Skip to main content
. Author manuscript; available in PMC: 2022 Nov 29.
Published in final edited form as: Demography. 2022 Aug 1;59(4):1299–1323. doi: 10.1215/00703370-10054898

Table 2.

Spatial Lag and Error Models Predicting STI Rates

Without Network Spatial Network Commuting Network Public Transit Network
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Disadvantage −0.060* (0.029) −0.064** (0.022) −0.038 (0.031) −0.054 (0.030)
Stability −0.000 (0.019) −0.004 (0.013) −0.004 (0.013) −0.020 (0.023) −0.019 (0.023) −0.021 (0.023) −0.023 (0.023)
Diversity −0.047* (0.018) −0.037* (0.016) −0.013 (0.014) −0.039 (0.021) −0.029 (0.020) −0.053** (0.019) −0.037* (0.017)
Local Workers 0.008 (0.021) 0.002 (0.018) 0.005 (0.018) −0.007 (0.018) −0.008 (0.018) −0.001 (0.021) −0.002 (0.021)
Prior STI Rate 0.390*** (0.030) 0.296*** (0.031) 0.289*** (0.032) 0.380*** (0.032) 0.373*** (0.032) 0.385*** (0.033) 0.375*** (0.032)
Network STI Risk 0.603*** (0.064) 0.589*** (0.070) 0.960*** (0.011) 0.960*** (0.011) 0.883*** (0.006) 0.883*** (0.006)
Error Variance Parameter −0.629*** (0.108) −0.588*** (0.116) 0.961*** (0.010) 0.962*** (0.010) 0.883*** (0.006) 0.883*** (0.006)
Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes
AIC −894.57 −921.79 −915.45 −1268.55 −1269.08 −3391.84 −3390.63
BIC −806.21 −823.62 −822.18 −1170.38 −1175.81 −3293.66 −3297.36
Neighborhoods=77; Observations=1,001

Note: Standard errors in parentheses. All models include year dummies. The Wald test of spatial autocorrelation is significant across all models at p<0.001.

*

p<0.05,

**

p<0.01,

***

p<0.001