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Aims We sought to evaluate the reliability and diagnostic accuracy of a novel handheld ultrasound device (HUD) with
artificial intelligence (AI) assisted algorithm to automatically calculate ejection fraction (autoEF) in a real-world pa-
tient population.

...................................................................................................................................................................................................
Methods
and results

We studied 100 consecutive patients (57 ± 15 years old, 61% male), including 38 with abnormal left ventricular
(LV) function [LV ejection fraction (LVEF) < 50%]. The autoEF results acquired using the HUD were independently
compared with manually traced biplane Simpson’s rule measurements on cart-based systems to assess method
agreement using intra-class correlation coefficient (ICC), linear regression analysis, and Bland–Altman analysis. The
diagnostic accuracy for the detection of LVEF <50% was also calculated. Test–retest reliability of measured EF by
the HUD was assessed by calculating the ICC and the minimal detectable change (MDC). The ICC, linear regres-
sion analysis, and Bland–Altman analysis revealed good agreement between autoEF and reference manual EF
(ICC = 0.85; r = 0.87, P < 0.001; mean bias -1.42% with limits of agreement 14.5%, respectively). Detection of abnor-
mal LV function (EF < 50%) by autoEF algorithm was feasible with sensitivity 90% (95% CI 75–97%), specificity 87%
(95% CI 76–94%), PPV 81% (95% CI 66–91%), NPV 93% (95% CI 83–98%), and a total diagnostic accuracy of 88%.
Test–retest reliability was excellent (ICC = 0.91, P < 0.001; r = 0.91, P < 0.001; mean difference ± SD: 0.54% ± 5.27%,
P = 0.308) and MDC for LVEF measurement by autoEF was calculated at 4.38%.

...................................................................................................................................................................................................
Conclusion Use of a novel HUD with AI-enabled capabilities provided similar LVEF results with those derived by manual bi-

plane Simpson’s method on cart-based systems and shows clinical potential.
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Introduction

Transthoracic echocardiography is the most widely used cardiac
imaging modality in clinical practice and plays a key role in the
diagnosis, management, and follow-up of patients with cardiovas-
cular disease.1 Although far from perfect, the assessment of left
ventricular ejection fraction (LVEF) as an index of LV systolic func-
tion has significant treatment and prognostic implications for
heart failure patients.2,3 Echocardiography due to its portability
and ability for fast image acquisition and interpretation is the imag-
ing modality of choice for assessment of LVEF in both elective and
emergency settings.1

Most recently, machine learning techniques, commonly known as
artificial intelligence (AI), have been employed to automatically iden-
tify LV endocardial boundaries and calculate LVEF. Several studies
have evaluated AI-assisted echocardiography image analysis techni-
ques, including automated contour-based segmentation, applied to
routine two-dimensional (2D) images.4,5 This approach, known as
autoEF, has been developed using AI-learned pattern recognition
programming trained on large databases of several thousand echo-
cardiographic images of variable quality and diverse pathologies, in
which endocardial boundaries have been traced by experts.

Technological advancements over the last two decades have
enabled the development of miniaturized handheld ultrasound devi-
ces (HUDs) that are compact and battery operated and can provide
echocardiographic images at the point of care with reasonable image
quality. Their simplicity of use, availability, and relatively low cost
compared to the high-end, fully equipped systems have made these
devices attractive to use for rapid medical decision-making.6 The
widespread use of HUD has the potential to reform everyday prac-
tice of echocardiography, from the exclusive use of the technique by
cardiologists in echocardiography laboratories, towards its use by
other operators in the out-of-hospital setting.7 Adequate training of
operators in image acquisition, analysis, interpretation, and reporting
is necessary to ensure quality in cardiac imaging. In addition, reliable
quantification of imaging data is fundamental to reducing operator-
dependent variability in echocardiography; however, until now, HUD
has offered only limited quantification capabilities.8 The application of
AI algorithms (such as the autoEF) to point-of-care echocardiography
may facilitate the optimization of acquisition and interpretation of a
high volume of imaging data in real time, improve reproducibility, and
diagnostic accuracy.

The objectives of this study were to test the ability of a novel
HUD enabled with AI-assisted autoEF algorithm to (i) reliably
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.calculate LVEF compared to manually traced biplane Simpson’s rule
on cart-based machines and (ii) accurately identify impaired LV func-
tion in a real-world patient population.

Methods

Study population
Our study group comprised 100 consecutive ‘all-comers’ patients who
were referred to our tertiary echocardiography laboratory over an ap-
proximate period of 6 weeks and agreed to participate in the study. All
patients were >18 years old, haemodynamically stable, and underwent a
clinically indicated transthoracic echocardiogram without contrast.
Patients with atrial fibrillation or flutter and frequent atrial and ventricular
ectopic beats were excluded from the study due to variation of EF be-
tween different cardiac cycles, often seen in this population. Patients with
very bad image quality that precluded reliable assessment of LVEF with the
biplane Simpson’s method on the cart-based system were also excluded.
All patients provided informed consent and were entered in our single-
centre echocardiography database. The study conformed to the regula-
tions of local ethics and the principles of the Declaration of Helsinki.

Standard echocardiography evaluation of left

ventricular ejection fraction
All echocardiographic examinations were performed using a commercial-
ly available cart-based system (IE33, Affinity or Epic, Philips, Inc.). Images
were acquired by an expert investigator (V.S.—level 3 training in echocar-
diography with 15 years of experience), following a standardized proto-
col. The 2D views used in our study were apical four-chamber (A4C) and
apical two-chamber (A2C) views with the patient in left lateral decubitus
position. Images were optimized to improve the signal-to-noise ratio and
provide optimal endocardial definition. The LV endocardium was used as
the boundary for volumetric measurements. Papillary muscles and visible
trabeculae were part of the blood pool. If endocardial border was indis-
tinguishable, non-visible parts were interpolated manually. The image
quality for each examination was assessed and classified as good, moder-
ate, and poor based on the number of LV walls (septal, anterior, lateral,
and inferior) that endocardial borders were not clearly definable in end-
diastole (0, 1, or >_2, respectively). The modified biplane Simpson’s
method of discs was used to determine LV volumes and function. End-

diastolic and end-systolic endocardial borders were traced manually on
frozen 2D images obtained from the A4C and A2C views to derive end-
diastolic volume (EDV) and end-systolic volume (ESV). End-diastole was
defined as the peak of the electrocardiographic R wave and/or one frame
before mitral valve closure. End-systole was defined as one frame before
mitral valve opening or when end-systolic volume was deemed smallest
by the operator. The LVEF was calculated according to the formula EF =
(EDV - ESV)/EDV � 100% (Figure 1A and B). The time for obtaining the
EF by manual tracing was calculated for the first 20 patients. The cart-
based EF (CB-EF) values were considered the reference values for all
comparisons. Furthermore, the CB-EF measurements were used to clas-
sify patients into three categories of LV function (reduced, mildly
reduced, and preserved EF) as defined in the 2021 ESC Heart Failure
guidelines2 for LVEF <_40%, 41–49%, and >_50%, respectively. In addition,
based on the CB-EF measurements, an LVEF <50% was considered a clin-
ically relevant cut-off value to define abnormal LV function.

LVEF calculation by AI-assisted autoEF in

handheld ultrasound device
All the study participants were subsequently scanned by the same cardi-
ologist with a novel HUD (Kosmos, EchoNous, Inc.) equipped with a 2-
to 5-MHz phased-array transducer (Figure 2), which allows calculation of
LVEF with an AI-assisted autoEF algorithm. AutoEF applies the concept of
learned pattern recognition from AI theory, which generically seeks to
mimic human behaviour and learn from past experiences. The Kosmos AI
platform (https://kosmosplatform.com/) is developed on convolution
neural networks, which have been trained on expert annotated ultra-
sound clips. Of importance, no ECG tracing is required for the algorithm
to operate. The Kosmos AI-assisted EF workflow follows the Simpson’s
Biplane LVEF as recommended by the American Society of
Echocardiography.8 The workflow begins with acquisition of A4C and
A2C image sequences (clips) of the heart (5 s each). The A4C and A2C
clips are then processed by a deep learning algorithm to compute the
LVEF (processing time of �5 s). The algorithm first identifies the end-
diastolic (ED) and end-systolic (ES) frames in both A4C and A2C clips
and then segments the LV in all four frames (A4C ED and ES, A2C ED,
and ES frames).

Fully automated estimation of the LVEF was possible after acquisition
of these two views with the use of the AI-assisted autoEF algorithm, and
the result was immediately saved without any correction by manual trac-
ing (Figure 1C and D). After �1 h, a second independent acquisition with

Figure 1 Endocardial border detection by manual biplane Simpson’s method (A and B) and Kosmos HUD autoEF algorithm (C and D) in end-dia-
stole and end-systole. All datasets are derived from the same patient, with a mildly reduced EF. A2C, apical 2-chamber; A4C, apical 4-chamber; EDV,
end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; HUD, handheld ultrasound device.
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automated EF calculation was obtained for all subjects by the same obser-
ver in order to assess measurement reliability. The acquired Kosmos data
(A4C and A2C views) for each patient were assessed for image quality
and classified as good, moderate, and poor in a similar way as described
above for the cart-based system images.

Reliability of autoEF acquired measurements
The reliability of the measured LVEF by the AI-assisted autoEF algorithm
was assessed in two different ways, as intra- and inter-acquisition variabil-
ity. First, the internal validity of the autoEF algorithm was tested on a sub-
set of 10 randomly selected patient datasets, which were reanalysed
offline by applying the AI-assisted algorithm 20 times on each original
acquired dataset. Second, the test–retest reliability of the method was
evaluated using the second independent autoEF measurement acquired
using the HUD.

Statistical analysis
Normal distributions of variables were checked before analysis.
Continuous variables were expressed as means ± standard deviation or
medians with interquartile range (IQR) when not normally distributed;
categorical variables were presented as counts and/or percentages.
Agreement between CB-EF and HUD autoEF measurements was eval-
uated by intraclass correlation coefficient (ICC), linear regression analysis,
and Bland–Altman analysis.9 The 95% limits of agreement (LOA) were
defined as the range of values between ±1.96 standard deviations from
the mean difference. Weighted Cohen’s kappa10 was calculated to deter-
mine the inter-method agreement in classifying patients into different cat-
egories of LV function. It is usual to characterize the strength of
agreement with kappa values as follows: <0 none, 0–0.20 slight, 0.21–0.40
fair, 0.41–0.60 moderate, 0.61–0.80 good, and 0.81–1.00 almost perfect.
Comparison between continuous variables was performed using paired
Student’s t-test or analysis of variance (ANOVA) with Bonferroni’s cor-
rection in post-hoc tests, whereas the variables not normally distributed
were compared with the non-parametric Kruskal–Wallis test and the
Wilcoxon-signed ranks test. Categorical variables were compared using
the v2 test. Sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and overall diagnostic accuracy of Kosmos autoEF

to detect LVEF <50% were calculated using 2� 2 contingency tables and
the corresponding 95% confidence intervals (CIs) were determined.

Test–retest reliability of measurements obtained by the autoEF was
assessed using the ICC for single measures (two-way mixed model with
interaction for the absolute agreement), linear regression analysis, Bland–
Altman plot, and the minimal detectable change (MDC) which represents
the minimal change required to ascertain that the differences observed re-
flect a real change rather than measurement error with at least 95% confi-
dence.11 The Standard Error of Measurement (SEM) was computed as
SD�1-ICC and subsequently, the MDC was calculated as 1.96� �2�SEM.

As a complementary analysis, a multiple linear regression model was
constructed using the stepwise method in order to identify potential ex-
planatory variables for the discrepancy between the CB-EF and the
autoEF calculation. The absolute LVEF difference between the two meth-
ods was used as the dependent variable, whereas age, gender, image qual-
ity (as dichotomous variable poor vs. moderate/good), and body mass
index were used as explanatory variables. Graphical inspection of scatter
plots between predicted values of the dependent variable and regression
standardized residuals excluded heteroscedasticity of distribution. The po-
tential impact of image quality on measurement error was further investi-
gated separately across the three categories (good, moderate, and poor).

For all statistical tests, a two-tailed P value <0.05 was considered statis-
tically significant. Statistical analysis was performed using SPSS software,
version 22.0 (IBM Inc., Chicago, IL, USA).

Table 1 Clinical and echocardiographic data of the
study population (n 5 100)

Patient characteristic

Age (years) 57 ± 15

Male gender (%) 61

Height (cm) 171.4 ± 8.7

Weight (kg) 81.3 ± 13.9

BMI (kg/m2) 27.8 ± 4.3

Main diagnosis

Valvular heart disease 23

Cardiomyopathy 13

CAD 29

Cancer-related treatment 11

Post-COVID-19 infection 4

Hypertension 2

Ischaemic stroke 5

Palpitations/arrhythmias 4

Diabetes mellitus 2

Othera 7

Calculated LVEF

Cart-based biplane Simpson’s EF 51 ± 15

Kosmos AI-assisted autoEF 49 ± 12

LVEF category (reference method)

Reduced (<_40%) 25

Mildly reduced (41–49%) 13

Preserved (>_50%) 62

Values are expressed as mean ± SD or percentage (%) of patients unless other-
wise indicated.
BMI, body mass index; CAD, coronary artery disease; COVID, coronavirus dis-
ease; LVEF, left ventricular ejection fraction.
aPericardial effusion, acute kidney failure, pre-eclampsia, pulmonary embolism,
aortic aneurysm, and myositis.

Figure 2 The handheld ultrasound device used in the study
(Kosmos, EchoNous Inc.), equipped with an artificial intelligence-
assisted autoEF algorithm. The device consists of a tablet and probe,
which connects to the tablet via a cable.
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Results

The study prospectively included 100 consecutive ‘all-comers’
patients (mean age 57± 15 years, 61% male); among them, 38% had
an abnormal LVEF of <50%. Left ventricular ejection fraction meas-
urements were completed for both cart-based systems and HUD in
all patients included in the study. The clinical and echocardiographic
characteristics of the study population are listed in Table 1. The image
quality for the cart-based systems acquisition was assessed as good in
45%, moderate in 50%, and poor in 5% of cases, and for the HUD ac-
quisition as good in 31%, moderate in 57%, and poor in 12% of cases.
The average time for obtaining the EF by manual tracing was
84± 17 s, whereas the HUD autoEF algorithm provided EF calcula-
tion in�15 s for all patients.

Agreement between methods and
diagnostic accuracy
There was good agreement between the calculated CB-EF and
Kosmos autoEF (ICC = 0.85; 95% CI: 0.78–0.90). The results of linear

regression analysis revealed a correlation coefficient r = 0.87,
P < 0.001 (Figure 3A). The corresponding Bland-Altman plot shows a
minimal non-significant bias of -1.42% (P = 0.058), with LOA of 14.5%
for the auto-EF (Figure 3B). The paired comparison of the LVEF calcu-
lation by the two methods did not reveal a significant difference be-
tween CB-EF and HUD autoEF [56% (IQR 40–62%) vs. 53% (IQR
43–59%), respectively, P = 0.106].

Regarding the ability of Kosmos autoEF to correctly classify
patients into three categories of LV function (reduced, mildly
reduced, and preserved EF), the weighted j-coefficient was 0.76
(judged as good). The detailed distribution of cases across LV
function categories is presented in Table 2 and Figure 4. The
Kosmos autoEF AI-assisted algorithm was able to detect abnor-
mal LV function (EF < 50%) with sensitivity 90% (95% CI: 75–
97%), specificity 87% (95% CI: 76–94%), PPV 81% (95% CI: 66–
91%), NPV 93% (95% CI: 83–98%), and total diagnostic accuracy
of 88%.

Test–retest reliability analyses
The intra-acquisition variability for the automated EF measure-
ments on each of the 10 randomly selected patients dataset was 0
(calculated within-subject SD = 0) since by default the AI algo-
rithm followed the same pattern recognition on repeated analy-
ses of the same acquisition (Figure 5). Finally, the inter-acquisition
test–retest reliability for HUD measurements 1 and 2 was
deemed as excellent (ICC = 0.91; 95% CI: 0.87–0.94, P < 0.001).
The results of linear regression analysis revealed a correlation co-
efficient r = 0.91, P < 0.001 (Figure 6A). There was no significant
difference in autoEF measurements between acquisition 1 and 2
(mean difference ± SD: 0.54% ± 5.27%, P = 0.308) and the corre-
sponding Bland–Altman plot is presented in Figure 6B. The calcu-
lated MDC for the repeated LVEF measurements using autoEF
algorithm was 4.38%.

The multiple linear regression model with the possible predictors
of the absolute EF difference revealed that BMI was the only

Figure 3 Linear regression analysis (A) and Bland–Altman plot (B) between Kosmos HUD autoEF algorithm and manual biplane Simpson’s EF on
cart-based system. EF, ejection fraction; HUD, handheld ultrasound device.

.................................................................................................

Table 2 Classification of patients into LV function
categories with both methods of cart-based biplane
Simpson’s EF and Kosmos HUD autoEF

Kosmos HUD autoEF

Cart-based EF �40% 41–49% �50% Total

�40% 20 5 0 25

41–49% 0 9 4 13

�50% 3 5 54 62

Total 23 19 58 100

EF, ejection fraction; HUD, handheld ultrasound device. The diagonal elements of
the classification table (light blue shaded cells) represent correct classification
into LV function categories.

Use of AI autoEF algorithm in HUD echocardiography 33
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..statistically significant explanatory variable, which remained in the
model (B = 0.309, 95% CI 0.067–0.551; P = 0.013). Furthermore,
across the three categories of image quality (good, moderate, and

poor), there was a non-significant trend for increasing absolute EF dif-
ference (4.6% ± 3.9%, 5.4% ± 5.0%, and 7.8% ± 8.3%, respectively,
P = 0.211), as presented in Figure 7.

Figure 4 Scatter plot of EF measurements derived by Kosmos HUD autoEF algorithm and manual biplane Simpson’s EF on cart-based system
across different EF categories. The reduced, mildly reduced, and preserved EF groups are represented with red, yellow, and green colour, respectively.
EF, ejection fraction; HUD, handheld ultrasound device.

Figure 5 Results of the 20 re-runs of the autoEF algorithm on each of the 10 randomly selected patient datasets. AI, artificial intelligence; EF, ejec-
tion fraction.
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Discussion

The main finding of this study was that a fully automated measure-
ment of EF using a novel HUD is feasible within a few seconds, and its
results are reliable and comparable to the ones derived by standard
method (biplane Simpson’s method of discs). The AI-assisted autoEF
was able to classify patients into different LV function categories and
to identify LVEF <50% with good diagnostic accuracy compared to
the cart-based echocardiography systems.

Over the last decades, referrals for echocardiographic examinations
have increased substantially, occupying significant amount of time and

resources of echocardiography laboratories.12 Additionally, increased
waiting times for service deliverance can lead to delays in diagnosis and
treatment of cardiovascular disease with potential detrimental effects
on the prognosis of patients. The use of HUD has the potential to influ-
ence bedside patient treatment decisions and expedite health care. A
previous study by Gorcsan et al.13 in 235 hospitalized patients showed
that the HUD had an immediate effect on patient management in 149
patients (63%), i.e. either a change in medical therapy or a change in
their diagnostic workup (most with changes in both). Furthermore,
HUD could serve as a gatekeeper to standard echocardiography, espe-
cially in the setting of rarely appropriate indications. A recent study

Figure 6 Linear regression analysis (A) and Bland–Altman plot (B) between the two separate measurements with the Kosmos device autoEF
algorithm.

Figure 7 The mean absolute EF differences between Kosmos autoEF algorithm and manual biplane Simpson’s EF on cart-based system across the
three categories of image quality (good, moderate, and poor). EF, ejection fraction; NS, non-significant.

Use of AI autoEF algorithm in HUD echocardiography 35
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.
demonstrated that a HUD echocardiography strategy led to a 59% de-
crease in the need for standard echocardiography and reduced consid-
erably the total cost and time to decision making.14 The use of HUD
echocardiography as an initial screening tool prior to standard echocar-
diography is cost-effective, suggesting that the HUD is on the verge of
reforming the current diagnostic strategy in clinical practice.15 This has
mainly resulted from technological advancements that have significantly
improved the image quality of HUD, increasing doctors’ confidence to
use it as a reliable diagnostic bedside tool. In keeping with this, in only
12% of patients in our ‘all-comers’ population study, image quality of
HUD was judged as poor.

Furthermore, it is widely accepted that the calculation of LVEF is
pivotal in clinical decision-making. Many clinical trials investigating
medical therapies for cardiology patients are based on LVEF estima-
tion. More recent data continue to support the importance of LVEF
to predict patient outcome and its impact on patient selection for
novel therapies.16 Nevertheless, a large variability in LVEF measure-
ments has been observed between different centres and treatment
strategy may be confounded in up to one-fifth of patients when deci-
sions are based on LVEF.17 Consequently, the clinical need for more
reproducible ways of assessment of LV function has become appar-
ent. The validity of autoEF algorithms implemented on standard
echocardiography examinations has been previously investigated as a
way to provide fast, reliable, and reproducible LVEF calculations. In
early studies of computer-assisted EF analysis, correlation with 2D
LVEF was suboptimal.18 Nevertheless, numerous studies using
autoEF software from different vendors have now shown high feasi-
bility (83–100%) for biplane 2D LVEF measurements and excellent
agreement with core laboratory measurements.19–23

Our study did not include a standard manual EF assessment on the
HUD images because the device is devoid of the ability to complete
manual LV endocardial border tracing; due to the size and touch
screen functionality of these miniaturized devices, manual tracing for
EF calculation is tedious and prone to error. There is a capability for
the user to adjust the autoEF algorithm delineated borders (if
deemed necessary); however, this would be a semi-automatic
method, rather than standard manual EF assessment and would ul-
timately increase processing time. In our opinion, manual EF assess-
ment using HUDs could not be implemented in clinical practice,
because these devices are mainly used at the point-of-care, some-
times under emergency circumstances, which actually highlights the
necessity for reliable autoEF algorithms on HUDs.

Notably, there are very limited data regarding the implementation
of autoEF algorithms on HUD echocardiography. In an early study
using images derived from HUD, the autoEF analysis was performed
offline and the software required the examiner to define three
regions of interest in the left ventricle, thus the method was not fully
automated.24 A recent study using an autoEF algorithm in HUD
showed good correlation with the 3D measurement of LVEF on sta-
tionary echocardiography; however, the examinations with poor and
moderate image quality were excluded from the analysis, which could
affect the generalizability of the results.25 Our investigation showed
that the AI-assisted autoEF algorithm in a novel HUD can be used on
a real-world patient population with results comparable to the cart-
based echocardiography system and showed high sensitivity (90%) to
detect impaired LVEF <50%. Importantly, patients with poor image

quality on HUD were included in our method agreement analysis. In
addition, the autoEF algorithm provided faster EF calculation in�15 s
for all patients than the manual tracing on cart-based system.

Besides the significance of accurate EF calculation in a timely man-
ner, obtaining reliable measurements is also fundamental and gives
confidence that the measured values can be used to make clinical
decisions. An important factor for measurement variability is test–re-
test reliability (also called reproducibility or repeatability), which
describes variability of separately acquired and interpreted echocar-
diographic measurements of the same patient. Early studies identified
repeated acquisitions as the major component of variability of con-
ventional echo parameters in a test–retest setting.26 Our results
demonstrated that the measurements provided by the autoEF algo-
rithm are reliable; in addition, the ICC and MDC values are similar to
the test–retest reliability reported in the literature for the biplane
Simpson’s method used in standard echocardiography for EF, with
MDC ranging from 4.4% to 18.1%.26–29 Importantly, the MDC of
4.38% we found for the calculation of LVEF by autoEF is below the
5% threshold that is often used in clinical practice to designate a
meaningful change in LVEF in several clinical scenarios, such as the
follow-up of oncology patients.29

Consequently, the reliable and rapid calculation of LVEF in real-
time at the point-of-care can have significant clinical implications;
apart from the use in hospitalized patients in need for a rapid as-
sessment, it could be applied potentially as an initial screening tool
on large scale healthy populations,30 even by physicians who have
received appropriate training but are non-experts in echocardiog-
raphy. This is also supported by the high NPV of the AI algorithm
performance in our population. Nevertheless, it has to be empha-
sized that the role of HUD is not to replace standard echocardi-
ography but to act as a gatekeeper and facilitate workflow for
echocardiography laboratories, whereas at the same time it
should be able to identify individuals who must be further investi-
gated by standard echocardiography. Of course, it is important to
remember that when comparing HUD with fully equipped cart-
based systems, one has to weight the advantages of portability and
availability of echocardiography at the point of care with its cur-
rent technological limitations.

Limitations
This is a single-centre and a single-operator study; however, we used
the scanner exactly as we would use it in our clinical practice, which
makes our findings relevant to the real-world patient population
referred to a tertiary echocardiography laboratory. Patients with very
bad image quality in whom the biplane Simpson’s rule could not be
applied on the cart-based system were excluded since no standard
method to compare the performance of the autoEF algorithm would
be present. However, such patients are uncommon in everyday clinical
practice. Our analysis included tests with poor image quality, contrary
to other studies. We did not acquire multiple datasets using the high-
end systems to do a test–retest variability analysis. Nevertheless, it was
outside the scope of our study, and the test–retest reliability for
Simpson’s EF using standard high-end systems has been previously
reported in the literature.26–29 Finally, given the inclusion of a relatively
small number of patients, the possibility of a Type II error should be
considered.
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..Conclusion

The AI-assisted autoEF algorithm in a novel HUD can automatically
calculate LVEF in realtime in a fast and reliable way as compared to
the recommended manual biplane Simpson’s method on cart-based
systems. These findings may have clinical potential.
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