and evolution of vertebrate parvoviruses

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001867 November 29, 2022 11 / 28

https://doi.org/10.1371/journal.pbio.3001867


A novel, neoprotoparvovirus-derived EPV was identified in the steppe mouse (Mus spicela-
gus). Notably, the NS and VP genes of this EPV exhibit distinct phylogenetic relationships,

implying recombination (S6F Fig). Furthermore, the VP/Cap gene of proto.4-MusSpi groups

very closely with BtHp-PV, implying cross-species transmission (S8C and S9 Figs). Rodent-

associated taxa are interspersed throughout the “Neoproto” clade, and the neoprotoparvo-

virus-derived EPVs found in rodent genomes group with viruses isolated from carnivores,

bats, and ungulates, rather than those isolated from rodents. Taken together, these phyloge-

netic relationships suggest that zoonotic transfer from rodents to other mammalian orders

may occur relatively frequently among viruses in the “Neoproto” clade, as has been suggested

for some retrovirus groups that infect mammals [29,30].

Phylogenetic reconstructions revealed the evolutionary relationships between dependo-

related EPVs and contemporary dependoparvoviruses (Figs 8A and S10). The evolutionary

origins of shorter and more degraded EPVs were more problematic to reconstruct. As might

be expected, we obtained relatively low bootstrap support for internal branching relationships

when such EPV sequences were included in the analysis (S11 Fig). However, if analysis is

restricted to the longer EPVs, phylogenies disclose several robustly supported subclades within

the Dependoparvovirus genus (Fig 8A). These included clades exclusive to reptilian species

(Sauria-), Australian marsupials (Oceania-), and Boreoeutherian mammals (Neo-). A fourth

clade, which we named “Shirdal,” contains taxa derived from both avian and mammalian

hosts.

Erythyroparvovirus-derived EPVs grouped with rodent erythroparvoviruses in phyloge-

netic trees, suggesting possible interorder transmission from rodents to lemuriforme primates

(S12 Fig). When examined in relation to the biogeographic distribution of host species, these

phylogenetic relationships provide tentative age calibrations for the Erythroparvovirus genus

based on the parsimonious assumption that they spread to Madagascar and South America

during the Cenozoic Era together with rodent founder populations (Table 3).

Conservation of genome features in Parvovirinae evolution

We examined the distribution of conserved genome features among Parvovirinae genera in

relation to the Parvovirinae phylogeny (Fig 5). For example, the “telomeres” that flank parvo-

virus genomes are heterotelomeric (asymmetrical) in some genera (Amdo-, Proto-, Boca-, and

Aveparvovirus) whereas they are homotelomeric (symmetrical) in others [31]. Interestingly,

the distribution of this trait across sublineages within the subfamily Parvovirinae suggests that

the asymmetrical form (which is found across the “Amdo-Proto” and “Ave-Boca” sublineages)

is more likely to be ancestral.

Similarly, in all Parvovirinae genera except Aveparvovirus and Amdoparvovirus, the N-ter-

minal region of VP1 (the largest of the capsid) contains a phospholipase A2 (PLA2) enzymatic

domain that becomes exposed at the particle surface during cell entry and is required for

escape from the endosomal compartments. Phylogenetic reconstructions indicate that this

residues in the Parvovirus Rep protein and the LG likelihood substitution model. Coloured brackets indicate the established

parvovirus genera recognised by the International Committee for the Taxonomy of Viruses. Bootstrap support values (1,000

replicates) are shown for deeper internal nodes only. Scale bars show evolutionary distance in substitutions per site. Taxa

labels are coloured based on taxonomic grouping as indicated by brackets; unclassified taxa are shown in black. Viral taxa are

shown in bold, while EPV taxa are show in regular text. Numbers adjacent node shapes show minimum age estimates

associated with lineages in millions of years before present (see Table 3). Abbreviations: AAV, adeno-associated virus;

AMDV, Aleutian mink disease; BPV, bovine parvovirus; BrdPV, bearded dragon parvovirus; CPV, canine parvovirus; EPV,

endogenous parvoviral element; HGT, horizontal gene transfer; HHV, human herpesvirus; MdPV, Muscovy duck

parvovirus; ML, maximum likelihood; MSA, multiple sequence alignment; PV, Parvovirus. The data underlying this figure

can be found at the following DOI: https://zenodo.org/record/6968218#.Yu115vHMIUY.

https://doi.org/10.1371/journal.pbio.3001867.g004
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domain was present ancestrally and has been convergently lost in the Aveparvovirus and

Amdoparvovirus genera (Fig 5) [2,32].

Parvovirinae genera also show variation in their gene expression strategies through differ-

ential promoter usage and alternative splicing. Members of the Proto- and Dependoparvovirus
genera use two to three separate transcriptional promoters, whereas the Amdo-, Erythro-, and

Boca- genera express all genes from a single promoter and use genus-specific read-through

mechanisms to produce alternative transcripts [2,11]. Interestingly, both the Proto- andDepen-
doparvovirus genera utilise the first of these expression strategies despite being relatively dis-

tantly related, suggesting that the use of separate promoters could be the ancestral strategy

within the subfamily Parvovirinae. However, this would mean that mechanisms to express

multiple genes from a single promoter were acquired independently by the parvovirus genera

that utilise them (Fig 5).

Fig 5. Conservation of genome features during Parvovirinae evolution. A midpoint rooted, ML phylogeny showing the reconstructed

evolutionary relationships between contemporary parvoviruses of subfamily Parvovirinae and the ancient parvovirus species represented

by EPVs. The phylogeny shown here is shown in greater detail in Fig 4. The black and grey vertical bars to the right of the phylogeny

indicate parvovirus genera. Coloured bars indicate the distribution of virus traits across genera, following the key. The most likely

ancestral state is indicated at the root of the tree, based on the parsimonious assumption that independent losses of genome features are

more likely than independent gains. The ancestral TS remains unclear. Abbreviations: EPV, endogenous parvoviral element; Hetero,

heterotelomeric; Homo, homotelomeric; ML, maximum likelihood; MTSP, multiple transcriptional start positions; STSP+, single

transcription start position, plus additional strategies; TS, transcription strategy. The data underlying this figure can be found at the

following DOI: https://zenodo.org/record/6968218#.Yu115vHMIUY.

https://doi.org/10.1371/journal.pbio.3001867.g005
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Mammalian vicariance has shaped the evolution of protoparvoviruses

The recovery of a rich fossil record for protoparvoviruses allowed us to examine how their evo-

lution has been shaped by macroevolutionary processes impacting on mammals over the past

150 to 200 My, such as continental drift [33]. Around 200 Mya, the supercontinent of Pangaea,

then the sole landmass on the planet, began separating into two subcomponents (Fig 7). One

(Laurasia) comprised Europe, North America, and most of Asia, while the second (Gondwana-

land) comprised Africa, South America, Australia, India, and Madagascar. Mammalian sub-

populations were fragmented by these events, and then fragmented further as Gondwanaland

separated into its component continents. The associated genetic isolation due to geographic

separation (vicariance) drove the early diversification of major subgroups, including indige-

nous mammalian lineages in South America (xenarthans and marsupials), Australia (marsupi-

als), and Africa (afrotherians). At points throughout the Cenozoic Era, placental mammal

groups that evolved in Laurasia (boreoeutherians) expanded into other continental regions.

For example, the ancestors of contemporary New World rodents (which include capybaras,

chinchillas, and guinea pigs among many other, highly diversified species) are thought to have

reached the South American continent approximately 35 Mya [34].

Protoparvoviruses phylogenies strikingly reflect the impact of mammalian vicariance—and

later migration—on protoparvovirus emergence and spread during the Cenozoic Era. When pro-

toparvovirus-related EPVs are included in ML-based reconstructions, the internal structure of the

resultant phylogeny has extremely robust support (Fig 6). Moreover, this phylogeny can readily

be mapped onto a phylogeny of mammals (obtained via TimeTree; [35]) so that the three major

protoparvovirus lineages emerge in concert with major groups of mammalian hosts (Fig 7C).

Importantly, however, one exception to this pattern occurs in the “Archeoproto” clade in which

EPVs from New World rodent genomes group with EPVs found in marsupial genomes, with the

closest relatives being EPVs identified in the common opossum (Monodelphis domestica), a South

American marsupial (Fig 6). We propose that, as shown in Fig 7, these relationships can be

accounted for by a parsimonious model of protoparvovirus evolution wherein (i) ancestral proto-

parvovirus species were present in Pangaea prior to its breakup; (ii) vicariance among ancestral

mammal populations led to the emergence of distinct protoparvovirus clades in distinct biogeo-

graphic regions, with the “archeoprotoparvovirus” (ArcPV) clade evolving in marsupials, and the

“meso-” and “neo-” clades evolving in placental mammals; and (iii) founding populations of New

World rodents were exposed to infection with ArcPVs following rodent colonisation of the South

American continent (estimated to have occurred approximately 50 to 30 Mya; [34]). This simple

model can account for the phylogenetic relationships shown in Fig 6, as well as the high frequency

of ArcPV-derived EPVs in the genomes of New World rodent species versus their complete

absence from the genomes of Old World rodent species.

Interclass transmission and the evolution of dependoparvoviruses

Phylogenies imply a role for interclass transmission between mammals and birds in dependo-

parvovirus evolution (Fig 8). Firstly, in both midpoint-rooted phylogenies, and in phylogenies

rooted on the saurian dependoparvoviruses (as proposed by Penzes and colleagues; [36]), the

“Shirdal” clade falls intermediate between two exclusively mammalian groups—the nonauton-

omous AAVs found in placental mammals, and clade Oceania—found exclusively in Austra-

lian marsupials (Fig 8A). This implies an ancestral switch from mammalian to avian hosts

(green arrow; Fig 8B). Furthermore, the avian viruses in this clade group basally (Ave-), form-

ing a paraphyletic group relative to a derived subclade (“Lemuria”) of EPVs obtained from a

diverse range of mammalian hosts. This implies a second, subsequent jump from birds to

mammals (blue arrow; Fig 8B).
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The “Neodependo” clade is comprised of AAVs and EPVs related to AAVs, all of which

occur exclusively in placental mammals. AAVs are sometimes referred to as “nonautonomous

dependoparvoviruses” because they require the presence of a “helper” virus to replicate [1]. In

Rep phylogenies, the “Neodependo” clade groups in a derived position relative to clades con-

taining the autonomously replicating dependoparvoviruses of birds and reptiles (Figs 4 and

8). These observations indicate that dependency is an ancestral, shared characteristic of AAVs

and is likely to have evolved in placental mammal hosts.

Coding capacity and expression of EPV sequences

Previous studies have shown that some EPV loci express RNA with the potential to encode

polypeptide gene products, either as unspliced viral RNA [17,37,38] or as fusion genes com-

prising RNA sequences derived from both host and viral sources [39]. We examined all EPV

loci identified in our study to determine their coding potential. We identified 56 unique loci at

which sequences encoding uninterrupted polypeptide sequences of 300 amino acids (aa) or

more are retained (Table 4). Extended regions of intact coding sequence have been main-

tained in a diverse collection of EPVs, including some that are demonstrably many millions of

years old (e.g., amdo.101-Serpentes). mRNA expression has been experimentally demonstrated

for several EPVs [18,37,38], and screening of RNA databases revealed evidence for expression

of RNA from several additional EPV loci (Table 4).

Discussion

In this study, we used EPVs to investigate the long-term coevolutionary interactions between

parvoviruses and vertebrates. We recovered the complete repertoire of EPV sequences in WGS

data representing 752 vertebrate species. While previous studies have reported a sampling of

EPV diversity in vertebrates [12–18,25,37,39–42], our investigation is an order of magnitude

larger in scale: We identify 364 sequences representing nearly 200 discrete germline incorpo-

ration events that took place during the Cenozoic Era (Fig 2 and S4–S6 Tables). Furthermore,

we introduced a higher level of order to these data by (i) discriminating between unique loci

and orthologous copies; (ii) aligning EPVs to contemporary viruses and hierarchically arrang-

ing MSAs so that phylogenetic and genomic comparisons could utilise the maximum amount

of available data; and (iii) applying a standardised nomenclature to EPVs that captures infor-

mation about orthology and taxonomy.

Our analysis shows that parvovirus DNA was incorporated into the vertebrate germline

throughout the Cenozoic Era (Fig 3). The independent formation and fixation of EPVs in

such a diverse range of taxa shows that multiple Parvovirinae genera circulated widely among

vertebrate fauna during their evolution. Furthermore, the robust calibrations we obtain from

EPVs lend credibility to more tentative, biogeography and distribution-based age estimates

obtained for other parvovirus lineages that are not represented in the genomic “fossil record”

(Fig 4 and Table 3). Given that the origins of the parvovirus family likely extend far back into

Fig 6. Phylogenetic relationships of protoparvoviruses and protoparvovirus-like EPVs. An ML-based phylogeny showing the reconstructed evolutionary

relationships between contemporary protoparvovirus species and the ancestral protoparvovirus species represented by EPVs. The phylogeny was constructed

from an MSA spanning 712 amino acid residues in the Rep protein (substitution model = LG likelihood) and is midpoint rooted for display purposes. Asterisks

indicate nodes with bootstrap support>85% (1,000 replicates). The scale bar shows evolutionary distance in substitutions per site. Coloured brackets to the

right indicate the following: (i) robustly supported subclades within the Protoparvovirus genus (outer set of brackets) and (ii) the implied host range of each

subclade (inner set of brackets). Terminal nodes are represented by squares (EPVs) and circles (viruses) and are coloured based on the biogeographic

distribution of the host species in which they were identified (see key). Coloured diamonds on internal nodes show the biogeographic distribution of host

species ancestors (based on fossil evidence) [33]. �Phylogenetic evidence for the presence of “mesoprotoparvoviruses” in Afrotherian species is presented in Fig

4. EPV, endogenous parvoviral element; ML, maximum likelihood; MSA, multiple sequence alignment.

https://doi.org/10.1371/journal.pbio.3001867.g006
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Fig 7. Protoparvovirus evolution has been shaped by mammalian vicariance. (a) Mollweide projection maps showing how

patterns of continental drift from 200–35 led to periods of biogeographic isolation for terrestrial mammals in Laurasia

(Europe and Asia), South America, Australia, Africa, and Madagascar. The resulting vicariance is thought to have

contributed to the diversification of mammals, reflected in the mammalian phylogeny as shown in panel (b). Most placental

PLOS BIOLOGY Origin and evolution of vertebrate parvoviruses

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001867 November 29, 2022 17 / 28

https://doi.org/10.1371/journal.pbio.3001867


the early evolutionary history of animal species [16,43], it is reasonable to propose that sub-

family Parvovirinae could have emerged in broad congruence with the diversification of major

vertebrate groups. Indeed, this extended evolutionary timeline can be strikingly visualised in

the Protoparvovirus genus, in which the emergence and spread of sublineages reflects the

impact of vicariance and continental drift on mammal evolution during the Cenozoic Era

(Figs 6 and 7). A limitation of our study is that it relied on opportunistic sampling via pub-

lished whole genome data—we expect that more representative sampling of vertebrate species

genomes will reveal new information, particularly regarding more recently integrated ERVs.

The extent to which vertebrate EPVs have reached fixation through positive selection as

opposed to incidental factors such as founder effects, population bottlenecks, and genetic

hitchhiking remains unclear. Potentially, EPVs might sometimes be co-opted or “exapted” as

has been reported for EVEs derived from other virus groups [44–46]. Recent studies have iden-

tified EPVs in the germline of degus (Octodon degus) and elephants (family Elephantidae) that

encode intact Rep ORFs and exhibit similar patterns of tissue-specific mRNA expression in

the liver [37,38], suggesting that expression of Rep protein or mRNA may be physiologically

relevant in mammals. We find that the coding capacity of the VP/capsid ORF is also strikingly

conserved in some EPVs (Table 4). Potentially, EPVs capable of encoding protein products

could function as antiviral immune factors capable of blocking infection with related viruses

[44].

Notably, multiple distinct genera of parvoviruses are often found infecting the same species

groups—for example, at least seven distinct genera circulate in mammals. Furthermore, EPV-

based calibrations indicate that these genera are likely to have cocirculated among mammals

for many millions of years (Fig 3). The extended evolutionary timeline implied our analysis is

consistent with the idea that the persistence of multiple, distinct parvovirus genera in the same

host species groups reflects adaptive divergence among these genera, such that each parvovirus

occupies a distinct “ecological niche” (i.e., part of the ecological space available in the environ-

ment) [47]. Although niches can be difficult to define precisely, most treatments consider con-

ditions of the physical environment, characteristics of resources, and the traits of other

interacting species as important factors [48]. For viruses, host species range is inevitably a

major influence, but other aspects of replication could also come into play. While all members

of the subfamily Parvovirinae use similar basic mechanisms to achieve specific steps in infec-

tion, the details of these processes (e.g., the specific cell types and organ systems targeted for

replication) frequently differ between genera. For example, primate erythroparvoviruses target

erythroid progenitor cells [3], mammalian chaphamaparvoviruses are suspected to be nephro-

tropic [49], and antibody-dependent enhancement is suspected to be a shared characteristic of

amdoparvoviruses [50,51].

The nonautonomous parvoviruses or “AAVs” provide an interesting example of adaptation

to a specialised niche. Superficially, the requirement for a helper virus appears to be a

mammals (including rodents, primates, ungulates, and bats) evolved in Laurasia. However, these groups later expanded into

other continents, and fossil evidence indicates that the ancestors of today’s “New World rodents” had arrived on the South

American continent by approximately 35 Mya, if not earlier. Plate tectonic maps were downloaded from ODSN Plate

Tectonic Reconstruction Service (https://www.odsn.de/odsn/services/paleomap/paleomap.html). (b) A time-calibrated

phylogeny of mammals (obtained via TimeTree; [35]) with annotations indicating the biogeographic associations of the

major taxonomic groups of contemporary mammals and ancestral mammalian groups, following panel (b) and key 1. (c) A

time-calibrated phylogeny of mammals (obtained via TimeTree; [35]) annotated to indicate the inferred distribution of

protoparvovirus subgroups among mammalian groups, following key 2. Question marks indicate where it is unknown if viral

counterparts of the lineages represented by EPVs still circulate among contemporary members of the host species groups in

which they are found. The data underlying this figure can be found in https://zenodo.org/record/6968218#.Yu115vHMIUY.

Abbreviations: CPV, carnivore parvovirus type 1; HV, hamster parvovirus; Mya, millions of years ago; NW, New World;

ODSN, Ocean Drilling Stratigraphic Network; OW, Old World; PPV, porcine parvovirus; TuV, Tusavirus.

https://doi.org/10.1371/journal.pbio.3001867.g007

PLOS BIOLOGY Origin and evolution of vertebrate parvoviruses

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001867 November 29, 2022 18 / 28

https://www.odsn.de/odsn/services/paleomap/paleomap.html
https://zenodo.org/record/6968218#.Yu115vHMIUY
https://doi.org/10.1371/journal.pbio.3001867.g007
https://doi.org/10.1371/journal.pbio.3001867


Fig 8. Dependoparvovirus evolution and the influence of interclass transmission. (a) An ML phylogeny showing the reconstructed

evolutionary relationships between contemporary dependoparvovirus species and the ancient dependoparvovirus species represented by
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deficiency rather than adaptation. However, molecular genetic analysis of AAV2 indicates that

helper virus–dependent replication resulted from a gain of function rather than loss of autono-

mous replication [52,53]. Conceivably, dependency could have evolved as a means of optimis-

ing the probability of successful transmission. The “helper” virus groups that enable AAV

replication (e.g., adenoviruses, herpesviruses) have large double-stranded DNA genomes and

can therefore encode more complex means of sensing environmental conditions in their

genomes, only replicating when conditions are optimal [54]. By “tethering” their replication

cycle to that of these larger, more sophisticated viruses, AAVs can perhaps take advantage of

their capacities.

Our investigation shows that vertebrate parvoviruses have ancient associations with their

hosts and have acquired lineage-specific adaptations over many millions of years. Importantly,

this implies that the growing wealth of genomic data—incorporating both virus and EPV

sequences—can be harnessed to define the biological characteristics of parvovirus species and

groups. By linking our growing knowledge of parvovirus distribution, diversity, and evolution

with experimental and field studies, we can now develop parvovirus-based therapeutics that

are grounded in an understanding of natural history. Such comparative, evolutionary

approaches will not only help identify virus species with desirable characteristics—e.g., a well-

defined tropism for a specific cell type—they establish a powerful, rational basis for dissecting

structure–function relationships in parvovirus genomes. To support the broader use of evolu-

tion-related domain knowledge in parvovirus research, we published our data in the form of

an open, extensible database framework (S1 Fig). We hope that by enabling the reproduction

of comparative genomic analyses and supporting reuse of the complex datasets that underpin

them, these resources can help researchers exploit genomic data to develop a deeper under-

standing of parvovirus biology.

Methods

Screening in silico of whole genome sequence databases

We used the Database-Integrated Genome Screening (DIGS) tool [55] to derive a nonredun-

dant database of EPV loci within published WGS assemblies. The DIGS tool is a Perl-based

framework in which the Basic Local Alignment Search Tool (BLAST) program suite [56] is

used to perform similarity searches and the MySQL relational database management system to

coordinate screening and record output data. A user-defined reference sequence library pro-

vides (i) a source of “probes” for searching WGS data using the tBLASTn program; and (ii) a

means of classifying DNA sequences recovered via screening (S5 Fig). For the purposes of the

EPVs. Virus taxa names are shown in bold; EPVs are shown in regular text. The phylogeny was constructed from an MSA spanning 330

amino acid residues of the Rep protein and the LG likelihood substitution model and is rooted on the reptilian lineage. Brackets to the

right indicate proposed taxonomic groupings. Shapes on leaf nodes indicate full-length EPVs and EPVs containing intact/expressed

genes (see key). Numbers next to leaf nodes indicate minimum age calibrations for EPV orthologs. Shapes on branches and internal

nodes indicate different kinds of minimum age estimates for parvovirus lineages, as shown in the key. Numbers adjacent node shapes

show minimum age estimates associated with lineages in millions of years before present (see Table 3). For taxa that are not associated

with mammals, organism silhouettes indicate species associations, as shown in the key. The scale bar (top left) shows evolutionary

distance in substitutions per site. Asterisks in circles indicate nodes with bootstrap support>70% (1,000 replicates). Plain asterisks

indicate nodes that are not supported in the tree shown here but are supported in phylogenies based on longer regions of Rep (S7 Fig).
�Age calibrations based on data obtained in references [18,38]. ��A contemporary virus derived from the marsupial clade has been

reported in marsupials, but only transcriptome-based evidence is available [17]. (b) A time-calibrated phylogeny of vertebrate lineages

showing proposed patterns of interclass transmission within the “Shirdal” clade. Abbreviations: aa, amino acid residues; AAV, adeno-

associated virus; BrdPV, bearded dragon parvovirus; EPV, endogenous parvoviral element; MdPV, Muscovy duck parvovirus; ML,

maximum likelihood; MSA, multiple sequence alignment; ORF, open reading frame; PV, Parvovirus. The data underlying all panels in

this figure can be found in https://zenodo.org/record/6968218#.Yu115vHMIUY.

https://doi.org/10.1371/journal.pbio.3001867.g008
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Table 4. Coding capacity and expression of vertebrate EPVs.

Genus Cladea Numberb Organismc Exp.d Length (aa)e Genesf

Amdo- 1 Ellobius lutescens p 383 NS

Amdo- 2 " 586 NS-MAFG�

Amdo- 101 Protobothrops mucrosquamatus p 574 NS

Amdo- 101 " 333 VP

Dependo- Oceania- 0 Macropus eugenii 442 VP

Dependo- Lemuria- 1 Orcinus orca 357 VP

Dependo- Lemuria- 1 Globicephala melas 314 NS

Dependo- Neo- (AAV) 2 Myotis lucifugus p 311 NS

Dependo- Neo- (AAV) 3 Lepus timidus c 439 NS

Dependo- Neo- (AAV) 4 Dicerorhinus sumatrensis 321 VP

Dependo- Neo- (AAV) 6 Loxodonta africana c 583 NS

Dependo- Neo- (AAV) 13 Cercocebus atys 309 NS

Dependo- Neo- (AAV) 14 " 561 NS

Dependo- Neo- (AAV) 27 Eulemur macaco 473 NS

Dependo- Neo- (AAV) 37 Rhinolophus sinicus 382 NS

Dependo- Neo- (AAV) 42 Chinchilla lanigera 499 NS

Dependo- Neo- (AAV) 43 Octodon degus c 502 NS

Dependo- Neo- (AAV) 54 Cavia porcellus c 230 NS-Myo9�

Dependo- Neo- (AAV) 59 Myocastor coypus 304 NS

Dependo- Neo- (AAV) 88 Megaderma lyra 330 NS

Dependo- Neo- (AAV) 174 Pipistrellus pipistrellus 449 NS

Dependo- Neo- (AAV) 174 " 634 VP

Dependo- Sauria- 201 Thamnophis elegans 722 VP

Dependo- Sauria- 201 " 385 VP

Dependo- Sauria- 202 " 404 VP

Erythro- 1 Indri indri 701 NS

Erythro 1 " 567 VP

Ichthama- 2 Emydocephalus ijimae 478 ORF2

Ichthama- 2 Hydrophis melanocephalus 392 NS

Proto- Neo- 1 Rattus norvegicus 440 VP

Proto- Neo- 2 Mus spretus 301 NS

Proto- Neo- 2 " 484 VP

Proto- Neo- 3 Apodemus sylvaticus 341 VP

Proto- Neo- 3 " 314 NS

Proto- Neo- 4 Mus spicilegus 403 NS

Proto- Neo- 4 " 714 VP

Proto- Meso- 102 Tamandua tetradactyla 563 NS

Proto- Meso- 102 " 686 VP

Proto- Archaeo- 103 Monodelphis domestica 349 VP

Proto- Archaeo- 107 Myocastor coypus 486 NS

Proto- Archaeo- 107 " 589 VP

Proto- Archaeo- 108 Hydrochoerus hydrochaeris 371 NS

Proto- Archaeo- 131 Ctenomys sociabilis 346 NS

Proto- Archaeo- 131 " 473 VP

Proto- Archaeo- 134 Dolichotis patagonum 337 NS/VP

Proto- Archaeo- 134 " 387 VP

Proto- Archaeo- 138 Hydrochoerus hydrochaeris 429 VP

(Continued)
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present project, we collated a reference library composed of polypeptide sequences derived

from representative parvovirus species and previously characterised EPVs. WGS data of ani-

mal species were obtained from the National Center for Biotechnology Information (NCBI)

genome database [57]. We obtained all animal genomes available as of March 2020. We

extended the core schema of the screening database to incorporate additional tables represent-

ing the taxonomic classifications of viruses, EPVs, and host species included in our study. This

allowed us to interrogate the database by filtering sequences based on properties such as simi-

larity to reference sequences, taxonomy of the closest related reference sequence, and taxo-

nomic distribution of related sequences across hosts. Using this approach, we categorised

sequences into the following: (i) putatively novel EPV elements; (ii) orthologs of previously

characterised EPVs (e.g., copies containing large indels); and (iii) nonviral sequences that

cross-matched to parvovirus probes. Sequences that did not match to previously reported

EPVs were further investigated by incorporating them into genus-level, genome-length MSAs

(see Table 1) with representative parvovirus genomes and reconstructing ML phylogenies

using RAxML (version 8.2.12) [58]. Where phylogenetic analysis supported the existence of a

novel EPV insertion, we also attempted to (i) determine its genomic location relative to anno-

tated genes in reference genomes; and (ii) identify and align EPV–host genome junctions and

preintegration insertion sites. Where these investigations revealed new information (e.g.,

by confirming the presence of a previously uncharacterised EPV insertion), we updated

our reference library accordingly. This in turn allowed us to reclassify EPV loci in our

database and group sequences more accurately into categories. By iterating this procedure,

we progressively resolved the majority of EPV sequences identified in our screen into

groups of orthologous sequences derived from the same initial germline incorporation event

(S4–S6 Tables).

Table 4. (Continued)

Genus Cladea Numberb Organismc Exp.d Length (aa)e Genesf

Proto- Archaeo- 139 Myocastor coypus 334 VP

Proto- Archaeo- 141 Erethizon dorsatum 361 NS

Proto- Archaeo- 143 Cuniculus paca 462 NS/VP

Proto- Archaeo- 152 Sarcophilus harrisii 363 NS

Proto- Archaeo- 155 Gymnobelideus leadbeateri 320 VP

Proto- Archaeo- 158 Macropus eugenii 429 VP

Proto- Archaeo- 178 Erethizon dorsatum 308 NS

Proto- Archaeo- 189 Grammomys surdaster p 82 NS

Proto- Archaeo- 210 Macropus eugenii 327 VP

Proto- Archaeo- 210 " 314 NS

We measured unbroken coding regions within the range of established open reading frames and did not require a methionine start codon for any of these coding

“sections.”
aSubclades are as shown in Figs 5 and 6.
bLocus numeric ID.
cLatin binomial of species in which ortholog containing longest coding sequence was detected.
dp = computationally predicted, c = confirmed via polymerase chain reaction. aa = amino acid residues.
eSequences are shown that encode > = 300 amino acids of coding sequence or have evidence of expression. Sequences that are <300 aa in length but with evidence for

expression are underlined.
fVP shown in bold.

�EPV–gene fusion products predicted [25] or confirmed [39]—length shown is for viral portion only.

https://doi.org/10.1371/journal.pbio.3001867.t004
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Creation of resources for reproducible comparative analysis of parvovirus

genomes

We used GLUE, a bioinformatics software framework, to develop open data resources for par-

voviruses [20]. A library of parvovirus reference sequences (S1 Table) incorporating all species

recognised by the International Committee for Taxonomy of Viruses (ICTV) was obtained

from GenBank. A standard set of genome features was defined based on published literature

and GenBank annotations (S2 Table). We selected well-annotated, high-quality reference

genomes as “master” reference sequences for each subfamily, genus, and species represented

in our MSA hierarchy (Table 1) and annotated the locations of genome features within these

reference genomes. MSAs were constructed using MUSCLE [59] and GLUE’s native BLAST-

based aligners [56,60].

Isolate data were captured by extending GLUE’s underlying database schema. GenBank

sequences in XML format are imported into the Parvovirus-GLUE project using GLUE’s “gen-

bankImporter” module to extract sequence and isolate-associated data. Nonstandard fields

(e.g., isolate-specific information in the “notes” section of the GenBank entry) were extracted

using a regular expression library, and a FreeMarker template was used to standardise their

values as described previously [19]. Additional data (e.g., information missing from GenBank

records but identified in an associated publication) were imported from tabular files using

GLUE’s TextFilePopulator module. Where (non-master) reference genome sequences were

lacking feature annotations, we used GLUE’s “inherit features” command [19] to infer their

coordinates from an MSA in which the genomic coordinate space was constrained to a fully

annotated master reference sequence for the corresponding genus (see Table 1).

GLUE allows MSAs to be hierarchically linked via a “constrained alignment tree” data

structure [19] (Table 1 and S3 Fig). In each MSA, a chosen master reference sequence con-

strains the genomic coordinate space. For contemporary parvoviruses, we used our chosen

genus master reference sequences, while for EPVs, we used consensus EPVs as constraining

references for MSAs representing orthologous EPV loci. Each MSA in the Parvovirus-GLUE

MSA hierarchy is linked to its child and/or parent MSAs via our chosen set of references

(Table 1)—this creates in effect a single, unified MSA that can be used to implement compari-

sons across a range of taxonomic ranks while also making use of the maximum amount of

available information at each level. By standardising the genomic coordinate space to the con-

straining reference sequence selected for each MSA, the alignment tree enables standardised

genome comparisons across the entire Parvoviridae family. Note that, while MSAs represent-

ing internal nodes (see Table 1) contain only master reference sequences, they can be recur-

sively populated with all taxa contained in child alignments when exported using any of

GLUE’s native exporter modules [19].

MSA partitions derived from the constrained MSA tree (Table 1) were used as input for

phylogenetic reconstructions. We used feature coverage information, generated for each

aligned sequence, to condition the selection of taxa into MSA partitions for phylogenetic anal-

ysis. The “record feature coverage” function of GLUE was used to generate coverage data for

all members of all MSAs. Coverage data were generated for all genome features annotated in

the constraining reference sequence.

To accommodate EPV data in Parvovirus-GLUE, we extended the underlying database

schema to incorporate an EPV-specific table with data fields capturing EPV characteristics

(e.g., locus coordinates, ortholog group, flanking genes). In addition, where multiple EPV

orthologs were identified, we created MSAs to represent homology between individual ortho-

logs in each EPV set, we used these to (i) reconstruct the evolutionary relationships between

orthologs [20]; and (ii) derive consensus reference sequences for each EPV locus.
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Genomic analysis of EPVs and viruses

Putative ancestral ORFs of EPVs were inferred by manual comparison to parvovirus reference

genomes. The putative peptide sequences of EVEs (i.e., the virtually translated sequences of

EVE ORFs, repaired to remove frameshifting indels) were then aligned with the polypeptide

sequences encoded by reference genomes, using MUSCLE. Protein-level phylogenies were

reconstructed using ML as implemented in RAxML (version 8.2.12) [58]. Protein substitution

models were selected via hierarchical ML ratio test using the PROTAUTOGAMMA option.

For multicopy EPV lineages, we constructed MSAs and phylogenetic trees to confirm that

branching relationships follow those of host species (S4B Fig; [20]). Phylogenies of EPV ortho-

logs were reconstructed using ML as implemented in RAxML [58] and the GTR model of

nucleotide selection as selected using the likelihood ratio test. Time-calibrated vertebrate phy-

logenies were obtained via TimeTree, an open database of species divergence time estimates

[35].

Expression and intactness of EPVs

We identified open coding regions of coding sequence in EPVs using scripts included with

Parvovirus-GLUE [20]. To determine if there was evidence of expression of EPVs in host spe-

cies, we searched the NCBI Reference RNA Sequences (refseq_rna) with Dependoparvovirus

VP and Rep sequences (NC_002077). We used a translated nucleotide query and a translated

database using tBLASTx [56] and evaluated alignments found between refseq_rna sequences

and Dependoparvovirus VP and Rep sequences. To further verify expression, we determined

if the annotations were solely based on computational prediction or RNAseq alignment anno-

tations. For host species with evidence of expression, we conducted BLASTn searches within

refseq_rna to identify expressed EPVs.
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