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OBJECTIVES: We aimed to describe the variation of hemostasis proteins in  
children with bacterial infections due to different pathogens (Neisseria meningiti-
dis, Streptococcus pneumoniae, Staphylococcus aureus, and group A strepto-
coccus [GAS]) and to study hemostasis proteins in relation to mortality.

DESIGN: Preplanned analysis in prospective cohort study.

SETTING: Hospitals in five European countries (Austria, The Netherlands, Spain, 
Switzerland, and the United Kingdom).

PATIENTS: Admitted children (2012–2016) with community-acquired infections 
due to meningococci (n = 83), pneumococci (n = 64), S. aureus (n = 50), and 
GAS (n = 44) with available serum samples collected less than 48 hours after 
admission.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Fibronectin, plasminogen activator 
inhibitor type 1 (PAI-1), thrombomodulin, and a disintegrin and metalloproteinase 
with a thrombospondin type 1 motif, member 13 (ADAMTS-13) were measured 
in serum in 2019–2020. Additionally, von Willebrand factor, protein C, protein S, 
and factor IX were measured in citrate plasma available from a subset of patients. 
Outcome measures included in-hospital mortality and disease severity (need 
for ventilation/inotropes, Pediatric Index of Mortality score). Of 241 children, 21 
(8.7%) died and 177 (73.5%) were admitted to PICU. Mortality rate was similar for 
the pathogen groups. Levels of fibronectin and thrombomodulin differed for the dif-
ferent pathogens (p < 0.05). Fibronectin levels were lower in GAS infections than 
in S. pneumoniae and S. aureus infections but did not differ from meningococcal 
infections. Thrombomodulin levels in meningococcal infections were higher than 
in S. aureus and pneumococcal infections. Overall, the area under the curve for 
mortality was 0.81 (95% CI, 0.70–0.92) for thrombomodulin and 0.78 (95% CI, 
0.69–0.88) for ADAMTS-13. The association of each hemostasis protein did not 
vary across pathogens for any of the outcome measures.

CONCLUSIONS: Hemostatic disturbances in childhood bacterial infections are 
not limited to meningococcal sepsis but occur with a comparable severity across 
nonmeningococcal infections. High thrombomodulin and high ADAMTS-13 had 
good discriminative ability for mortality. Our results emphasize the importance of 
hemostatic disturbances in meningococcal and nonmeningococcal pediatric bac-
terial infections.

KEY WORDS: bacterial infection; children; coagulation; hemostasis proteins; 
intensive care; mortality

Sepsis is an important cause for mortality and morbidity in children and 
is estimated to contribute to 20% of childhood deaths (1–5). The inflam-
matory response to infection induces procoagulant and platelet activating 
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pathways, whereas it reduces the functioning of anti-
coagulant pathways and fibrinolytic activity (6). These 
mechanisms result in coagulation abnormalities 
ranging from subtle derangements only detectable 
by highly sensitive assays to widespread deposition 
of fibrin throughout the microcirculation, manifest-
ing as disseminated intravascular coagulation (DIC). 
Purpura is often present in DIC and is considered typ-
ical for meningococcal sepsis and is associated with 
septic shock, multiple organ dysfunction, and death. 
Nonmeningococcal infections, in which purpura do 
not commonly occur, can also cause mild to severe 
coagulopathies which influence disease severity (7, 8).

In addition to meningococcal infections, infections 
caused by Streptococcus pneumoniae, group A strep-
tococcus (GAS), and Staphylococcus aureus comprise 
a large group of invasive community-acquired bac-
terial infections in children (1, 9, 10). Each pathogen 
might induce a coagulation host-response by different 
mechanisms, as bacteria are known to induce platelet 
activation or promote platelet adhesion, trigger ac-
tivation of coagulation independently, or interact 
with the fibrinolytic system (11–13). For example,  
S. aureus secretes coagulases that directly activate 
thrombin (14), whereas meningococcal and strepto-
coccal infections have been shown to be associated 
with activation of the contact pathway (15).

Although extensive research has been performed 
in describing hemostasis proteins in meningococcal 

sepsis or sepsis in general (16–29), the variation of 
hemostasis protein levels in infections across specific 
pathogen groups has not yet been described. Therefore, 
we aimed: 1) to study the variation of hemostasis pro-
tein levels in children with invasive bacterial infections 
due to either Neisseria meningitidis, S. pneumoniae,  
S. aureus, or GAS, and 2) to describe hemostasis pro-
tein levels and their relation with mortality and disease 
severity. Since severe DIC is typical for meningococcal 
infections, we hypothesize that disturbances in hemo-
stasis protein levels are more pronounced in meningo-
coccal infections than in nonmeningococcal infections 
and that mortality would be more common in menin-
gococcal infections.

MATERIALS AND METHODS

Study Design and Population

This is a preplanned study embedded in the European 
Union Childhood Life-threatening Infectious Disease 
(EUCLIDS) study project, a European prospective 
multicenter cohort study that aimed to evaluate deter-
minants of susceptibility and severity of severe pedi-
atric bacterial infection. The EUCLIDS study protocol 
was approved by at least one ethical review board in 
every participating country: Austria—Ethikkomission 
Graz no. 24-116 ex 11/12; The Netherlands—CMO 
Regio Arnhem-Nijmegen no. 37986.091.11; Spain—
Comité Ético de Investigación Clínica de Galicia no. 
2011/298; Switzerland—Cantonal Ethics Committee, 
Inselspital, University of Bern no. KEK-029/11; and 
United Kingdom—NRES Committee London—
Fulham no. 11/LO/1982. The local ethical review board 
was determined by the workplace of the local principal 
investigator. The EUCLIDS study design and methods 
have been described previously (1, 9, 30).

Briefly, patients less than 18 years admitted with 
community-acquired (suspected) sepsis or severe focal 
infection were prospectively included in 2012–2016. 
Informed consent was obtained from parents or care 
givers for inclusion in the study. This subanalysis focuses 
on children with sterile culture-proven infections caused 
by N. meningitidis, S. pneumoniae, S. aureus, or GAS in-
cluded in Austria, The Netherlands, Spain, Switzerland,  
and the United Kingdom. Patients were selected if they 
had serum samples taken within 48 hours after study 
centre admission. In addition, we selected afebrile chil-
dren as healthy controls (4:1). Collected clinical data 

  RESEARCH IN CONTEXT

•	 Coagulation disorders and disseminated intra-
vascular coagulation are a well-known feature 
of meningococcal infection and associated with 
morbidity and mortality.

•	 Little is known about hemostasis proteins in 
other common childhood bacterial infections.

•	 In a large European cohort, we describe the 
variation of hemostasis proteins in children 
with infections due to Neisseria meningitidis, 
Streptococcus pneumoniae, Staphylococcus 
aureus, and group A streptococcus and studied 
hemostasis proteins in relation to mortality and 
disease severity.
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included general characteristics, laboratory and micro-
biological results, disease severity score (Pediatric Index 
of Mortality [PIM]–2) (31), DIC score (32), treatments 
during admission, and mortality.

Samples and Laboratory Assay for Hemostasis 
Proteins

Venous blood was drawn for collection of serum and 
citrate plasma. All samples were stored at –80°C until 
analysis which was performed in 2019 and 2020. We 
selected eight proteins for measurement: fibronectin, 
thrombomodulin, a disintegrin and metalloprote-
ase with thrombospondin type-1 motif, member 13 
(ADAMTS-13), plasminogen activator inhibitor type 1  
(PAI-1) (measured in serum), and factor IX, protein C, 
protein S, von Willebrand factor (vWF) (measured in 
a subset of patients with available citrated plasma sam-
ples [n = 146]). This selection was based on previously 
reported associations with disease severity in sepsis 

(Fig. 1; and Appendix 1, http://links.lww.com/PCC/
C167) (16–28). All the proteins were measured with 
Luminex technology. Assays for fibronectin, PAI-1,  
and ADAMTS-13 were obtained from R&D Systems 
(Abingdon, United Kingdom). Factor IX, protein C, 
protein S, and vWF were measured with the human co-
agulation 4-plex ProcartaPlex panel 3 (ThermoFisher 
Scientific, Vienna, Austria). Thrombomodulin levels  
were measured with a laboratory developed Luminex 
assay based on capture antibody, detection anti-
body, and recombinant human thrombomodu-
lin (Thrombomodulin DuoSet ELISA assay; R&D 
Systems), with a lower limit of detection 10 pg/mL. 
Laboratory technicians conducting the assays were 
blinded for the clinical information.

Clinical Definitions

The primary outcome measure was in-hospital mor-
tality. Secondary outcome measures included the 

Adapted from Joe D - Own work, CC BY-SA 3.0, 
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Figure 1. Schematic simplified presentation of the coagulation pathways. PAI-1 = plasminogen activator inhibitor type 1, TAFI = 
thrombin activatable fibrinolysis inhibitor, vWF = von Willebrand factor. 
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following markers of disease severity: need for me-
chanical ventilatory support or inotrope/vasoactive 
drug requirement (33) and PIM2 score (31). PIM2 
scores were only calculated for patients admitted to 
PICU. DIC scores were calculated for patients with 
at least one parameter (platelet count, d-dimer, pro-
thrombin time, or fibrinogen) measured in routine 
care ± 12 hours of the drawn research sample. DIC was 
defined as a score greater than or equal to 5 accord-
ing to the International Society of Thrombosis and 
Hemostasis Scoring System for DIC (32).

Data Analysis

First, we compared clinical characteristics and he-
mostasis protein levels between the patients with in-
vasive bacterial infections and controls. Second, we 
studied the variation of hemostasis protein levels be-
tween pathogens by comparing protein levels between 
groups of patients with different causative pathogens. 
To study whether the association of each protein level 
depended on pathogen type, we used logistic regres-
sion to test the interaction of the pathogen group with 
the log-transformed value for each protein for the pri-
mary outcome measure (mortality) and secondary 
outcome (need for invasive ventilation/inotropes). 
We tested the significance of the interaction using the 
likelihood ratio (LR) test. This analysis was performed 
for each protein separately as our aim was to study the 
variation of each protein between pathogen groups. 
Log-transformed values were used as these resulted in 
a better fit of the data. Third, in the total cohort of inva-
sive bacterial infections, we assessed hemostasis pro-
tein levels in relation to mortality and disease severity 
(need for invasive ventilation/inotropes, PIM2 score). 
Differences were assessed using Mann-Whitney U test 
and Kruskal-Wallis test for continuous variables and 
chi-square test for categorical variables. For continuous 
outcomes, we assessed correlations with Spearman 
rank test. Based on the Spearman rho, significant cor-
relations were classified as very weak (0–0.19), weak 
(0.2–0.39), moderate (0.4–0.59), strong (0.6–0.79), and 
very strong (0.8–1) (34). Last, we performed a multi-
variable logistic regression analysis including only the 
proteins (log-transformed) that differed for survivors 
and nonsurvivors. For the proteins that remained sig-
nificant in the multivariable analysis, we assessed their 
discriminative ability for mortality by area under the 
receiver operating curves (AUROC) and identified 

cut-off values using the Youden’s index as an explora-
tory analysis. We assessed the predictive performance 
of these cut-off values for mortality by sensitivity, spec-
ificity, and positive/negative LRs. Positive LRs greater 
than 5 and negative LRs less than 0.2 were considered 
clinically relevant (35).

Significance level was defined at p value of less 
than 0.05. To account for multiple testing of hemo-
stasis proteins, we applied the false discovery rate  
method (36, 37). All analyses were performed in R 
Version 3.6 (R Foundation for Statistical Computing, 
Vienna, Austria; https://www.R-project.org/). For this 
study, a convenience sample was used. A post hoc 
power calculation showed that the post hoc power was 
0.78 for fibronectin, 0.56 for PAI-1, 1 for thrombo-
modulin, and 0.82 for ADAMTS-13.

RESULTS

Study Population

Of the 4,739 patients included in the EUCLIDS study, 
2,062 patients had a sterile site proven infection of 
which 1,443 were infections caused by any of the bac-
teria of interest for the current study. Of those, we 
included 241 patients with available serum sample 
collected less than 48 hours after hospital admission 
(Appendix 2, http://links.lww.com/PCC/C167). This 
comprised 83 N. meningitidis infections (34.4%), 64 S. 
pneumoniae infections (26.6%), 50 S. aureus infections 
(20.7%), and 44 GAS infections (18.3%). In addition, 
we collected 64 healthy controls (female [n = 30, 47%]; 
median age 5.4 yr [interquartile range (IQR), 3.1–12.3 
yr]). Compared with healthy controls, patients with in-
vasive bacterial infections were younger (median age 
3.3 yr [IQR, 1.3–9.2 yr]; p < 0.05) but had similar sex 
distribution (110 female [47%]) (Appendix 3, http://
links.lww.com/PCC/C167). Of 241 patients with in-
vasive bacterial infections, 21 (8.7%) died and 177 
(73.5%) were admitted to the PICU (Table 1).

Across the different pathogens, distribution of sex 
was similar, but patients with S. aureus (median 9.9 
yr [IQR, 4.3–13.0 yr] were older than patients with 
infections due to GAS (median 3.7 yr [IQR, 1.8–7.6 
yr], meningococcus (median 1.8 yr [IQR, 0.7–5.3 yr]), 
and pneumococcus (median 2.5 yr [IQR, 1.3–5.3 yr]). 
Patients with meningococcal infection had a shorter 
duration of symptoms at presentation to the hos-
pital (1.5 d [IQR, 1.1–2.6 d]; p < 0.01) compared with 

http://links.lww.com/PCC/C167
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patients with infections due to S. pneumoniae (3.7 d  
[IQR, 2.1–6.8 d]), S. aureus (3.6 d [IQR, 2.4–4.9 d]), 
and GAS (4.6 d [IQR, 2.3–7.7 d]). In addition, propor-
tion of PICU admissions differed across the pathogen 
group (p < 0.01, N. meningitidis 88% [73/83]; S. pneu-
moniae 62.5% [40/64]; S. aureus 48% [24/50]; and GAS 
90.9% [40/44]). For patients admitted to PICU, PIM2 
scores were similar across the pathogen groups.

Overall mortality was comparable (p = 0.89) be-
tween the different infections (GAS 7% [n = 3], me-
ningococcal 8% [n = 7], pneumococcal 11% [n = 7], 
and S. aureus 8% [n = 4]). Numeric DIC scores differed 
between the different infections with higher abnormal 
DIC scores in the meningococcal patients (menin-
gococcal 2 [IQR, 2–4], pneumococcal 2 [IQR, 0–2], 
S. aureus 1.5 [IQR, 0–2]), GAS 2 [IQR, 0–2]). Frequency 
of DIC (score > 5), however, was similar across patho-
gens (p = 0.38).

Variation of Hemostasis Protein Levels Across 
Pathogens

In patients, levels of PAI-1, thrombomodulin, 
ADAMTS-13, and vWF were higher than in controls, 
whereas levels of fibronectin and protein C were lower in 
patients than in controls. Levels of factor IX and protein 
S did not differ for patients and controls (Appendix 4,  
http://links.lww.com/PCC/C167). Between the four 
pathogen groups, levels of fibronectin (p = 0.03) and 

thrombomodulin (p < 0.001) differed across the patho-
gens (Table  2; and Appendix 5, http://links.lww.com/
PCC/C167). Levels of the other proteins did not vary for 
the different pathogens. Thrombomodulin levels in N. 
meningitidis infections were higher than in S. aureus and 
S. pneumoniae infections. Fibronectin levels were lower 
in GAS infections compared with S. aureus and S. pneu-
moniae infections.

Hemostasis Protein Levels and Relation With 
Mortality and Disease Severity

In all patients, thrombomodulin and ADAMTS-13 
were higher in nonsurvivors compared with survivors, 
whereas levels of fibronectin were lower in nonsur-
vivors than in survivors. PAI-1, factor IX, protein C, 
protein S, and vWF were not related to survival status 
(Table 3; and Appendix 6, http://links.lww.com/PCC/
C167). The association of each protein for mortality 
or need for invasive ventilation/inotropes did not vary 
between the different pathogens (interaction p > 0.05).

In the multivariable analysis, log-thrombomodulin 
(adjusted odds ratio [aOR], 1.43 [95% CI, 1.11–1.95]) 
and log-ADAMTS-13 (aOR, 1.59 [95% CI, 1.09–2.43]) 
were associated with mortality, whereas log-fibro-
nectin was not (aOR, 0.89 [95% CI, 0.75–1.10]). The 
discriminative ability (AUROC) between survivors 
and nonsurvivors was 0.81 (95% CI, 0.70–0.92) for 
thrombomodulin and 0.78 (95% CI, 0.69–0.88) for 

TABLE 2. 
Hemostasis Protein Levels in Invasive Bacterial Infections: Stratified by Pathogen Group

Hemostasis Protein

Group A  
streptococcus,  

n = 44  
Median (IQR)

Neisseria  
meningitides,  

n = 83  
Median (IQR)

Streptococcus 
pneumoniae,  

n = 64  
Median (IQR)

Staphylo-
coccus aureus,  

n = 50  
Median (IQR) pa  

Serum

  Fibronectin (µg/mL) 22 (6–61) 43 (14–91) 67 (20–123) 51 (21–150) 0.03

  P�lasminogen activator  
inhibitor type 1 (ng/mL)

87 (58–159) 83 (24–208) 130 (56–198) 87 (12–186) 0.52

  Thrombomodulin (pg/mL) 409 (10–1,559) 847 (10 – 2,861) 10 (10–918) 10 (10–703) < 0.001

  ADAMTS-13 (ng/mL) 9 (2–60) 33 (7–87) 19 (5–45) 12 (2–45) 0.13

Citrate plasma n = 20 n = 43 n = 34 n = 25  

  Factor XI (%) 53 (25–289) 50 (35–95) 110 (53–300) 55 (35–300) 0.11

  Protein C (%) 40 (23–81) 40 (25–50) 55 (40–79) 35 (25–65) 0.11

  Protein S (%) 65 (46–136) 95 (65–148) 155 (85–315) 95 (75–240) 0.14

  von Willebrand factor (%) 300 (103–300) 300 (183–300) 300 (103–300) 300 (300–300) 0.38

ADAMTS-13 = a disintegrin and metalloprotease with thrombospondin type-1 motif, member 13, IQR = interquartile range.
a�p values adjusted for multiple testing.

http://links.lww.com/PCC/C167
http://links.lww.com/PCC/C167
http://links.lww.com/PCC/C167
http://links.lww.com/PCC/C167
http://links.lww.com/PCC/C167
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ADAMTS-13. For thrombomodulin and ADAMTS-13, 
the optimal cut-offs were 2,733 pg/mL and 20 ng/mL, 
respectively. The cut-off for ADAMTS-13 yielded the 
best rule-out value for mortality (sensitivity 0.95 [95% 
CI, 0.76–1.00]; negative LR 0.09 [95% CI, 0.01–0.61]), 
whereas thrombomodulin has good rule-in value 
(specificity 0.89 [95% CI, 0.84–0.92]; positive LR 5.8 
[95% CI, 3.6–9.4]) (Table 4).

Compared with patients without invasive ventila-
tion/inotropes, patients in need for invasive ventila-
tion/inotropes had higher levels of thrombomodulin 
and lower levels for fibronectin, factor IX, protein C, 
and protein S. Levels of fibronectin, thrombomod-
ulin, factor IX, protein C, and protein S were cor-
related with PIM2 score although correlations were 
very weak to weak (Appendix 7, http://links.lww.
com/PCC/C167).

DISCUSSION

In this large European cohort, we studied the variation 
of hemostasis protein levels across invasive pediatric 

community-acquired infections caused by N. eningiti-
des, S. pneumoniae, S. aureus, and GAS and assessed 
the association of hemostasis protein levels with mor-
tality and disease severity. Contrary to our hypothesis 
that meningococcal infection would result in greater 
mortality, we found that mortality was similar across 
all pathogen groups. Hemostatic derangements were 
not limited to meningococcal infections but occurred 
with a comparable frequency and severity in nonme-
ningococcal infections. Higher levels of thrombomod-
ulin and ADAMTS-13 were associated with mortality 
in children admitted to the hospital with invasive 
infections.

Hemostatic disturbances and purpura fulminans 
are typical for meningococcal infections. Although 
the highest DIC scores were more frequent in patients 
with meningococcal disease, we found similar fre-
quency and severity of hemostatic disturbances across 
the different pathogens. Apart from thrombomodulin, 
the levels of hemostasis proteins did not differ specifi-
cally for meningococcal infections. Although less vis-
ible on physical examination than purpura fulminans, 
hemostatic derangements may result in microthrombi 
which could negatively influence microcirculatory 
perfusion and reduce oxygen delivery thereby influ-
encing disease severity (38). In our study, data on pur-
pura or petechiae and skin necrosis were unfortunately 
not available.

Previous studies found higher PAI-1 levels and lower 
protein C levels in nonsurvivors (18–20, 26, 39). This is 
in contrary to our study, where an association of PAI-1 

AT THE BEDSIDE

•	 Hemostatic disturbances were not limited to 
meningococcal infections but occurred with a 
comparable frequency and severity in nonme-
ningococcal infections.

•	 Higher levels of thrombomodulin and 
ADAMTS-13 were associated with mortality in 
children admitted to the hospital with invasive 
infections.

•	 Our study emphasizes the importance of hemo-
static disturbances in meningococcal and non-
meningococcal pediatric bacterial infections.

TABLE 3. 
Hemostasis Protein Levels for Survivors 
and Nonsurvivors

Hemostasis 
Protein 

Survivors,  
n = 220  
Median 
(IQR)

Nonsurvivors,  
n = 21  

Median (IQR) pa  

Serum    

  F�ibronectin  
(ug/mL)

46 (15–109) 17 (7–22) 0.03

  P�lasminogen  
activator  
inhibitor type 1  
(ng/mL)

93 (31–180) 197 (5–552) 0.06

  T�hrombomodulin 
(pg/mL)

10  
(10–1,105)

3,022  
(1,320–8,990)

0.00

  A�DAMTS-13 
(ng/mL)

16 (2–53) 86 (38–201) 0.00

Citrate plasma n = 114 n = 8  

  Factor IX (%) 60 (35–300) 35 (24–49) 0.10

  Protein C (%) 40 (26–65) 30 (15–35) 0.08

  Protein S (%) 110 (65–315) 68 (44–88) 0.12

  v�on Willebrand 
factor (%)

300 (125–300) 300 (265–300) 0.52

ADAMTS-13 = a disintegrin and metalloprotease with thrombos-
pondin type-1 motif, member 13, IQR = interquartile range.
a�Adjusted for multiple testing.

http://links.lww.com/PCC/C167
http://links.lww.com/PCC/C167
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or protein C with nonsurvivors was not observed. 
Our study focused on children with different patho-
gens that needed hospital admission, whereas previous 
studies have focused on meningococcal infections only 
or children with septic shock with more severe disease 
reflected by higher mortality rate (up to 29%) (26, 39). 
Another possible explanation for an absent association 
with mortality is that we measured PAI-1 in serum, 
whereas previous studies measured PAI-1 in citrate 
plasma. Additional measurements of PAI-1in citrate 
plasma samples (from the same moment as the serum 
samples) revealed poor correlation (n = 30, Spearman 
r = 0.47, data not shown) between PAI-1 level in serum 
and citrate plasma samples.

Why infections with the same pathogen cause mild 
disease in one child but can lead to severe sepsis in an-
other child is not completely understood. Sepsis has a 
multifactorial etiology based on pathogen-dependent 
factors and host-dependent factors, which includes ge-
netic predisposition and the host-specific immune and 
hematological response (28). The release of tissue fac-
tor following inflammation related endothelial damage 
activates the hemostatic response. This hematological 
response subsequently limits pathogen movement and 
is thus important and beneficial for containment of the 
infection (40, 41).

Each Pathogen Might Influence the Coagulation 
System Using Different Mechanisms

S. aureus, for instance, is able to produce coagulase fac-
tors which eventually can convert fibrinogen into fi-
brin, thereby manipulating the coagulation system 
(14). GAS, on the other hand, expresses streptokinase 

which activates plasminogen, an important part of the 
fibrinolytic pathway (42). For N. meningitidis, the lip-
opolysaccharide on the outer membrane is essential 
in activating the immune system and by up-regulating 
tissue factor, stimulating the coagulation system (43). 
In our study, we expected to find more severe hemo-
static disturbances in meningococcal infections, but 
only higher levels of thrombomodulin were observed 
for meningococcal infections. Similar to our study,  
Tan et al (44) found that patients with different types of 
bacterial infections had alterations in hemostatic mecha-
nisms measured by clot waveform analysis. Differences 
between Gram-positive infections and Gram-negative 
infections were also not observed in their study, al-
though they included a different variety of pathogens 
and did not include N. meningitidis. Although pathogen 
factors play an important role, we speculate that the host 
response and disbalance of the immune and hemostatic 
responses are responsible for severe disease outcomes. 
Future studies will need to further unravel this complex 
interplay between pathogens and the host response.

We focused our study on children with invasive bac-
terial infections as these are known to be associated 
with hemostatic disturbances. We acknowledge that 
severe viral infections are also able to cause DIC, such 
as in Ebola and dengue hemorrhagic fever. Similar to 
bacterial infections, the involvement of the coagula-
tion system in viral infections most likely limits the 
spread of the infection (45).

The inflammatory response as result of infection can 
lead to coagulation abnormalities, ranging from subtle 
to more severe derangements. As the overall preva-
lence of DIC was low in our population, our results 
confirm that disturbances in hemostatic proteins may 

TABLE 4. 
Predictive Performance of Fibronectin, Thrombomodulin, and ADAMTS-13 for Mortality 
(8.7%), n = 241

Hemostasis  
Protein and  
Cut-Off Value 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Positive LR 
(95% CI) 

Negative LR 
(95% CI) 

Probability  
of Death With  

Abnormal  
Value, % 

Probability  
of Death  

With Normal 
Value, % 

Thrombomodulin ≥ 
2,733 pg/mL

0.67 (0.43–0.85) 0.89 (0.84–0.92) 5.8 (3.6–9.4) 0.38 (0.21–0.69) 35.6 3.5

A�DAMTS-13, ≥ 
20 ng/mL

0.95 (0.76–1.00) 0.53 (0.47–0.60) 2.0 (1.7–2.4) 0.09 (0.01–0.61) 16.3 0.8

ADAMTS-13 = a disintegrin and metalloprotease with thrombospondin type-1 motif, member 13, LR = likelihood ratio.
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not necessarily lead to DIC. Disturbances in hemo-
static proteins do influence disease severity as our 
results show that increased thrombomodulin and 
ADAMTS-13 levels were associated with mortality. 
The proteins thrombomodulin and ADAMTS-13 are 
discussed in more detail below.

Our study confirms previous findings (18, 21, 46) 
and shows higher thrombomodulin levels in nonsur-
vivors compared with survivors and good discrimina-
tive ability of thrombomodulin levels for nonsurvivors 
and survivors. Additionally, serum thrombomodulin 
is correlated to PIM2 scores and is higher in patients 
needing invasive ventilation or inotropes, thereby 
underscoring a clear association of high thrombomod-
ulin with severity of disease.

This study is the first to compare thrombomodu-
lin levels across different pathogen groups. A study 
in adults with sepsis reported higher thrombomodu-
lin levels in patients with DIC compared with those 
without, but the disease-causing pathogens were not 
reported (46). In our cohort, thrombomodulin levels in 
meningococcal infections were higher compared with 
S. pneumonia and S. aureus infections, but the pres-
ence of DIC did not differ between pathogen groups. 
Possibly, higher thrombomodulin levels in meningo-
coccal infections could reflect more endothelial injury, 
without leading to more DIC. Importantly, our study 
shows the potential of serum thrombomodulin as 
prognostic marker for disease severity and mortality.

In our study, serum ADAMTS-13 was higher in 
bacterial infections compared with healthy children 
and higher in nonsurvivors than in survivors. This is in 
contrast to previous studies which found lower plasma 
ADAMTS-13 in pediatric meningococcal sepsis than 
in healthy adults and also lower plasma ADAMTS-13 
in nonsurvivors compared with survivors (23, 24). 
Comparability of these studies is not straightforward 
due to differences in measurement (assay, serum/
plasma), controls (children vs adults), and patients 
(septic shock vs hospital admissions).

How could the elevations in thrombomodulin and 
ADAMTS-13 contribute to hemostatic disturbances 
and dysfunction? Thrombomodulin is an endothe-
lial cell surface glycoprotein activating the protein C 
pathway and sheds from the surface after endothe-
lial injury (47–49). Elevated thrombomodulin could 
reflect more endothelial injury. The endothelial in-
jury could subsequently promote inflammatory and 

microthrombotic pathways including platelet acti-
vation and release of unusually large vWF multim-
ers (ULVWF) (50). The ULVWF are anchored to 
the endothelium, will recruit even more platelets, 
and trigger microthrombosis. Furthermore, elevated 
thrombomodulin inhibits fibrinolysis by activation 
of thrombin activatable fibrinolysis inhibitor (51). 
ADAMTS-13 is known to cleave vWF multimers. The 
general hypothesis is that depletion of ADAMTS-13 
or ADAMTS-13 deficiency provokes microvascular 
thrombosis as vWF multimers continue to attract 
more platelets. Our study, however, found elevated lev-
els of ADAMTS-13 in nonsurvivors. We speculate that 
elevated ADAMTS-13 could lead to increased deg-
radation of vWF. The increased degradation of vWF 
could reduce platelet adhesion and subsequent clot 
forming. Future studies will need to address the role of 
ADAMTS-13 in severe pediatric infections.

Strengths of our study include the large prospec-
tive European cohort of pediatric bacterial infections 
caused by different pathogens. Second, we used de-
tailed clinical data to study hemostasis proteins in 
relation to mortality and disease severity. Third, he-
mostasis proteins were chosen according to reported 
associations with disease severity in literature.

Our study has limitations. First, we selected patients 
with samples drawn within 48 hours after study centre 
admission. As our population consists of almost 75% of 
PICU admissions, our results may not be generalizable 
to all bacterial infections admitted to the general ward. 
The higher proportion of PICU admissions, however, 
may reflect the population at risk for development of 
hemostatic abnormalities. These data provide us in-
sight in the disease course for infections due to dif-
ferent pathogens with variations in the proportion of 
PICU admissions: patients with S. aureus and S. pneu-
moniae infections were less likely to be admitted to the 
PICU. Although the proportion of PICU admission 
varied across the pathogen groups, disease severity 
measured by PIM2 score was similar for the different 
pathogens in the PICU group. In addition, patients 
with meningococcal infections had a shorter dura-
tion of symptoms at presentation which emphasizes 
the rapidly progressive disease course for this group 
(52). Second, the different timings of the measurement 
and influence of treatment effects before or during 
admission were not taken into account. However, as 
greater than or equal to 70% of the samples included 
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were obtained within the first 24 hours of hospital ad-
mission, we consider the influence of sample timing 
and treatment influences to be limited. Furthermore, 
plasma required for measurement of factor IX, protein 
C, protein S, and vWF was only available from a subset 
of the included patients with similar distribution of 
pathogens. However, this subset consisted of sicker 
patients with higher rate of PICU admissions and 
more requirement of ventilation/inotropes (Appendix 
8, http://links.lww.com/PCC/C167). In addition, our 
measurements of vWF were not able to distinguish 
multimer sizes of vWF. Last, assessment of the relation 
between hemostasis protein levels and presence of DIC 
or hemorrhage was not possible as these variables are 
very closely correlated.

CONCLUSIONS

In this large European cohort of severe invasive pedi-
atric bacterial infections, hemostasis disturbances were 
not limited to meningococcal infections but occurred 
with a comparable frequency and severity in nonmenin-
gococcal sepsis. Mortality was similar across all patho-
gens. In all infections, high thrombomodulin levels and 
high ADAMTS-13 levels were associated with mortality. 
Thrombomodulin levels discriminated well for mortality. 
Our results emphasize the importance of hemostatic dis-
turbances in severe pediatric bacterial infections.
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