Skip to main content
. 2020 Dec 19;2(1):154–164. doi: 10.1093/ehjdh/ztaa016

Table 3.

Results sensitivity analysis

Scenario 8:
(1) Age, (2) gender missing
Imputation methods MSE of the LP
(% difference to M-Imp)
C-index CITL Calibration slope
Apparent performance (reference) 0.7051 −0.0001 0.9999

 Simulation 1

Local data (for informing imputation)

M-Imp 0.7438 0.6063 0.1958 0.8225
JMI 0.6373 (−14.32%) 0.6223 0.1616 0.8052
JMIaux 0.4517 (−39.26%) 0.6931 0.0794 1.0828

 Simulation 2

External data (for informing imputation)

M-Imp 0.8334 0.6064 −0.1037 0.8230
JMI 0.7963 (−4.45%) 0.6116 −0.2221 0.5769
JMIaux 0.7018 (−15.79%) 0.6721 −0.3649 0.8453

 Simulation 3

External data with 1.500 local patients

M-Imp 0.792383 0.6107 −0.0205 0.8429
JMI 0.7252996 (−9.25%) 0.6131 −0.0659 0.6480
JMIaux 0.5739753 (−38.05% 0.6856 −0.1451 0.9654

CITL, calibration in the large; JMI, joint modelling imputation; JMI+, joint modelling imputation with auxiliary variables; LP, linear predictor; M-Imp, mean imputation; MSE, mean squared error.