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Aims We aimed to develop models to detect aortic stenosis (AS) from chest radiographs—one of the most basic imag-
ing tests—with artificial intelligence.

...................................................................................................................................................................................................
Methods and
results

We used 10 433 retrospectively collected digital chest radiographs from 5638 patients to train, validate, and test
three deep learning models. Chest radiographs were collected from patients who had also undergone echocardiog-
raphy at a single institution between July 2016 and May 2019. These were labelled from the corresponding echo-
cardiography assessments as AS-positive or AS-negative. The radiographs were separated on a patient basis into
training [8327 images from 4512 patients, mean age 65 ± (standard deviation) 15 years], validation (1041 images
from 563 patients, mean age 65 ± 14 years), and test (1065 images from 563 patients, mean age 65 ± 14 years) data-
sets. The soft voting-based ensemble of the three developed models had the best overall performance for predict-
ing AS with an area under the receiver operating characteristic curve, sensitivity, specificity, accuracy, positive pre-
dictive value, and negative predictive value of 0.83 (95% confidence interval 0.77–0.88), 0.78 (0.67–0.86), 0.71
(0.68–0.73), 0.71 (0.68–0.74), 0.18 (0.14–0.23), and 0.97 (0.96–0.98), respectively, in the validation dataset and 0.83
(0.78–0.88), 0.83 (0.74–0.90), 0.69 (0.66–0.72), 0.71 (0.68–0.73), 0.23 (0.19–0.28), and 0.97 (0.96–0.98), respective-
ly, in the test dataset.

...................................................................................................................................................................................................
Conclusion Deep learning models using chest radiographs have the potential to differentiate between radiographs of patients

with and without AS.
...................................................................................................................................................................................................
Lay Summary We created artificial intelligence (AI) models using deep learning to identify aortic stenosis (AS) from chest radio-

graphs. Three AI models were developed and evaluated with 10 433 retrospectively collected radiographs and
labelled from echocardiography reports. The ensemble AI model could detect AS in a test dataset with an area
under the receiver operating characteristic curve of 0.83 (95% confidence interval 0.78–0.88). Since chest radiog-
raphy is a cost-effective and widely available imaging test, our model can provide an additive resource for the de-
tection of AS.
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Introduction

Aortic stenosis (AS), a stenosis of the left ventricular outflow tract
and valve, causes a chronic increase in pressure in the left ventricle. In
high-income countries, AS is predominantly associated with ageing;
severe AS is estimated to occur in <1% of people under 70 years of
age but is estimated to occur in �7% of people over 80 years of
age.1–3 Once heart failure, syncope, and symptoms such as chest pain
appear, a patient with AS has a remaining life expectancy of 2–3
years.4 Since AS is a progressive disease, and an increase in haemo-
dynamic severity is inevitable once mild AS is observed, American
College of Cardiology/American Heart Association (ACC/AHA)
guidelines recommend regular monitoring with echocardiography at
intervals appropriate for severity, ventricular size, and ventricular
function, even in asymptomatic patients with known AS.5

Aortic stenosis is usually diagnosed when cardiac auscultation
reveals a systolic murmur or upon review of echocardiography imaging
that was requested for other indications. On the one hand, cardiac aus-
cultation, being non-invasive, is clinically useful; however, it is subjective,
and the accuracy of the examiner varies.6–8 The estimated sensitivity
and specificity of general practitioners for detection of significant valvu-
lar heart disease by auscultation are 44% and 69%, respectively.9 On
the other hand, transthoracic echocardiography—the diagnostic pro-
cedure recommended by the ACC/AHA—is not feasible as routine
screening because of the technical, time, and cost requirements. While
echocardiography is important for clinical phenotyping, human inter-
pretation of echocardiogram images varies and can impact clinical
care.10,11 Therefore, we sought a more robust method to identify AS
patients. Chest radiography has the advantage of being highly reprodu-
cible, as well as being less time-consuming and less costly. Although
chest radiographs of patients with AS show findings such as left ven-
tricular hypertrophy as a result of pressure overload, pulmonary

venous dilation, and aortic valve calcifications,12,13 diagnostic accuracies
for these findings have not been reported.

In recent years, deep learning-based14 artificial intelligence (AI)
models have attracted attention because they are capable of auto-
matically extracting features from data. Unlike conventional machine
learning methods, deep learning does not require a priori manual fea-
ture definition because the model extracts relevant features from the
data. Therefore, these models are advantageous for classification and
quantification of objects with complicated features, and particularly,
those with unknown features. Worldwide, chest radiographs are
widely available and are cost-effective; therefore, a deep learning
model capable of AS detection using chest radiographs can contrib-
ute to the improved diagnosis of AS.

Methods

Study design
We conducted training, validation, and testing on three deep learning AI mod-
els to detect AS using digital chest radiographs. Chest radiographs were col-
lected from patients who had also undergone echocardiography at a single
institution; radiographs were labelled based on echocardiography examination
findings. The ethics board of our institution reviewed and approved the proto-
col of the present study. Since the images had been acquired during daily clin-
ical practice, the need for informed consent was waived.

Study patients, examination, and image

acquisition
Echocardiography was consecutively collected between July 2016 and May
2019. Comprehensive two-dimensional transthoracic echocardiography
was performed to evaluate AS using an iE33 (Philips Medical Systems,
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Andover, MA, USA), Vivid E9 (GE Healthcare, Milwaukee, WI, USA), or
Aplio 500/Aplio 80/Artida (Canon Medical Systems Corporation, Otawara,
Tochigi, Japan) with a high-frequency transducer. Echocardiography was
performed by operators with 3–20 years of echocardiography experience.
If a patient had undergone echocardiography more than once in the period,
all examinations were included.

Chest radiographs (posteroanterior view in the standing position) of
the same patients taken within 30 days of the collected echocardiography
examinations were retrospectively collected. The radiographs were
taken by DR CALNEO C 1417 Wireless SQ (Fujifilm Medical, Tokyo,
Japan), DR AeroDR1717 (Konica Minolta, Tokyo, Japan), or
DigitalDiagnost VR (Philips Medical Systems). All eligible radiographs
were collected.

Ground truth labelling
The severity of AS was classified as mild, moderate, or severe according
to American Society of Echocardiography recommendations.15 Chest
radiographs corresponding to findings of AS from echocardiography (all
severities from mild to severe) were defined as AS-positive, while chest
radiographs corresponding to echocardiography examination reports
with no findings of AS were defined as AS-negative. We also extracted
data regarding valve type (tricuspid or bicuspid) and left ventricular ejec-
tion fraction (LVEF) from the echocardiography reports.

Data partitioning
All labelled chest radiographs were divided into training, validation, and
test datasets in an 8:1:1 ratio. The definition of each dataset is shown in
Supplementary material online, Appendix pp 2. The training dataset is
used for training the model, the validation dataset is used for tuning the
model, and the test dataset is used for evaluating the model. This test
dataset was prepared to verify that there was no overfitting in our
model.16 Partitioning was performed with multiple radiographs from a
single patient taken into account so that there was no overlap of images
or patients among the respective datasets.

Model development
The models were developed based on three deep learning models:
InceptionV3,17 ResNet50,18 and DenseNet121.19 A fully connected layer
in the model was connected to a sigmoid activation function with binary
cross-entropy as the loss function to classify images as with or without
AS. The deep learning-based models were trained from scratch with the
training dataset and tuned with the validation dataset. Using the validation
dataset, the model when the value of the loss function was the smallest
within 100 epochs was adopted as the best-performing model. The three
best-performing models were combined to create an ensemble model.20

We used soft voting to create the ensemble model, which sums the
weighted means of the probability scores of the three models. The mod-
els were built using Python 3.5 in the TensorFlow 1.15 framework. All
images were augmented using random rotation from -0.1 radians to 0.1
radians, with a random shift of 10%, a brightness range of 10%, and
reflected horizontally. An outline of the models is shown in the
Supplementary material online, Figure S1, detailed hyperparameter tuning
is available in Supplementary material online, Appendix pp 2. The trained
model is available with Apache License 3.0 from https://github.com/xp-as.

Model test
Diagnostic performance of the models was assessed on the validation
and test datasets using the same thresholds as those used to validate each
of the three best-performing models (InceptionV3, ResNet50, and
DenseNet121) and the ensemble model.

Additionally, a heat map was generated for each chest radiograph to
visualize the focus of the best-performing deep learning model as it classi-
fied radiographs as with or without AS. A classification activation map
applied global average pooling on the last convolutional layer in the
trained deep learning model.21 The trained weights for each output from
the global average pooling layer indicated the importance/relevance of
each feature map from the last convolutional layer. The weights were
then applied on the corresponding feature maps, which were superim-
posed on the original chest radiographs, thereby creating class-
discriminative visualization. A detailed explanation of the heat map gener-
ation model is shown in the Supplementary material online, Figure S2, and
the source code is available online (https://github.com/xp-as/).

Statistical analysis
Sensitivity, specificity, accuracy, positive predictive value, negative predict-
ive value, and the area under the receiver operating characteristic curve
(AUC) were assessed for the best-performing models. Sensitivity was
assessed by the severity of AS. Both sensitivity and specificity were
assessed by the valve type (tricuspid or bicuspid) and grading of the LVEF.
We calculated the positive predictive value and negative predictive value
for all possible cohort prevalence values and illustrated the relationship
between these for the best-performing AI models. All analyses were per-
formed using R, version 3.6.0. All statistical tests were two-sided (5% sig-
nificance level). The 95% confidence intervals for sensitivity, specificity,
accuracy, positive predictive value, and negative predictive value were cal-
culated using the Clopper–Pearson method.22

Role of the funding source
The funder had no role in the study design, data collection, data analysis,
data interpretation, or writing of the report. The corresponding author
had full access to all data in the study and final responsibility for the deci-
sion to submit the report for publication.

Results

Datasets
In total, 10 433 radiographs with 7555 corresponding echocardiog-
raphy examination reports from 5638 patients were used in the
study. For echocardiography, inter-operator variability was 3.31% for
peak aortic jet velocity, 6.52% for aortic valve area, and 7.21% for
mean pressure gradient. The training dataset included 8327 images
[4512 patients; age: range 14–98 years, (mean) 65 ± (standard devi-
ation) 15 years]. The validation dataset included 1041 images (563
patients; age 14–93 years, 65± 14 years). The test dataset included
1065 images (563 patients; age 15–99 years, 65± 14 years). The flow-
chart of dataset criteria is shown in Figure 1. Dataset information is
shown in Table 1. Dataset information for echocardiography and
chest radiography equipment is shown in Supplementary material on-
line, Table S1.

Model development
The models were each independently developed using the training
dataset applied for 100 training epochs, then the loss value on a sep-
arate validation dataset determined the performance of the model.
The final hyperparameters for all models were the Adagrad opti-
mizer, image size = 320 pixels, three channels, global average pooling.
The best batch sizes are 16 for ResNet50, and 32 for both
InceptionV3 and DenseNet121. During this training period, the

22 D. Ueda et al.
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lowest total loss value occurred at 15 epochs when the loss value
was 0.24 in the validation dataset in InceptionV3, at 83 epochs when
the loss value was 0.25 in the validation dataset in ResNet50, and at
22 epochs when the loss value was 0.25 in the validation dataset in

DenseNet121. Learning curves for each AI model are shown in
Supplementary material online, Figure S3. The model parameters
from these timepoints were then applied to the test dataset to evalu-
ate the model.

Figure 1 Review and allocation flowchart.

....................................................................................................................................................................................................................

Table 1 Dataset demographics

Training dataset Validation dataset Test dataset

Total no. of radiographs 8327 1041 1065

Total no. of echocardiography 6010 739 763

Total no. of patients 4512 563 563

Male 2634 340 336

Female 1878 223 227

Mean age (years ± SD) 65 ± 15 65 ± 14 65 ± 14

Mean period between examinations

(days ± SD)

5 ± 8 5 ± 8 5 ± 8

Severity of AS

AS-negative 7407 960 959

Mild 182 19 26

Moderate 152 11 13

Severe 586 51 67

Type of valve

Tricuspid valve 8277 1027 1060

Bicuspid valve 50 14 5

Left ventricular ejection fraction

>_50% 6650 853 859

40–50% 672 74 80

<40% 1005 114 126

Data are n radiographs unless otherwise noted.
AS, aortic stenosis; SD, standard deviation.

Detecting aortic stenosis from radiographs with AI 23
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Model evaluation
The output classified radiograph images as AS-positive or AS-negative
and was compared to the ground truth for performance calculations
(Table 2). Among the three models and their ensemble model, the
ensemble model showed the highest overall performance. The en-
semble model’s AUC, sensitivity, specificity, accuracy, positive pre-
dictive value, and negative predictive value were 0.83 (0.77–0.88),
0.78 (0.67–0.86), 0.71 (0.68–0.73), 0.71 (0.68–0.74), 0.18 (0.14–0.23),
and 0.97 (0.96–0.98), respectively, in the validation dataset and 0.83
(0.78–0.88), 0.83 (0.74–0.90), 0.69 (0.66–0.72), 0.71 (0.68–0.73), 0.23
(0.19–0.28), and 0.97 (0.96–0.98), respectively, in the test dataset.
Receiver operating characteristic curves are shown in Figure 2.
Confusion matrices are shown in Supplementary material online,
Figure S4. Supplementary material online, Figure S5 shows the positive
predictive value and negative predictive value of the ensemble model
according to the AS prevalence in the cohort tested. Additional
results are included in the Supplementary material online, Appendix
(model results by equipment in Supplementary material online, Table
S3; non-duplication model results in Supplementary material online,
Figure S6 and Table S4; and confusion matrices of the non-duplication
models in Supplementary material online, Figure S7). Saliency maps of
the best-performing model (Inception V3) show hot spots in the aor-
tic valve region and in the left ventricle and left atrium, suggesting cal-
cification of the aortic valve and pressure overload on the left cardiac
system (Figure 3).

Discussion

We describe the development of models for detecting AS from chest
radiographs with deep learning. The best-performing model had an
AUC of 0.83 in both the validation and test datasets. These results
suggest that chest radiographs have the potential to diagnose AS. To
our knowledge, this is the first study to create a diagnostic model for
AS from chest radiographs, showing that chest radiographs have in-
trinsic features valuable to help diagnose AS. We used a visualization
technique to view the areas on the chest radiographs indicating AS
with heat maps21 and found they agreed with expected changes dur-
ing AS progression. Heat maps focused on the aortic valve and the
left ventricle. The maps included regions of calcification on the aortic
valve as signs of AS. These visual findings were consistent with
reported findings;12,13 however, it is difficult for physicians to detect
AS exclusively with these findings.

Previous studies have evaluated the relationship between aortic
valve calcification visible on chest radiographs and AS progression. In
one study,23 all cases were from a population with aortic valve dis-
ease. The sensitivity and specificity of calcification of the aortic valve
region on chest radiographs of patients with AS were 0.66 (84/128)
and 0.90 (18/20), respectively. Another study,24 in which all cases
were from an AS-positive population, showed that the distinction be-
tween severe and moderate to mild AS was determined by calcifica-
tion in the aortic valve region on chest radiographs with a sensitivity
of 0.43 and specificity of 0.88. The authors stated that severe AS can
be detected only when calcification is clear in the aortic region.
Considering these, our AI model shows higher accuracy than
clinician-determined aortic valve calcification on chest radiographs
for determining AS. This may be because our model considers the

entire image rather than the aortic valve alone. Saliency maps show
hot spots not only in the aortic valve region but also in the left ven-
tricular region, especially when the severity of AS increases. As the
severity of AS progresses, morphological changes of the heart pro-
gress. Thus, our AI models also showed an increase in classification
accuracy with increasing severity of AS.

Our ensemble model created with the soft voting technique
showed high performance for detecting moderate and severe AS,
with sensitivity values that were over 80% in the test. Detection of
moderate and severe AS is important because treatments such as
surgery are considered. All models performed well, with an AUC of
�0.8, but the trend in results by severity, valve morphology, and
LVEF varied from model to model. For example, sensitivity increased
with increasing severity in the Inception model, and conversely, sensi-
tivity decreased with increasing severity in the ResNet model. This
may be an effect of the different characteristics learned from the
training data by each model. The ensemble model20 makes use of
these differences by blending multiple models to improve the overall
predictive performance. Ensemble models are more effective when
individual classifiers are not correlated and work by removing the
uncorrelated errors of individual classifiers using averaging.

There continue to be significant racial, socioeconomic, and geo-
graphic disparities in both access to care and disease outcomes. It has
been hypothesized that automated image interpretation can enable
more accessible and accurate cardiovascular assessments and begin
to alleviate some of the disparities in cardiovascular care.25,26

Systematic screening of patients at risk for AS has been suggested,27

but it may be difficult for cardiologists to supply the additional time
required to perform and evaluate this screening. Therefore, primary
care physicians play an important role in identifying patients with
AS.28 One of the current problems is the low sensitivity and specifi-
city of auscultation.9 These values for internal medicine residents are
even lower.7 Furthermore, a heart murmur is not an exclusive sign of
AS; it can be indicative of several conditions. One study found that
only 30% of murmurs were diagnosed as AS after evaluation.29

Taking these conditions into account, our AI model could serve as a
tool to assist primary care physicians as a more objective test. It may
be particularly useful for patients who have difficulty accessing echo-
cardiography or who cannot lie still for the duration of an echocardi-
ography examination. However, careful consideration of the
consequences of both false positives and negatives is important.30 In
this study, the positive predictive value was low due to the low preva-
lence of AS in the dataset. In practice, positive predictive value should
be increased by adapting the model to a cohort with a high preva-
lence of AS. For example, in a cohort enriched with AS-negative
patients, the model should only be used for patients with symptoms
of AS, or to use it in conjunction with auscultation and medical inter-
view to determine history of arterial hypertension, dyslipidaemia, dia-
betes, smoking, and alcohol use. Additionally, if we want to use the
model to find only moderate to severe AS, we can raise the threshold
of the model. Another advantage of AI models is that they can be
processed in a fraction of the time. For example, if a non-cardiologist
is in charge of an emergency room and sees a patient showing signs
of heart failure, our AI may help them to better understand the con-
dition and make decisions.

24 D. Ueda et al.
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Figure 2 Receiver operating characteristic curves for validation and test datasets of each model. Panels A and B show the results of the models
evaluated in the validation and test datasets, respectively. The orange line shows the results of the ResNet50 model, the blue line shows the results
of the InceptionV3 model, the green line shows the results of the DenseNet121 model, and the red line shows the results of the ensemble model.
The ensemble model shows the highest area under the receiver operating characteristic curve of 0.83 (0.77–0.88) in the validation dataset and 0.83
(0.78–0.88) in the test dataset.

Figure 3 Example saliency maps. These chest radiographs were correctly diagnosed by the Inception V3 model, and the heat maps show the fea-
tures the model focused on when making the determination of aortic stenosis. Panel A shows an 81-year-old asymptomatic man who had echocardi-
ography screening. His aortic valve was normal. Saliency map only shows a very fuzzy hot spot region of interest on the radiograph. Panel B shows a
62-year-old man who came to our hospital for further examination of a murmur detected on auscultation. He was diagnosed with mild aortic stenosis.
Panel B-1 shows the saliency map with the radiograph. The hot spot is located on the aortic valve region. Calcifications are visible on the aortic valve
(red arrowhead) in the CT image (Panel B-2). Panel C shows an 85-year-old woman who came to our hospital for further examination regarding exer-
tional dyspnoea. She was diagnosed with moderate aortic stenosis. Panel C-1 shows the saliency map with the radiograph. The hot spot is located on
the aortic valve region and the left ventricular region. Calcifications are visible on the aortic valve (red arrowheads) and left ventricular hypertrophy
(blue arrowheads) in the computed tomography image (Panel C-2). Panel D shows an 86-year-old man who came to our hospital for further examin-
ation regarding exertional dyspnoea. He was diagnosed with severe aortic stenosis. Panel D-1 shows the saliency map with the radiograph. The hot
spot covers the aortic valve region and the left ventricular region. Calcifications on the aortic valve (red arrowheads) and left ventricular hypertrophy
(blue arrowheads) are visible on the computed tomography image (Panel D-2).
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Study limitations
There were limitations in this study. Data for this study were col-
lected on equipment from multiple vendors but only from patients at
a single centre. Further validation with an external test dataset
acquired at another institution would improve the strength of the
results. This was also a retrospective study and should be repeated
prospectively. Furthermore, the cut-off line between positive or
negative model outputs should be set for each intended use and co-
hort because positive predictive value and negative predictive value
vary with the prevalence of AS in a cohort. The main aetiology of AS
differs greatly by region and time period; in high-income countries
with long life expectancies, age-related degeneration of aortic valve
leaflets accounts for the largest proportion of AS. In low- to middle-
income countries, rheumatoid AS accounts for a larger proportion of
AS. The present study was conducted in a high-income country, and
further verification is needed to understand how these differences in
aetiology affect the model.

Conclusions

In this study, we developed a deep learning model which has potential
to identify patients who have AS using chest radiographs. Our work
is open source, and the trained models are available under the
Apache 3.0 license. This research can contribute to better health
through the detection of AS using chest radiographs.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health online.
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