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Aims Automated interpretation of electrocardiograms (ECGs) using deep neural networks (DNNs) has gained much at-
tention recently. While the initial results have been encouraging, limited attention has been paid to whether such
results can be trusted, which is paramount for their clinical implementation. This study aims to systematically inves-
tigate uncertainty estimation techniques for automated classification of ECGs using DNNs and to gain insight into
its utility through a clinical simulation.

...................................................................................................................................................................................................
Methods
and results

On a total of 526 656 ECGs from three different datasets, six different methods for estimation of aleatoric and epi-
stemic uncertainty were systematically investigated. The methods were evaluated based on ranking, calibration, and
robustness against out-of-distribution data. Furthermore, a clinical simulation was performed where increasing un-
certainty thresholds were applied to achieve a clinically acceptable performance. Finally, the correspondence be-
tween the uncertainty of ECGs and the lack of interpretational agreement between cardiologists was estimated.
Results demonstrated the largest benefit when modelling both epistemic and aleatoric uncertainty. Notably, the
combination of variational inference with Bayesian decomposition and ensemble with auxiliary output outper-
formed the other methods. The clinical simulation showed that the accuracy of the algorithm increased as uncer-
tain predictions were referred to the physician. Moreover, high uncertainty in DNN-based ECG classification
strongly corresponded with a lower diagnostic agreement in cardiologist’s interpretation (P < 0.001).

...................................................................................................................................................................................................
Conclusion Uncertainty estimation is warranted in automated DNN-based ECG classification and its accurate estimation ena-

bles intermediate quality control in the clinical implementation of deep learning. This is an important step towards
the clinical applicability of automated ECG diagnosis using DNNs.
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Introduction

Worldwide, more than 300 million electrocardiograms (ECGs) are
annually acquired, making it the most widespread cardiological diag-
nostic test in use. The ECG is utilized in daily clinical practice to diag-
nose a wide range of potentially life-threatening abnormalities and its
correct interpretation requires expert knowledge from an experi-
enced cardiologist, which might not always be directly available.
Moreover, the massive number of ECGs acquired places a consider-
able logistic burden on the clinical routine.1 Computerized interpret-
ation of the ECG (CIE) has become increasingly important in
supporting clinical practice. However, CIE has not yet been able to
reach cardiologist-level accuracy, and over-reading automated ECG
interpretations remains necessary.2

Substantial improvement in CIE is forthcoming with the develop-
ment of deep learning algorithms that can learn abstract features
from the raw ECG signal without the need for laborious hand-crafted
feature extraction. Recent studies have shown encouraging results of
deep neural networks (DNNs) applied to ECGs, ranging from

detection of selected arrhythmias or conduction disorders to com-
prehensive interpretation for automatic triage.3–5 While such reports
have demonstrated the efficacy of deep learning in ECG analysis,
there are additional challenges to be addressed before deep learning-
based methods can be deployed in clinical practice.6

One such challenge is found in the fact that current deep learning
models are architecturally forced to provide an output that translates
to a diagnosis or prediction, while not reporting back to the user the
degree to which such output might be uncertain (i.e. to which degree
the model does not know the output is indeed correct). This output is
provided even when the model has not seen the input before.
Therefore, all prior deep learning models reported have been pro-
moted without any evaluation or management of the uncertainty asso-
ciated with their estimations.7,8 It has been argued that the Softmax
output (the probability distribution of predicted classes) of a regular
DNN can also be interpreted as a measure of uncertainty. However,
research has shown that this produces erroneous predictions with
high confidence on unseen data and is therefore unsuitable for safety-
critical applications.9
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In clinical practice, expert clinicians consult colleagues or literature

when confronted with complex cases that carry diagnostic uncer-
tainty, which is then addressed through re-evaluation and consensus.
Accordingly, it is highly desirable for deep learning algorithms
employed in CIE to report some measure of uncertainty along with
their diagnostic or predictive output so that equivocal cases can be
re-evaluated by an experienced cardiologist.

For any diagnostic or predictive model, there are two distinct
causes for the uncertainty of its prediction. These two are referred to
as aleatoric and epistemic uncertainty (Supplementary material on-
line, Figure S1).10 Aleatoric uncertainty arises from noise inherent in
the data, such as high-frequency noise, lead reversals, baseline drift,
or borderline cases present in the ECG recording and can therefore
not be reduced by further data collection. Alternatively, epistemic
uncertainty is caused by a lack of knowledge from the algorithm,
which for instance has not been exposed to a specific (disease) pat-
tern during training. Epistemic uncertainty can therefore be reduced
by further exposure of the model to additional data. Both types of
uncertainty influence the confidence associated with a model’s out-
put and several different approaches exist to estimate aleatoric and
epistemic uncertainty. However, to the best of our knowledge, none
of these have been applied to DNN-based CIE.11

In this study, we aimed to systematically investigate the feasibility
and performance of multiple uncertainty estimation methods for
deep learning-based ECG analysis across different local and publicly
available datasets and tasks. Additionally, we show which methods
are the most useful to improve the clinical value of these algorithms
through a clinical simulation.

Methods

Training data acquisition
Three 12-lead ECGs datasets were used to evaluate the uncertainty esti-
mation methods. The UMCU-Triage and UMCU-Diagnose datasets
were used to compare methods between an easier (UMCU-Diagnose)
and challenging (UMCU-Triage) task. The publicly available CPSC2018
dataset was employed to increase the reproducibility of our experiments
and to compare results between a small (CPSC2018) and large (UMCU-
Diagnose) dataset. The UMCU-Triage and UMCU-Diagnose datasets
contain standard 12-lead ECGs acquired between January 2000 and
August 2019 on all non-cardiology wards and outpatient clinics, the
Intensive Care Unit and the Emergency Department of the University
Medical Center Utrecht (UMCU, Utrecht, the Netherlands). The ECGs
were acquired using a General Electric MAC 5500 (GE Healthcare,
Chicago, IL, USA) and raw 10 s 12-lead ECG data waveforms were uti-
lized. Extracted data were de-identified in accordance with the EU
General Data Protection Regulation and written informed consent was
waived by the ethical committee. All ECGs were interpreted by a cardi-
ologist or cardiologist-in-training as part of the regular clinical workflow,
and structured diagnosis labels were extracted from free-text interpreta-
tions using a text-mining algorithm described previously.3 The CPSC2018
dataset was described in detail elsewhere and contains 12-lead ECGs
acquired at 11 different hospitals across China.12

Training data labelling
The UMCU-Triage DNN performs a comprehensive ECG triage task
and classifies ECGs into one of four distinct triage categories based on
how promptly a cardiologist must be consulted: normal (no consultation

necessary), abnormal not acute (low priority consultation), abnormal
subacute (moderate priority consultation), and abnormal acute (high pri-
ority consultation). The ECG diagnoses and their corresponding triage
categories were described before.3 The CPSC2018 and UMCU-
Diagnose datasets were used for a specific ECG diagnosis classification
task and were annotated with eight ECG diagnoses: normal, atrial fibrilla-
tion, left bundle branch block, right bundle branch block, premature atrial
contraction, premature ventricular contraction, ST-segment depression,
and ST-segment elevation.

Validation data acquisition
The UMCU-Triage dataset was split into training and validation sets in a
95:5% ratio at the individual patient level. The independent test set con-
sisted of 984 randomly sampled ECGs from different patients, annotated
by a panel of five practicing senior electrophysiologist–cardiologists.3 All
ECGs were interpreted by two blinded annotators, and, in case of dis-
agreement, a third annotator was consulted. A majority vote policy was
used to get the final triage class. All patients in the test set were excluded
from the training and validation datasets. The UMCU-Diagnose dataset
was trained and tested using a random train/validation/test split of
90:5:5% on the patient level. The CPSC2018 data was divided according
to a 90:10% train/validation split, and testing was performed with the offi-
cial CPSC2018 test data which contains 300 ECGs.11

Deep neural network architecture
The base DNN architecture used in all experiments was based on an
Inception Residual Network, which was described before by Van de Leur
et al.3 This model consists of 37 dilated single-dimensional convolutional
layers, which convolve along the time-axis of the ECG (Supplementary
material online, Figure S2). The models were trained using the Adam opti-
mizer with a learning rate of 0.0005.13 Training was performed for 20
epochs, using mini-batches of size 128. To counteract class-imbalance in
the data, the focal loss was used as the loss function with focusing param-
eter set to c ¼ 1:0.14 Complementary architecture details are provided
in the Supplementary material online, Methods.

Uncertainty estimation
Four methods for epistemic uncertainty, two methods for aleatoric un-
certainty and their possible combinations were compared. The epistemic
methods compared were: Monte Carlo dropout (MCD), Bayesian neural
network with variational inference (VI), ensemble (ENS), and snapshot
ensemble (SSE).15–19 The aleatoric methods compared were: auxiliary
output (AUX) and Bayesian decomposition (BD).10,20,21 The estimation
of epistemic uncertainty in all methods works in a similar way: (i) multiple
predictions are obtained for a single ECG by training multiple networks
(ENS and SSE) or by sampling from the same network (VI and MCD),
(ii) the class with the highest mean probability is selected, and (iii) the vari-
ance over the probabilities for that class is used as the measure for uncer-
tainty. Aleatoric uncertainty is either modelled directly using an auxiliary
output (either independently or combined with ENS, SSE, and MCD) or
Bayesian decomposition of the output of a Bayesian network (VI). Thus,
for all methods, we get a new probability measure (the mean of the prob-
abilities), referred to as the confidence, and an extra measure of uncer-
tainty (the variance over the probabilities). An overview of the methods
is given in Table 1 and Figure 1, and the methods and implementation
details are described extensively in the Supplementary material online,
Methods and Supplementary material online, Table S1.

Next to regular evaluation on data the algorithm was trained on, the
uncertainty methods were also evaluated for their ability to detect out-
of-distribution (OOD) data, i.e., ECGs containing diagnoses that the net-
work has never been seen before. This could happen when the algorithm
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..is applied in a new setting with a different disease distribution than in the
training dataset. OOD data were created by excluding ECGs of a specific
class during training and adding those ECGs to the test set. The OOD
classes were ECGs with acute arrhythmias (such as ventricular tachycar-
dia) for UMCU-Triage (part of the abnormal acute class) dataset and
atrial fibrillation for UMCU-Diagnose and CPSC2018 datasets.

Clinical simulation
A clinical scenario was simulated where a DNN is applied in a clinical set-
ting with different thresholds (Figure 2). In this simulation, every ECG is
first classified by the DNN and the corresponding uncertainty estimate is
obtained. Next, the results were split into a trusted and rejected group
by applying a threshold based on the estimated uncertainty. This ensures
that only ECGs with certain predictions are trusted, and uncertain ECGs
can be then evaluated by a cardiologist. The performance of the trusted

predictions was evaluated using the accuracy for every threshold. For the
OOD setting, the influence of the threshold on the rate of rejection of
the OOD class was visualized. The clinical simulation was performed
using the same test sets as the other experiments.

Correspondence with cardiologist’s lack of

agreement
We investigated whether predictions regarding ECGs which the uncer-
tainty estimation methods marked as uncertain, corresponded with the
ECGs on which cardiologist’s diagnoses differed. A unique opportunity to
perform this evaluation was found in the UMCU-Triage test set since it
contains annotations from multiple cardiologists. The agreement be-
tween the cardiologists was used as a proxy for their diagnostic certainty,
which was then compared to the total estimated uncertainty of the DNN
on the same ECGs.

....................................................................................................................................................................................................................

Table 1 Description of evaluated uncertainty estimation methods

Method Description

Epistemic

Monte Carlo dropout (MCD) Dropout is kept on during test time, thereby creating a different dropout mask of the network every time a predic-

tion is made. Through making multiple predictions on the same input ECG with differing dropout masks, varying

predictions are obtained. The variance within these predictions is the estimated epistemic uncertainty.

Simple to implement and can be applied to all existing models without retraining given that dropout was used.

Variational inference (VI) Weights of the neural network are replaced by distributions, creating a Bayesian neural network. These distribu-

tions can be sampled to obtain a set of weights, which can be used to make predictions. Once trained, the distri-

butions are sampled multiple times to obtain multiple sets of weights, which are used to make multiple

predictions on the same input ECG. The variance within these predictions functions as the estimated epistemic

uncertainty.

Theoretically sound approach to uncertainty but requires adjustment of network and training logic and training can

be difficult and time-intensive.

Ensemble (ENS) Multiple the same neural networks are randomly initialized and trained on the same data, resulting in an ensemble

of neural networks. After training, each ensemble member predicts on the same input ECG. The predictions are

averaged, and the variance within the predictions is the estimated epistemic uncertainty.

Simple to implement and can be applied to all existing models but training logic needs slight changes and training

demands more time.

Snapshot ensemble (SSE) The snapshot ensemble method is similar to the normal ensemble, but now only a single neural network is trained.

During training, a cyclical learning rate is used, causing the network to converge during lower learning rates, and

diverge again when the cycle restarts and learning rate goes up. After training, the snapshot ensemble is created

by initializing individual neural networks with the trained weights from epochs where the learning rate was low.

The individual members make predictions, and the variance of those predictions is the epistemic uncertainty.

Same as ensemble but training time is drastically reduced.

Aleatoric

Auxiliary output (AUX) The auxiliary output method adds an additional output neuron to the last layer of the neural network for each class.

These neurons are tasked with estimating the aleatoric uncertainty. The neurons are incorporated into the loss

function during training, and thereby directly learn the aleatoric uncertainty present in the data. Once trained, the

value of the auxiliary output neuron corresponding to the predicted class is the estimated aleatoric uncertainty.

Possibility to add aleatoric uncertainty estimation to non-Bayesian networks. Simple to implement, requires chang-

ing the last layer of the architecture.

Bayesian decomposition (BD) The Bayesian decomposition method works with the variational inference method. It decomposes the predictive

distribution of a Bayesian neural network into an epistemic and aleatoric part directly.

Possibility to add aleatoric uncertainty estimation to Bayesian networks. Simple to implement when the network is

already Bayesian.

404 J.F. Vranken et al.
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Statistical analysis
For each base network, discriminatory performance was evaluated using
the macro-averaged one-vs.-one area under the receiver operating char-
acteristic curve. Base network calibration was assessed using calibration

plots. The uncertainty estimation methods were evaluated based on
ranking, calibration, and robustness against OOD data, followed by a clin-
ical simulation in which uncertain predictions were excluded. The evalu-
ation metrics are described below.

0.9 0.8 0.3

1 0.7 0.4

0.8 0.6 0.4

1 1 0

Human uncertainty

Ensemble uncertainty

MC dropout uncertainty

Variational inference uncertainty

Neurons with 
different activations

Connections with
different weights 0.9 Output neuron with

probability of y
Connection with
distribution as weight 

[                        ]Var = uncertainty

Figure 1 Overview of the uncertainty estimation concept and the epistemic uncertainty estimation methods. All methods work similarly to human
uncertainty (in the top box, illustrated as several brains), where there are multiple reviewers interpreting the same electrocardiogram. The uncer-
tainty is then calculated as the variance over these different predictions for the same electrocardiogram. With deep neural networks multiple predic-
tions can be achieved using ensembles (i.e. training the same network multiple times), MC dropout (i.e. removing some nodes randomly during
prediction), or variational inference (i.e. sampling from the same network with distributions as weights multiple times).
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Figure 2 Flowchart of the possible clinical implementation. The deep neural network provides a certainty value first, which is compared with a pre-
defined threshold. Only interpretations where the deep neural network is certain about are then automatically interpreted. The uncertain electrocar-
diograms are interpreted by the physician. This example shows an incorrect prediction by algorithm, where subtle ST-depressions are interpreted as
aspecific ST-segment abnormalities. Due to the low certainty, this example will be passed on the physician for interpretation, that classified it as
acute.
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..The ranking is concerned with the ordering of uncertainties and evalu-
ates whether high certainty predictions align with high accuracy. The
ranking was measured using the Area Under the Confidence-Oracle
error (AUCO) metric (also referred to as Area Under the Sparsification
Error curve).22,23 The AUCO compares the theoretically best possible
ordering based on the obtained Brier score to the ordering based on the
estimated uncertainty, which are called oracle-error and confidence-
error, respectively. The AUCO is then the area between the oracle-error
and confidence-error curves, which measures the difference between the
perfect ordering and the ordering made by the uncertainty estimation
method.

In contrast to ranking, calibration looks at the actual value of the esti-
mated confidence individually, and tests whether the estimates are
over- or under-confident. To measure calibration, a calibration plot was
created by splitting the mean maximum Softmax probabilities into 10 bins
and calculating the accuracy over each bin. A perfectly calibrated model
outputs probabilities that match up with the accuracy and would there-
fore lie on the diagonal. Probabilities above or below the diagonal are
referred to as over-confident or under-confident, respectively.
Calibration was measured using the Expected Calibration Error (ECE),
which quantifies the difference on the calibration plot between the mod-
el’s confidence and the perfect diagonal.24

The difference in the estimated uncertainty between the ECG where
the cardiologists agreed and disagreed was assessed using the median and
interquartile range (IQR) and Mann–Whitney U test, as the data were not
normally distributed. These were evaluated for the total UMCU-Triage
test set and in a per-class fashion. A P-value below 0.05 was considered
statistically significant.

Results

Data distribution
The UMCU-Triage and -Diagnose datasets contained 316 987 and
194 880 ECGs, respectively, while the CPSC2018 dataset contained
6877 ECGs. The class distribution in the different datasets is shown
in Table 2. The UMCU-Triage test set consisted of 984 ECGs of
unique patients of which 418 were normal, 410 abnormal not acute,
80 abnormal subacute, and 76 abnormal acute. The UMCU-

Diagnose and CPSC2018 test set consisted of 10 089 and 300 ECGs
respectively, with similar distribution to Table 2.

Base network comparison
The mean AUCs of the base DNN and models with uncertainty esti-
mation methods on in-distribution setting were 0.95 ± 0.0044 for the
UMCU-Triage dataset, 0.99± 0.0016 for the UMCU-Diagnose data-
set and 0.92 ± 0.0159 for CPSC2018 dataset. This shows that the
models have similar performance and can therefore be compared
fairly. In Figure 3, the calibration of the base network on all datasets is
shown. The base network’s probability was up to 15% under-confi-
dent on the UMCU-Triage and UMCU-Diagnose datasets in the in-
distribution setting and up to 30% over-confident on both the in- and
OOD setting for the CPSC2018 dataset.

Ranking
The VI model obtained the best-ranking score among the models
with a single uncertainty estimation method on the in-distribution
setting of UMCU-Triage (Table 3). When combined with BD, ranking
improved significantly, and VIþBD obtained the best ranking scores
on both in- and OOD setting. The best performing uncertainty esti-
mation methods for UMCU-Diagnose were VI, ENS, VIþBD, and
ENSþAUX for the in-distribution, and MCD for the OOD setting.
For CPSC2018, the ENS model obtained the lowest AUCO on
in-distribution setting, and VIþBD on the OOD setting. When com-
paring between in and OOD setting, the AUCO for OOD data was
generally higher than in the in-distribution setting. In Table 3, all
AUCO scores are displayed. The ranking plots for all datasets are dis-
played in Supplementary material online, Figures S3–S5.

Calibration
The ECEs for all uncertainty estimation methods were lower than
the base network, with the auxiliary output method on the
CPSC2018 dataset being the only exception (Table 4). On UMCU-
Triage, the best-calibrated method was the SSEþAUX for both in-
distribution and OOD setting. For UMCU-Diagnose, the lowest
ECEs were obtained by the VI, AUX, and VIþBD methods on the in-
distribution setting, and MCDþAUX, ENSþAUX, and SSEþAUX on

....................................................... ......................................................................... ......................................................................

....................................................................................................................................................................................................................

Table 2 Overview of dataset characteristics

UMCU-Triage UMCU-Diagnose CPSC2018

Class N % Class N % Class N %

Normal 138 774 43.78 Normal 109 787 56.35 Normal 918 13.35

Abnormal, not acute 139 656 44.06 Atrial fibrillation 20 073 10.30 Atrial fibrillation 1098 15.97

Abnormal, sub-acute 23 113 7.29 First-degree atrioventricular block 8411 4.32 First-degree atrioventricular block 704 10.24

Abnormal, acute 15 444 4.87 Left bundle branch block 6290 3.23 Left bundle branch block 207 3.01

Right bundle branch block 13 568 6.96 Right bundle branch block 1695 24.65

Premature atrial contraction 9258 4.75 Premature atrial contraction 556 8.08

Premature ventricular contraction 9580 4.92 Premature ventricular contraction 672 9.77

ST-segment depression 13 538 6.85 ST-segment depression 825 12.00

ST-segment elevated 4375 2.24 ST-segment elevated 202 2.94

Total 316 987 Total 194 880 Total 6877

Uncertainty estimation of DNNs for ECG analysis 407
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.OOD setting. For the CPSC2018 dataset, SSE, ENSþAUX, and
SSEþAUX were the most calibrated methods on in-distribution, and
the ENSþAUX model obtained the lowest ECE on OOD setting.
Table 4 shows the calibration results and calibration plots for all
methods and datasets are shown in Supplementary material online,
Figures S6–S8.

Clinical simulation
The clinical simulation uncertainty threshold plot for the UMCU-
Triage dataset in the in-distribution setting is displayed in Figure 4. The
results show that the exclusion of uncertain ECGs improves the ac-
curacy of all models. The VIþBD model had the steepest upward
slope, and thus excluded the uncertain ECGs the fastest, thereby
increasing overall model accuracy at the highest rate. Within Table 5,
the accuracies of the models with uncertainty thresholds applied at
25%, 50%, and 75% are displayed for the in-distribution setting, and in
Table 6 for the OOD setting. The accuracy of all models increased
when estimated uncertain samples were removed.

In Figure 5, the normalized per-class thresholding plots for the
VIþBD and ENSþAUX models on the UMCU-Diagnose dataset are
shown. The ECGs containing atrial fibrillation are of average uncer-
tainty in the in-distribution setting, but in the OOD setting where the
models have never seen atrial fibrillation before, the ECGs with atrial
fibrillation are marked with high uncertainty, and thereby removed at
the fastest rate. Plots for the other datasets are shown in
Supplementary material online, Figures S9 and S10.

Correspondence with cardiologist’s lack
of agreement
The cardiologists showed moderate agreement on the triage class in
the UMCU-Triage expert test set and agreed on 736 of the 984
ECGs (75%, Cohen’s kappa 0.60, P < 0.001). The highest agreement
was observed in the normal class (77%) and the lowest in the abnor-
mal acute class (61%). The total certainty was lower for ECGs in
which cardiologists’ annotations did not agree (median 39%, IQR
43%) as compared to ECGs in which cardiologists did agree (median
55%, IQR 50%, overall P < 0.001). The certainty was the highest for
the normal class (median 73%, IQR 40%) and the lowest for the ab-
normal acute class (median 22%, IQR 26%). The consensus of the
panel of cardiologists is plotted against the median total uncertainty
per class for the VIþBD method in Figure 6.

Discussion

This study is the first to systematically investigate the feasibility and
performance of uncertainty estimation methods for the automated
classification of ECGs using DNNs. Our calibration results docu-
mented that the regular DNN is up to 30% either over- or under-
confident, stressing the need for adequate uncertainty estimation
(Figure 3). We demonstrated how implementing uncertainty estima-
tion improves both calibration and ranking across datasets with dif-
fering sizes and tasks. The proposed methods therefore provide an

BA

Figure 3 Calibration of the base network in the in-distribution (A) and out-of-distribution (B) setting for all datasets. In a calibration plot, the pre-
dicted probability or confidence of the network is grouped into ten bins from low (i.e. 20–30%) to high (i.e. 90–100%). For all these bins, the accuracy
in that bins is calculated. A perfectly calibrated model outputs confidences that match up exactly with the accuracy. A model which predicts higher
probabilities than the accuracy is over-confident, which can be observed by a line that falls under the diagonal. An under-confident model is the op-
posite and lies above the diagonal. The base models without uncertainty estimation are op to 30% over- or under-confident.
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improved and better-calibrated probability measure together with an
additional uncertainty measure. While pressure testing this new un-
certainty measure in a safe and insightful clinical simulation, we
showed that by thresholding the uncertainty estimates and thereby
rejecting uncertain ECGs markedly improves accuracy in the remain-
ing data. Furthermore, out-of-distribution ECG diagnoses that the al-
gorithm has not seen during training are rejected faster. Finally, these
uncertainties were shown to significantly correlate with the disagree-
ment that exists between cardiologists in clinical ECG interpretation.

When implementing new technologies into clinical practice, know-
ing its limitations is of the utmost importance, especially if the tech-
nology concerns ‘black-box’ algorithms such as DNNs. Surprisingly,
while there is a rapid growth of publications on DNNs that perform
ECG analyses, we found none that included uncertainty estimations.
When training a DNN for a specific task such as ECG interpretation,

the algorithm is constitutionally forced to accept every input and as-
sign it to an output, even in the cases where the algorithm’s estima-
tions carry great uncertainty. The results from the DNNs without
uncertainty estimation in this study showed that the network was
under-confident on the large UMCU-Triage and UMCU-Diagnose
dataset, while over-confident on the relatively small CPSC2018 data-
set. Such discrepancies, if left unchecked, could potentially lead to un-
favourable or potentially dangerous situations when applied in a
clinical setting where a patient could be wrongly diagnosed by a
DNN prediction with high Softmax probability. These findings dem-
onstrate that out-of-the-box DNN predictions should not be blindly
trusted without estimating their prediction uncertainty. In our opin-
ion, incorporating the estimation of the uncertainty of DNN predic-
tions is therefore an essential prerequisite when applying an
algorithm into clinical practice.

................................... ........................................ ..................................

....................................................................................................................................................................................................................

Table 3 Ranking performance measured using area under the confidence-oracle error (AUCO)

Method Uncertainty type UMCU-Triage UMCU-Diagnose CPSC2018

In-dist. OOD In-dist. OOD In-dist. OOD

None — 0.05 0.07 0.02 0.04 0.21 0.28

MCD Epistemic 0.11 0.15 0.03 0.03 0.15 0.20

VI Epistemic 0.08 0.10 0.02 0.04 0.20 0.17

ENS Epistemic 0.11 0.10 0.02 0.04 0.14 0.22

SSE Epistemic 0.11 0.10 0.03 0.04 0.24 0.28

AUX Aleatoric 0.10 0.09 0.07 0.08 0.18 0.23

MCDþAUX Total 0.09 0.12 0.03 0.04 0.18 0.31

VIþBD Total 0.06 0.07 0.02 0.04 0.20 0.15

ENSþAUX Total 0.08 0.10 0.02 0.04 0.16 0.26

SSEþAUX Total 0.12 0.10 0.05 0.04 0.26 0.42

The AUCO is the difference between a perfect ranking. The AUCO of individual epistemic uncertainty estimation methods is improved when combined with a method for esti-
mating aleatoric uncertainty. Bold values denote the lowest value in that dataset.
AUX, auxiliary output; BD, Bayesian decomposition; ENS, ensemble; MCD, Monte-Carlo dropout; OOD, out-of-distribution; SSE, snapshot ensemble; VI, variational inference.

.................................... ......................................... ...................................

....................................................................................................................................................................................................................

Table 4 Calibration measured in Expected Calibration Error

Method Uncertainty UMCU-Triage UMCU-Diagnose CPSC2018

In-dist. OOD In-dist. OOD In-dist. OOD

None — 0.11 0.10 0.09 0.03 0.17 0.25

MCD Epistemic 0.08 0.05 0.06 0.04 0.07 0.12

VI Epistemic 0.07 0.08 0.02 0.06 0.09 0.11

ENS Epistemic 0.06 0.07 0.03 0.04 0.09 0.18

SSE Epistemic 0.05 0.04 0.04 0.04 0.06 0.09

AUX Aleatoric 0.04 0.05 0.02 0.05 0.18 0.26

MCDþAUX Total 0.07 0.07 0.03 0.04 0.14 0.24

VIþBD Total 0.07 0.08 0.02 0.06 0.09 0.11

ENSþAUX Total 0.08 0.07 0.04 0.04 0.06 0.06

SSEþAUX Total 0.03 0.03 0.04 0.04 0.06 0.07

The acquired Expected Calibration Errors are lower for models with uncertainty estimation compared to the base model without uncertainty estimation. Bold values denote
the lowest value in that dataset.
AUX, auxiliary output; BD, Bayesian decomposition; ENS, ensemble; MCD, Monte-Carlo dropout; SSE, snapshot ensemble; VI, variational inference.
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Uncertainty estimation techniques
The variety of estimation methods employed (and their combina-
tions) allowed us to extensively investigate their comparative per-
formance. In the ranking results for the UMCU-Triage dataset, we
demonstrated that when comparing models with only epistemic un-
certainty estimation methods to models with both epistemic and
aleatoric uncertainty estimation, the ranking improves for the latter.
Therefore, it seems that aleatoric uncertainty is beneficial to the rank-
ing score on a large dataset such as UMCU-Triage. This is in line with
earlier work stating that aleatoric uncertainty is more important for
large datasets because all the epistemic uncertainty has been taken
away through providing the network with enough training data.10 It is
therefore important to model aleatoric uncertainty when dealing
with large datasets. Regarding the calibration results, we found that
the ECEs for all networks with uncertainty estimation methods were
lower than the ECEs of the baseline network. Thus, calibration per-
formance improved noticeably in all the networks that employed un-
certainty estimation. These findings clearly demonstrate the benefits
of modelling uncertainty for the calibration of a DNN. When com-
paring the calibration scores on the small CPSC2018 dataset, we
observed that the ECE of the AUX model was the largest out of all
models. The only model with uncertainty estimation that performed
worse than the base network was thus a model that only modelled

aleatoric uncertainty, whereas all other models that have epistemic
uncertainty estimation improved upon the base network. This
strongly suggests that it may be more important to model epistemic
uncertainty for small datasets because there is still much epistemic
uncertainty present after training, which is confirmed in earlier
work.10

Therefore, through our experiments, we found that epistemic un-
certainty should be modelled for small datasets and aleatoric uncer-
tainty for large datasets. Preferably, however both should be
modelled, which is why we only consider models that estimated both
types of uncertainty. From these models, the MCDþAUX model dis-
played large over-confidence on the OOD setting of CPSC2018 (as
shown in Table 4) and is therefore not recommended. The
SSEþAUX model’s showed poor ranking in all datasets in both the
in-distribution and OOD datasets and this model is therefore also
not recommended. Overall, the VIþBD and ENSþAUX models per-
formed best for improving ranking and calibration across datasets
and tasks in both the in-distribution and OOD setting and are there-
fore recommended as a starting point in similar ECG diagnosis set-
tings. However, further research is needed to confirm the
generalizability of our results in other settings.

Our findings for the ENS method align with recent research where
this method also performed best out of the tested uncertainty esti-
mation methods. However, the results for the VI method differ from
these studies, that found VI to perform best on small datasets but
was outperformed by other methods on the large ImageNet data-
set.11,25 We believe the difference in outcomes is due to the fact that
all our datasets are an order of magnitude smaller than ImageNet,
and we therefore do not observe the same effect. Finally, one study
recommended the MCD method; however, they did not perform
testing on OOD data, which is where we found the method to be
over-confident.11

Clinical simulation
In our analyses, the accuracy of all models increased when esti-
mated uncertain samples were removed (Tables 5 and 6, Figure 4).
These findings show that the estimated uncertainty can be used
as a threshold, so only certain samples are ultimately classified by
an actually accurate model. Such an implementation is highly at-
tractive in a clinical setting, so that the ECGs with high estimated
uncertainty (which the network is prone to misdiagnose), can be
passed on to a cardiologist for further analysis. The thresholds for
when to trust the network and when to consult a cardiologist
can be set according to the required accuracy for the specific task
or setting. Employing a clinical workflow with such an intermedi-
ate ‘quality control’ structure is envisioned to greatly reduce clin-
ical workload while maintaining or improving the quality of
diagnoses.

Both the recommended VIþBD and ENSþAUX methods per-
form well in quickly increasing accuracy in the group with trusted
classifications when the threshold increases, both in an in-distribu-
tion and OOD setting (Tables 5 and 6, Figure 4). For the UMCU-
Diagnose dataset’s in-distribution setting, an uncertainty threshold of
only 25% results in a near-perfect accuracy of 98% in the trusted
group (Table 5). For the UMCU-Triage task, which is more difficult

0 20 40 60 80 100

Figure 4 Clinical simulation with accuracies of predictions as a
function of excluding uncertain electrocardiograms on the in-distri-
bution setting of the UMCU-Triage dataset. The threshold percent-
age corresponds to the percentage of data that needs to be
evaluated by a physician after exclusion. Through excluding uncer-
tain electrocardiograms, accuracy of all models improved. The
VIþBD model had the steepest upward slope, and thus excluded
the uncertain electrocardiograms the fastest, thereby increasing
overall model accuracy at the highest rate. AUX, auxiliary output;
BD, Bayesian decomposition; ENS, ensemble; MCD, Monte-Carlo
dropout; SSE, snapshot ensemble; VI, variational inference.
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than predicting a single diagnostic statement, we observed that 75%
of the ECGs needed to be excluded to gain the same near-perfect
accuracy. This indicates that the network is more uncertain about
this task. The same holds for the CPSC2019 dataset, where the high
uncertainty is likely due to the small sample size. The thresholded
OOD results revealed that after excluding 25% of uncertain samples,
most of the obtained accuracies returned to normal in-distribution
levels, hinting that the bulk of the OOD data had been excluded
(Table 6). This exhibits the possibility of excluding new or rare dis-
eases present in the ECG which the DNN had not seen before.

After training, an uncertainty estimation method is expected to
ascribe high uncertainty to predictions on the unseen OOD class.
When focusing on the OOD class specifically, the per-class thresh-
olding plots (Figure 5) for the UMCU-Diagnose dataset show that the
VIþBD and ENSþAUX methods estimated a higher uncertainty for

the OOD ECGs compared to in-distribution ECGs. This finding sug-
gests that the uncertainty estimation methods correctly detected the
OOD ECGs, by ascribing them high uncertainty. However, the un-
certainty does not increase further when the OOD ECGs already be-
long to the most uncertain class, as observed for the UMCU-Triage
dataset in Supplementary material online, Figure S9. Furthermore, the
OOD ECGs are not always identified as most uncertain, as is the
case for the ENSþAUX method on the CPSC2018 dataset shown in
Supplementary material online, Figure S10. However, when compar-
ing the obtained AUCO scores between in-distribution and OOD
setting, it was also observed that the AUCOs for the OOD setting
are generally higher, suggesting that introducing OOD data can de-
grade ranking. The tested uncertainty estimation methods are there-
fore not completely robust against OOD data, and this remains a
point of improvement.

...................................................... ....................................................... .......................................................

....................................................................................................................................................................................................................

Table 6 Accuracy scores for non-thresholded (0%) and thresholded (25%, 50%, 75%) predictions on all datasets on out-
of-distribution setting

Method UMCU-Triage UMCU-Diagnose CPSC2018

0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

MCD 0.80 0.82 0.83 0.87 0.82 0.94 0.99 1.00 0.59 0.66 0.80 0.88

VI 0.81 0.86 0.90 0.93 0.81 0.93 0.98 1.00 0.61 0.70 0.79 0.93

ENS 0.82 0.87 0.89 0.93 0.83 0.92 0.98 1.00 0.62 0.69 0.83 0.88

SSE 0.80 0.85 0.90 0.93 0.82 0.92 0.98 1.00 0.56 0.56 0.61 0.77

AUX 0.80 0.85 0.91 0.96 0.82 0.92 0.95 0.96 0.60 0.68 0.78 0.85

MCDþAUX 0.80 0.84 0.89 0.92 0.82 0.94 0.99 0.99 0.57 0.63 0.71 0.81

VIþBD 0.81 0.88 0.93 0.97 0.81 0.93 0.99 1.00 0.61 0.72 0.84 0.93

ENSþAUX 0.81 0.88 0.90 0.93 0.83 0.93 0.99 1.00 0.61 0.60 0.62 0.84

SSEþAUX 0.79 0.83 0.90 0.95 0.82 0.93 0.98 0.99 0.58 0.57 0.57 0.53

Predictions are thresholded by removing 25%, 50%, and 75% of the estimated most uncertain samples. Model accuracy increases for all methods and dataset when uncertain
samples are removed, except for the model with SSEþAUX. Bold values denote the highest value in that dataset.
AUX, auxiliary output; BD, Bayesian decomposition; ENS, ensemble; MCD, Monte-Carlo Dropout; SSE, snapshot ensemble; VI, variational inference.

...................................................... ...................................................... ......................................................

....................................................................................................................................................................................................................

Table 5 Accuracy scores for non-thresholded (0%) and thresholded (25%, 50%, 75%) predictions on all datasets on in-
distribution setting

Method UMCU-Triage UMCU-Diagnose CPSC2018

0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

MCD 0.82 0.86 0.88 0.90 0.92 0.96 0.98 1.00 0.69 0.76 0.88 0.93

VI 0.80 0.85 0.91 0.98 0.91 0.97 0.99 1.00 0.70 0.74 0.77 0.87

ENS 0.81 0.85 0.88 0.90 0.92 0.97 0.99 1.00 0.73 0.82 0.91 0.93

SSE 0.81 0.83 0.88 0.93 0.91 0.96 0.99 1.00 0.66 0.65 0.71 0.73

AUX 0.81 0.84 0.88 0.96 0.92 0.95 0.95 0.95 0.71 0.75 0.87 0.93

MCDþAUX 0.82 0.85 0.89 0.95 0.92 0.96 0.99 1.00 0.72 0.79 0.85 0.93

VIþBD 0.80 0.88 0.93 0.98 0.91 0.98 0.99 1.00 0.70 0.73 0.79 0.89

ENSþAUX 0.82 0.87 0.93 0.96 0.92 0.98 0.99 1.00 0.73 0.77 0.83 0.95

SSEþAUX 0.78 0.81 0.87 0.94 0.91 0.95 0.97 0.99 0.66 0.67 0.75 0.81

Predictions are thresholded by removing 25%, 50%, and 75% of the estimated most uncertain samples. Model accuracy increases for all methods and dataset when uncertain
samples are removed. Bold values denote the highest value in that dataset.
AUX, auxiliary output; BD, Bayesian decomposition; ENS, ensemble; MCD, Monte-Carlo Dropout; SSE, snapshot ensemble; VI, variational inference.

Uncertainty estimation of DNNs for ECG analysis 411

https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab045#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab045#supplementary-data


A B

C D

Figure 5 Normalized per-class thresholding plots of the VIþBD (A, B) and ENSþAUX (C, D) models on the UMCU-Diagnose dataset. The first
column (A, C) is for the in-distribution setting, the second column (B, D) is for the out-of-distribution setting. Classes with high uncertainty are
removed first and have a steep downward slope. In the in-distribution plots (A, C), the model was trained on all classes, including atrial fibrillation.
These plots show that the algorithm is certain about prediction atrial fibrillation, as these samples are excluded slower than other classes. In the out-
of-distribution plots (B, D), the algorithm was trained on a dataset that contained no atrial fibrillation electrocardiograms. These plots show that the
model is now very uncertainty about this unseen class, as it excludes the atrial fibrillation electrocardiograms first. AF, atrial fibrillation; I-ABV, first de-
gree atrioventricular block; LBBB, left bundle branch block; PAC, premature atrial contraction; PVC, premature atrial contraction; RBBB, right bundle
branch block; STD, ST-depression; STE, ST-elevation.
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Correspondence with cardiologist’s lack
of agreement
Most interestingly, uncertainty was shown to significantly correlate
with the lack of diagnostic agreement encountered even between
experienced cardiologists when interpreting an ECG. This seems to
suggest that the cardiologists and DNNs may struggle with the similar
complex patterns in challenging ECGs, either due to aleatoric uncer-
tainty caused by noise or borderline cases inherent in the data or
through epistemic uncertainty of ECGs with rare abnormalities. This
notion represents a solid step towards confident clinical deployment
based on the assurance that uncertainty estimation methods function
as expected and align with cardiologists on what is most worth their
restricted clinical time.

Limitations
This study has several limitations to address. First of all, the test-sets
of UMCU-Triage and CPSC2018 were small, and results on these
datasets are therefore prone to stochasticity. Secondly, the OOD
class on the UMCU-Triage test set only constituted 1.8% of the data,
which complicated the interpretation of the thresholding results.
Thirdly, the ECGs in the CPSC2018 dataset are of varying length be-
tween 6 and 60 s. We extracted only the first 10-s and zero-padded
ECGs which were shorter, which could potentially lead to missing
features in the ECG. Fourthly, experiments were performed on a sin-
gle DNN architecture, which reduces the generalizability of the
results towards other DNN architectures. Residual convolutional

neural networks are, however, the most commonly used in DNN-
based analysis of ECGs.26

Clinical perspectives and future work
Our study demonstrated that through uncertainty estimation, we are
coming one step closer to applying DNNs in a clinical setting. Firstly,
our study dealt with multi-class classification, where only a single class
is present in the ECG. However, in the real world, it often occurs
that multiple diseases are present within the same ECG. Therefore, it
might be interesting to investigate uncertainty estimation for net-
works that accommodate for multi-label classification too. Secondly,
we observed that the average estimated uncertainty differs per class,
as displayed in Figure 6. This allows for the setting of class-specific
thresholds, because the estimated certainty for a common class lies
much higher than for an uncommon class. Future studies should in-
vestigate whether novel uncertainty estimation methods could ac-
count for these different uncertainty thresholds per class, as this
might be necessary for specific clinical problems. Moreover, the effect
of pre-training, over-sampling, or data augmentation on uncertainty
in imbalanced or small datasets should be investigated. Thirdly, a visu-
alization of the estimated uncertainty could guide cardiologists into
understanding why a DNN had difficulties interpreting ECGs. This
could be performed using a technique such as Guided Grad-CAM.27

Finally, the estimated uncertainties could also be used to improve
DNNs, which can be achieved in two phases. Firstly, it might be used
during training as a guide towards parts of the data that the DNN is
uncertain about, where cleaning or additional data is necessary.
Secondly, during use in clinical practice an active learning workflow is
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Figure 6 Correspondence of uncertainty with cardiologist’s lack of agreement. The electrocardiograms in the expert test set of UMCU-Triage are
grouped by consensus between two cardiologists and compared with the estimated uncertainty for these electrocardiograms, both per-class and
overall. The algorithm is more certain about electrocardiograms where the cardiologists agreed. Moreover, the algorithm is most certain about
the normal electrocardiograms and least certain about the abnormal, acute electrocardiograms, which is also the smallest class. **P < 0.01,
**** P < 0.0001. ns, not significant.
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..possible, where uncertain ECGs are interpreted by a cardiologist and
the DNN continuously improves by learning from these ECGs.

In conclusion, this is the first study to apply and systematically in-
vestigate uncertainty estimation techniques on DNN-based CIE. We
demonstrated the need for uncertainty estimation and showed that
through its implementation, ECGs that a DNN would otherwise clas-
sify incorrectly can be excluded and passed on to a cardiologist for
further review. Furthermore, we found a strong correlation between
estimated uncertainty and disagreement between cardiologists. This
study shows the possibility of strengthening the application of DNNs
in practice through uncertainty estimation and is an important step
towards the clinical applicability of automated ECG diagnosis through
deep learning.
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