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Natural and induced somatic mutations that accumulate in the genome during development record 

the phylogenetic relationships of cells; whether these lineage barcodes capture the complex 

dynamics of progenitor states remains unclear. We introduce quantitative fate mapping, an 

approach to reconstruct the hierarchy, commitment times, population sizes, and commitment 

biases of intermediate progenitor states during development based on a time-scaled phylogeny of 

their descendants. To reconstruct time-scaled phylogenies from lineage barcodes, we introduce 

Phylotime, a scalable maximum likelihood clustering approach based on a general barcoding 

mutagenesis model. We validate these approaches using realistic in silico and in vitro barcoding 

experiments. We further establish criteria for the number of cells that must be analyzed for robust 

quantitative fate mapping and a progenitor state coverage statistic to assess the robustness. This 

work demonstrates how lineage barcodes, natural or synthetic, enable analyzing progenitor fate 

and dynamics long after embryonic development in any organism.

Graphical Abstract

In Brief:

Estimating the temporal distance between cells using lineage barcodes enables reconstructing the 

hierarchy, commitment times, population sizes, and commitment biases of their progenitor states 

during development.
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Introduction

Embryonic development is the genesis of complex body plans in the animal kingdom. 

It starts with the zygote, a single cell in a totipotent state, and ends with thousands of 

specialized terminal cell types organized in tissues. In between, dividing cells traverse a 

hierarchy of increasingly diverse but decreasingly potent intermediate progenitor states. 

Each progenitor state specifies the ensuing states that its descendant cells may assume, thus 

directing their fates. Collectively, progenitor states orchestrate the emergence of terminal 
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cell types to form complex tissues. Therefore, delineating how progenitor states specify cell 

fate is critical for understanding normal and dysregulated development.

The recent advances in genome engineering and sequencing have inspired a new approach 

for interrogating cell fate: retrospective lineage analysis using synthetic or natural somatic 

DNA barcodes. These approaches rely on the accumulation of random mutations in the 

genome during development. Each mutation is inherited by the descendants of the cell in 

which it occurs; each descendant can add new mutations to the combination it inherited. 

This process marks each cell with a barcode—a combination of mutations—that encodes its 

phylogenetic relationship to the other cells1. Synthetic lineage barcoding, which relies on 

gene editing technologies to induce mutations, has been implemented in model organisms 

such as zebrafish2–4 and mouse5–7. Natural lineage barcoding, which relies on naturally-

occurring somatic mutations, has been primarily used in humans8,9. These retrospective 

approaches hold a unique promise for mapping cell fate. Unlike prospective lineage tracing 

approaches10, they have the potential to resolve entire hierarchies of progenitor states, 

thereby facilitating the analysis of non-cell autonomous effects. Unlike single-cell molecular 

profiling approaches, they can bridge time gaps between terminal cells and their progenitors 

that existed far earlier in time. Moreover, they can be applied to humans and non-model 

organisms where analyzing somatic mutations from cadavers can be more practical and 

ethical than analyzing embryos.

Despite this compelling potential, the full scope of the information that lineage barcoding 

can provide about the fate of the intermediate progenitor states remains unclear for multiple 

reasons. First, cell phylogeny is a function of cell divisions and most cell divisions in higher 

organisms do not accompany fate decisions. In the roundworm C. elegans, a unique model 

organism in which almost all cell divisions give rise to daughters with different fates, the 

phylogeny of terminal cells is identical to the fate of their progenitors11. However, in more 

complex organisms, progenitor populations can undergo cell divisions that are not associated 

with fate decisions, leading to divergences between phylogeny and fate12,13. As a result, 

liver hepatocytes of an identical progenitor state history may have the maximum possible 

distance on the phylogenetic tree by being the descendants of different cells at the 2-cell 

stage. Second, while the progenitor states and their fate remain largely stereotyped within 

species, the phylogenetic histories of the cell populations that assume those progenitor states 

can vary greatly from embryo to embryo due to stochasticity in fate decisions14,15. As a 

result, phylogenies of different subsets of cells from different embryos cannot be combined 

to synthesize a full picture the same way they can be in C. elegans. Third, single-cell lineage 

barcodes can be obtained for only a small sample of cells as current technologies can only 

sequence thousands of single cells whereas most mammals have millions of cells in each 

tissue. Given the divergences between fate and phylogeny and the variable nature of the 

latter, it remains unclear how phylogenies derived from small samples can reliably inform 

organism-level fate maps. Complicating matters further, phylogenetic inference from lineage 

barcodes is inherently subject to error because a finite number of barcoding sites may not 

record every cell division16, and even with infinite barcodes, finding the optimal tree is still 

a computationally intractable (NP-hard) problem17. Collectively, these considerations raise 

critical questions about the value of measuring cell phylogeny through barcoding approaches 
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in complex organisms: What features of progenitor states are reflected in the phylogeny of a 

limited sample of cells? How can these features be extracted from lineage barcodes?

To address these questions, we systematically studied the relationship between cell fate 

and cell phylogeny as derived using lineage barcodes. First, we established a method to 

generate cell phylogenies and developed the ICE-FASE algorithm to reconstruct quantitative 

fate maps—models that represent the hierarchy and dynamics of progenitor states—from 

time-scaled phylogenies. We found that quantitative fate mapping requires adequate 

representation of each progenitor state’s progeny among the sampled terminal cells. Second, 

we simulated synthetic lineage barcoding in mice and established Phylotime, a general and 

scalable method to infer time-scaled phylogenies from lineage barcodes. We found that 

Phylotime-inferred phylogenies enable robust quantitative fate map reconstruction when 

coupled with ICE-FASE. Overall, this work establishes quantitative fate mapping as a 

general framework for capturing the fate hierarchy and dynamics of progenitor populations 

using lineage barcodes of their descendants.

Results

Quantitative fate map: a model of progenitor field dynamics in development

We began by establishing the quantitative fate map, a model of the progenitor state hierarchy 

that gives rise to a group of cell types (Figure 1A). Each progenitor state is defined by its 

potency, which is the set of cell types it can produce. It is also associated with a commitment 

event, when its cells transition to less potent downstream states. The commitment event 

confers each progenitor state three additional defining features: i) commitment time, which 

is the time when a progenitor state’s cells commit to its downstream states, ii) population 

size, which is its number of cells at commitment time, and iii) commitment bias, which 

is the proportions of its population committing to each downstream state (Figure 1B). 

Commitment times represent the order and pace of developmental events18, population sizes 

are important determinants of organ and tissue size19, and commitment biases reflect the 

epigenetic state of progenitors and the effect of non-cell autonomous cues20. The progenitor 

states are unobserved in barcoding experiments; only their descendants at the time of sample 

collection are observed. We refer to these observed descendants as terminal cell types. 

In summary, a quantitative fate map defines the fate dynamics of a progenitor field21—a 

collection of progenitor states that give rise to a set of observed cells.

A diverse test panel of quantitative fate maps

We constructed 331 quantitative fate maps covering diverse developmental scenarios 

(Figures 1C and S1A, Methods). Representing increasing field sizes, the maps are in three 

categories of 16, 32 or 64 terminal cell types. We label progenitor states and terminal 

types with “P”s and “T”s followed by numerals, respectively. Within each category, the 

topologies of the maps range from perfectly balanced to highly unbalanced (Figures 1C and 

S1B,C) as measured by the Colless imbalance index22. In more unbalanced maps, progenitor 

states split into increasingly unequal diversities of terminal types (Figure 1C). In addition 

to size and topology, the parameters of progenitor states within each map vary (Figures 

S1D–J). Commitment times are between t = 2.5 and 10.9 days, which roughly correspond 
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to the beginning of fate restrictions and the end of organogenesis in mouse development 

(Figures 1A–C and S1D). Commitment biases were drawn from a beta distribution and 

cover a wide range (Figures 1B and S1E, Methods). Cell division and death rates were 

drawn from uniform distributions, ranging from 0.6 to 0.35 days per doubling and 0.02 to 

0.08 death probability per division, respectively (Figures S1F–H), broadly matching reported 

rates during mouse embryogenesis23,24. As all fate maps start with one founder cell at 

time t = 0, the division and death rates together with other fate map parameters dictate the 

progenitor population sizes at each point in time (Figures 1B and S1I,J). All fate maps end 

at t = 11.5 days when terminal cell types are sampled for observation based on either fixed 

or proportional sampling (Figure 1B). Under fixed sampling, the same number of cells are 

sampled from each terminal type, imitating experiments where target terminal cell types are 

purified using sorting or other methodology. Under proportional sampling, each terminal 

type is sampled based on its share of the total population, imitating experiments where cells 

are sampled without enrichment from whole tissues.

Modeling cell phylogeny based on a quantitative fate map

We next established a generative model to simulate cell phylogenies based on each 

quantitative fate map. Generating the entire tree of cell divisions for millions of cells (Figure 

1B) is computationally impractical. To overcome this problem, we developed a model based 

on coalescent theory in population genetics25–27 to generate time-scaled phylogenies only 

for sampled terminal cells rather than for all terminal cells (Figure S2, Methods). In brief, 

after choosing the number of cells to be sampled from each terminal cell type of a fate 

map, the number of cells from each progenitor state ancestral to sampled terminal cells 

is generated at all prior time points going backward to the founder cell. These sampled 

terminal and progenitor cells compose the nodes of the phylogenetic tree. Edges are then 

assigned by randomly connecting nodes from each time point to their progenitor nodes in 

the earlier time point. This approach generates time-scaled phylogenies for sampled cells 

based on their progenitors’ fate map (Figure 1D) in a computationally efficient manner.

Using this model, we generated time-scaled phylogenies for all quantitative fate maps 

in our test panel, sampling an average of 100 cells per terminal type under both fixed 

and proportional sampling (Figure 1B). To capture the variable nature of phylogeny, we 

simulated five phylogenies for each condition, representing a different set of cells being 

sampled from the same set of terminal cell types in different individuals (Figure S2). 

Together, these results represent 3,310 experiments (331 maps × 2 sampling schemes × 5 

repeats) wherein phylogeny is known for a small fraction of cells (average 0.07%) derived 

from a complex field of progenitors. We will use these phylogenies to benchmark fate 

mapping algorithms established below.

Reconstructing the hierarchy of progenitor states from cell phylogeny

To derive fate map topology from time-scaled phylogenies, we used the timings of 

apparent fate separations between terminal cell types. First, we annotated each node in 

the phylogenetic tree with its observed fate—the types of its observed terminal descendants 

(Figure 2A). Next, we identified the nodes whose observed fates are more potent than that of 

both their daughter nodes (Figures 2A,B). For instance, if an internal node leads to terminal 
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cell types {T3, T4, T5} but {T3, T4} are only seen in one of its branches and {T5} only 

in the other, this node constitutes a FAte SEparation (FASE) between T3 and T5 as well 

as between T4 and T5. The average time since FASEs between two terminal cell types 

(i.e., FASE distance) measures their developmental distance: long FASE distances indicate 

early separation in development and short FASE distances indicate more recent separation 

(Figures 2B,C). We can thus compile a matrix of FASE distances between all terminal cell 

types (Figure 2D) and apply a clustering method (UPGMA) to obtain fate map topology 

(Figure 2D, Methods). This fate map topology establishes a hierarchy of increasingly 

diverse but decreasingly potent “inferred” progenitor states (labeled with “iP”s followed by 

numerals) that give rise to the observed cell types (Figure 2E). To summarize, the FASE 

algorithm reconstructs a hierarchy of inferred progenitor states based on the patterns of 

potency restriction in the phylogeny.

We applied the FASE algorithm to reconstruct fate map topology for each simulated 

phylogeny in our panel of 3,310 (Figure S1K). For comparison, we also used the shared 

progenitor score (SPS) which estimates the distance between two terminal cell types based 

on the number of nodes in the phylogenetic tree that have those terminal types in their 

observed fate, weighted by how many other terminal types are among the observed fates6. 

We further generated random fate map topologies as negative control (Methods). In all 

cases, we compared the reconstructed topology to that of its corresponding true fate map 

using the Kendall-Colijn (KC) distance with its tuning parameter (λ) set to zero (KC0)28. 

The KC distance measures the difference between rooted trees. It compares the placement 

of the most recent common ancestor (MRCA) of all pairs of tips relative to the root 

based on either the number of edges (KC0) or path length (KC1). A KC0 distance of 

zero indicates that the reconstructed and true fate maps have identical topologies (a KC1 

distance of zero, which we will use later, indicates identical topologies and branch lengths 

between two trees). The results show that FASE strategy consistently outperforms SPS 

(Figure 2F): It predicts perfectly accurate topologies when the fate map is small or has 

low imbalance; it predicts informative topologies even for large fate maps with extreme 

imbalances. Unbalanced maps have smaller intervals between commitment events (Figure 

S1L), making reconstruction of topology more challenging. We also observed that fixed 

sampling outperforms proportional sampling (Figure 2F), likely because it ensures better 

representation of rare terminal populations. These results establish the FASE algorithm as a 

robust and scalable method to reconstruct fate map topology from cell phylogeny.

To better understand the sources of topology reconstruction inaccuracies, we investigated 

FASE distance error, which is the difference between estimated FASE distance between 

two terminal cell types and the time since their last common progenitor state in the 

true fate map. We found a negative correlation between FASE distance error and the 

sampling fractions of progenitor states (Pearson’s R=−0.40, p < 2.2e–16) (Figure S3A) 

in the 3,310 simulated experiments. Sampling fraction is the proportion of the progenitor 

state population whose progeny are represented among sampled terminal cells and is known 

from simulations (Figure 1B). Later progenitor states tend to have larger population sizes 

and thus lower sampling fractions (Figure S3B). Undersampling the terminal descendants 

of a progenitor cell can bias its corresponding FASE distances (Figure S3C). To validate 
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the effect of sampling fraction, we generated phylogenies for all our 16-terminal type fate 

maps, sampling an average of 25, 50, 100, and 200 cells per terminal type. We observed 

that increased sampling reduces topology reconstruction error (Figure S3D). For example, 

every doubling of the number of sampled cells, which increased the sampling fraction 

of progenitor states by 33% on average, increased the percent of perfectly reconstructed 

topologies by 18.9% on average. These results establish progenitor state sampling fraction as 

an important parameter for fate map topology reconstruction.

Estimating progenitor state commitment time from cell phylogeny

To characterize the dynamics of inferred progenitor states, we turned to the internal nodes 

of the time-scaled phylogenies. We assigned each internal node in the phylogenetic tree 

to the least potent inferred progenitor state or terminal type from the reconstructed fate 

map topology that contained the node’s observed fate (Figure 3A). For example, a node 

with an observed fate of {T2, T3, T4} can be assigned a more potent inferred state of iP2 
capable of {T1 to T5} if the now-reconstructed fate map topology (Figure 2E) indicates 

that iP2 differentiates into fates {T1, T2} and {T3, T4, T5} (Figure 3B). To assess the 

fidelity of these assignments, we compared the inferred states of internal nodes in all 3,310 

phylogenies to their true states which are known from simulations (Figure S3E). The only 

type of error was assigning an internal node to a progenitor state less potent than its true 

state, which occurred, on average, for 27.7% of the assignments in each phylogeny (Figures 

S3E,F). This type of error is also caused by undersampling (Figure S3G); hence, we will 

keep track of progenitor states’ sampling fractions going forward.

To derive the commitment time of each progenitor state, we defined Inferred Commitment 

Events (ICEs): An ICE is a node whose inferred state is more potent than that of both of its 

immediate descendants (Figures 3B,C). For example, in Figure 3B, when an internal node 

assigned to iP2 (capable of {T1 toT5}) splits into two nodes with assigned states of T2 and 

iP14 (capable of {T3, T4}) respectively, we count this node as an ICE for iP2. ICEs improve 

on FASEs by leveraging the now-reconstructed fate map topology to identify a more 

confident set of nodes that represent state transitions. We defined the commitment time for a 

progenitor state as the mean of its ICE times (Figure 3D). Across all progenitor states in our 

panel of 3,310, ICE times captured the relative timing of commitment events as indicated 

by a high rank correlation (Spearman’s ρ=0.90 for fixed sampling and 0.91 for proportional 

sampling) (Figure 3E). Like FASE distance error, the error of estimated commitment time 

for progenitor states showed a strong negative correlation with their sampling fraction 

(Pearson’s R = −0.97) (Figure 3F). In fact, when only considering progenitor states with a 

sampling fraction above 0.25 (Figure 3F), ICE times not only captured relative commitment 

times almost perfectly (Spearman’s ρ=1.00 for fixed and 0.99 for proportional sampling) 

but also captured the exact timing of commitments as indicated by a low root mean square 

error (RMSE=0.31 days for fixed and 0.27 days for proportional sampling) (Figure 3E). 

These results establish ICE times as estimates for the commitment times of the progenitor 

states from time-scaled phylogenies of sampled cells. They also demonstrate the central 

importance of progenitor state sampling fraction for obtaining reliable estimates.
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Estimating progenitor state population size and commitment bias from cell phylogeny

We next leveraged both fate map topology and commitment times to estimate population 

sizes and commitment biases of progenitor states. To estimate population size for a 

progenitor state, we identified the subset of all edges in the phylogeny that (i) cross the 

progenitor state’s commitment time and (ii) connect nodes assigned as either the progenitor 

state itself or any of its upstream or downstream states in fate map topology (Figures 

3G,H, Methods). These branches represent cells of the progenitor state that are present at 

its estimated commitment time. We thus counted the number of incoming nodes to these 

branches as the population size (Figures 3H,I). For commitment bias, we calculated the 

proportion of these branches that end in each of the downstream fates irrespective of their 

parental state (Figures 3H,J). Applying this algorithm to the 3,310 simulated time-scaled 

phylogenies, we found that the ability to estimate population size and commitment bias for 

a progenitor state depend heavily on its sampling fraction as well as the sampling method. 

For well-sampled progenitor states (sampling fraction > 0.25), population size estimates 

agree well with their true sizes (Spearman’s ρ=0.98 for fixed and ρ=0.90 for proportional 

sampling) (Figure 3K). For undersampled progenitor states, a progenitor population’s size 

estimate is capped at the number of its sampled terminal progeny, which is reasonably 

informative in proportional sampling (Spearman’s ρ=0.78) but uninformative in fixed 

sampling (Spearman’s ρ=0.06) (Figure 3K). For commitment bias, proportional sampling 

produced good estimates for the well-sampled progenitor states (Spearman’s ρ=0.83) and 

reasonable estimates for the undersampled ones (Spearman’s ρ=0.72). (Figure 3L). Fixed 

sampling produced good estimates only for well-sampled progenitor states (Spearman’s 

ρ=0.82) and was almost uninformative for undersampled ones (Spearman’s ρ=0.15) (Figure 

3L). Consistent with these results, average population size and commitment bias estimate 

errors approach zero as sampling fraction approaches one (Figures S3H,I). The more 

effective estimation of population size and commitment bias with proportional sampling is 

due to the inherent correlation between the size of terminal populations, which proportional 

sampling captures, and that of their progenitors. Taken together, these results establish a 

strategy for estimating progenitor population size and commitment bias from a time-scaled 

phylogeny of cells.

Modeling realistic lineage barcoding results in development

So far, we have established a strategy—the ICE-FASE algorithm—to reconstruct 

quantitative fate maps which describe progenitor state hierarchy, commitment time, 

population size, and commitment bias from time-scaled phylogenies. The phylogenies that 

were used thus far represent the exact sequence and timing of cell divisions as simulated 

(i.e., true phylogeny). In actual experiments, phylogeny must be inferred from lineage 

barcodes and such inferences are inherently subject to error due to the limitations of 

both barcoding systems and computational techniques. Therefore, how close any inferred 

phylogeny is to the true phylogeny remains uncertain. To address whether quantitative fate 

maps can be obtained from inferred phylogenetic trees despite their uncertainty, we started 

by simulating realistic lineage barcoding outcomes. To do so, we established a mutagenesis 

model comprising independent barcoding sites that accumulate mutations according to a 

Poisson point process with a constant rate (Figures 4A,B). Each mutation converts an active 
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copy of the site into one of many possible inactive mutated alleles, each with a distinct 

emergence probability. Next, we set the parameters of this model based on the MARC1 

system5 wherein barcoding sites are homing guide RNA loci (hgRNAs)29. We estimated the 

mutation rates of MARC1 hgRNA from published embryonic time course measurements30 

(Figure S4A, Table S1, Methods). We estimated emergence probabilities of mutant alleles 

for each hgRNA by modifying the inDelphi machine learning algorithm31, which predicts 

CRISPR-Cas9 mutations (Figure S4B, Methods). We validated the mutation model and its 

parameters by simulating barcoding in whole-mouse embryos and comparing the results 

to that of actual MARC1 barcoded embryos (Methods). The comparison showed a broad 

agreement between experimental and simulated barcoding with respect to the emergence 

probability of mutant alleles, total mutation levels over the course of embryogenesis, and 

the diversity and composition of mutant alleles within an embryo (Figures S4B–G). These 

results suggest that our strategy produces realistic barcoding results that are comparable 

to lineage barcoding in mouse embryos. We thus simulated mutagenesis in our panel of 

3,310 phylogenies with 50 hgRNAs per cell (Methods). These simulations yielded in silico 

barcoding experiments wherein, similar to actual experiments, the barcodes and terminal 

types are known for sampled single cells (Figure 4C).

Inferring time-scaled cell phylogenies from single-cell lineage barcodes using Phylotime

For quantitative fate mapping, the phylogenetic tree inferred from lineage barcodes must be 

time-scaled. However, many inference methods lack a mutagenesis model specific to lineage 

barcoding and thus their resulting phylogram branch lengths do not represent interdivision 

times. Those with a barcoding mutagenesis model32–34 require optimization techniques that 

do not scale to thousands of cells, as sampled here in each simulated experiment. Therefore, 

we developed a scalable method to infer time-scaled phylogenies from lineage barcodes. 

In this method, we first compute a maximum likelihood estimate of the time that separates 

a pair of cells from their most recent common ancestor (time since MRCA) for all pairs 

of terminal cells (Figures 4D and S4H, Methods). We then apply UPGMA hierarchical 

clustering to the pairwise time since MRCA matrix to obtain a time-scaled phylogenetic tree 

(Figure 4E). We call this approach, which scales in polynomial time, PHYlogeny inference 

using Likelihood Of TIME (Phylotime).

To evaluate Phylotime’s performance, we first compared estimated times since MRCA 

for all pairs of cells from a simulated barcoding experiment to those derived from the 

corresponding true phylogeny (Figure S4I) and found that the two were highly correlated 

(Pearson’s R = 0.93). We then simulated barcoding with 25, 50, and 100 hgRNAs in all 

530 simulated phylogenies for the 16-terminal type fate maps and applied Phylotime to 

infer phylogeny from each. For comparison, we also inferred phylogenies using a Hamming 

distance-based clustering method as well as Cassiopeia35 which is a heuristic approach 

based on maximum parsimony (Methods). Other common methods do not scale well to 

this number of terminal cells (1,600) and barcoding sites (up to 100) in each experiment. 

We then evaluated the difference between inferred phylogenies and their corresponding true 

phylogenies using KC0 distance for topology and KC1 distance for combined topology and 

branch length (Figures 4F,G). KC0 results showed that Phylotime produced topologies that 

had on average 80% less error compared to Cassiopeia and 6% less error compared to 
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Hamming (Figure 4F). KC1 results showed that Phylotime’s time-scaled phylogenies had on 

average 82% less error compared to Cassiopeia and 78% less error compared to Hamming 

(Figure 4G). Importantly, only Phylotime’s solutions converged to the true phylogeny with 

an increasing number of barcoding sites (Figure 4G). Together, these results show that 

Phylotime can accurately infer time-scaled phylogenies from lineage barcodes.

Reconstructing quantitative fate maps from lineage barcodes

With realistic barcoding simulation and a method to infer time-scaled phylogenies in hand, 

we finally assessed how well lineage barcodes can inform quantitative fate maps. We applied 

the ICE-FASE algorithm to all 3,310 Phylotime-inferred time-scaled phylogenies from 

experiments simulated with 50 hgRNAs to reconstruct quantitative fate maps and compared 

these fate maps to those obtained by applying ICE-FASE to the true phylogeny. Phylotime-

inferred phylogenies performed almost as well as true phylogenies at reconstructing fate 

map topology, regardless of fate map size and imbalance or sampling strategy (Figure 5A), 

with 22% more error on average compared to the true phylogeny. Similarly, for commitment 

times, population sizes, and commitment biases of progenitor states, Phylotime-inferred 

phylogenies performed similarly to true phylogenies in all conditions, recovering on average 

95%, 80%, and 76% of the correlation, respectively (Figure 5B). Taken together, these 

results show that quantitative fate maps can be faithfully reconstructed based on time-scaled 

phylogenies inferred using Phylotime despite errors inherent to phylogenetic inference.

Effect of barcoding site composition, experimental errors, and sampling time on 
quantitative fate mapping

We next analyzed how the number and the mutation rates of barcoding sites affect the 

ability to reconstruct quantitative fate maps from lineage barcodes. On the panel of 3,310 

true phylogenies, we repeated barcoding simulation with 25, 50, or 100 hgRNAs per cell 

mutating at fast, intermediate, or slow rates, as observed in MARC1 hgRNAs (Figure S4A). 

We then applied Phylotime followed by ICE-FASE to these 29,790 simulated experiments 

to obtain quantitative fate maps. To assess these maps, we instituted a general evaluation 

strategy that will also be used in all later sections: we used KC0 error for topology; we used 

the RMSEs of progenitor state commitment times, log2(population sizes), and commitment 

biases irrespective of sampling fraction and based on the true topology (using imperfectly 

reconstructed topology would bias estimates in favor of easily resolvable progenitor 

states) (Methods). Note that RMSE measures absolute error; experiments with relatively 

high RMSEs often still have accurate relative ordering of progenitor state parameters. 

The analysis showed that very slow rates of mutations (~0.002 mutations per site per 

division) cannot resolve reliable quantitative fate maps under the conditions tested here 

(Figure S4J). Though increasing the number of slow-mutating sites increased reconstruction 

accuracy generally, indicating that the combined mutation rates of all sites ultimately 

dictate reconstruction efficiency (Figure S4J). Intermediate rates of mutation (~0.05 per 

site) performed better than fast mutation rates (~0.28 per site). As fast sites are more likely 

to record information only in the earlier days of development (Figures S4D–F) and before 

many of the progenitor states have come into existence (Figure S1D). Overall, these results 

show that for quantitative fate mapping, an adequate overall level of mutagenesis must take 

place during the development window of progenitor states.

Fang et al. Page 10

Cell. Author manuscript; available in PMC 2023 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We next considered two common modes of experimental error: allele dropout and allele 

switching. We carried out simulations with increasing levels of error in the resulting data 

and assessed the fidelity of quantitative fate map reconstruction (Methods). For missing 

alleles, before applying Phylotime, we imputed the missing alleles for each barcoding site 

sequentially by leveraging information from all other sites (Methods). The results, which 

are detailed in Figures S5A–D, suggest that while the accuracy of estimates declines with 

increasing experimental error, quantitative fate mapping algorithms can tolerate errors and 

behave stably in response.

We also simulated sampling of terminal types one to five days after the last commitment 

event. The results, which are detailed in Figures S5E–M, show that a progenitor field may be 

assessed by sampling its terminal cell types or the descendants of those terminal cell types at 

any time after its development.

Cell death, non-random sampling, and asymmetric divisions can empower quantitative 
fate mapping

Because cell death is a prevalent developmental control mechanism36, we carried out 

simulations with increasing rates of cell death in either all terminal types or all progenitor 

states. As detailed in Figures S5N–S, we found that cell death in progenitor states 

drastically improved estimates of commitment time, population size, and commitment bias 

by bottlenecking progenitor states to effectively increase their sampling fractions. These 

results in turn suggest that non-random sampling of terminal types can be employed 

to effectively bottleneck their progenitors and facilitate analyzing large progenitor states. 

Conversely, cell death in terminal states did not significantly alter reconstruction, suggesting 

that a progenitor state may be analyzed using a subset of its downstream states or types.

We also considered stereotyped cell fate commitment with asymmetric cell divisions, 

which are common in the development of the nervous system37. We simulated barcoding 

experiments on a pectinate 16 terminal type fate map (Figure 1C, bottom left) with 

commitments happening exclusively through asymmetric divisions. The results, which are 

detailed in Figures S5T–Z, indicate that asymmetric divisions facilitate quantitative fate 

mapping.

Consensus quantitative fate maps from multiple biological replicates

We expanded the ICE-FASE algorithm to take advantage of multiple biological replicates 

assuming they have a common underlying fate map. Briefly, to obtain consensus topology 

from replicates, their FASE distance matrices were averaged before applying the clustering 

algorithm (Figures 2D,E). To obtain consensus commitment times, the consensus topology 

was used to assign inferred progenitor states to each replicate’s phylogeny and ICE times 

of each progenitor state were pooled from different replicates (Figures 3A–D). To obtain 

consensus population sizes and commitment biases, the consensus commitment time for 

each progenitor state was used to estimate its population size and commitment bias in 

each phylogeny (Figures 3G–K) and these estimates were averaged to obtain respective 

consensuses.
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We then assessed fate map reconstruction accuracy based on the number of replicates. For 

each of our 53 fate maps with 16 terminal types (Figure 1C), we simulated 10 replicates 

of barcoding experiments each for fixed and proportional sampling with an average of 50, 

100, or 200 sampled cells per terminal cell type (53 maps × 2 sampling schemes × 3 sample 

sizes = 318 sets of 10 replicates). For each replicate, we applied Phylotime to obtain a 

time-scaled phylogeny. We then randomly combined 1, 2, 3, 4, or 5 of the 10 replicates 

to reconstruct consensus quantitative fate maps and compared their accuracies. The results 

show that additional replicates indeed reduce error of all quantitative fate map estimates 

(Figures 5C–F). However, the gains with additional replicates are diminishing and do not 

converge to zero error. This observation is best explained by undersampled progenitor states 

whose estimates in each replicate can be uninformative (Figure 5B). In fact, estimation error 

for the well-sampled progenitor states approached zero with additional replicates while it did 

not for the undersampled ones (Figures 5G–I).

Importantly, the gains achieved by sequencing more cells per replicate outweighed those 

achieved by combining more replicates. For example, quadrupling the number of replicates 

from one to four when sampling 50 cells decreased average error in topology, commitment 

time, population size, and commitment bias by 30%, 23%, 4%, and 3% respectively (Figures 

5C–F). By contrast, a quadrupling of the number of cells sequenced in a single replicate 

from 50 to 200 decreased average error in topology, commitment time, population size, and 

commitment bias by 46%, 41%, 26%, and 12% respectively (Figures 5C–F). These results 

suggest that limited resources can be better spent on sequencing more cells per individual 

than a larger number of individuals.

Resolving multifurcations and prolonged commitments

Because some progenitor states undergo gradual commitment during development, we 

simulated a progenitor state committing over a 0.5-, 1.1-, or 1.7-day commitment window. 

The results, which are detailed in Figures S6A–E, indicate that the ICE-FASE algorithm can 

resolve progenitor states that gradually commit over a window of time.

Because progenitor states in development may simultaneously commit to more than two 

immediate downstream states or types, we simulated barcoding in a fate map where a 

progenitor state undergoes trifurcation. The results, which are detailed in Figures S6F–L, 

show that the ICE-FASE algorithm can resolve multifurcations in fate maps given adequate 

sampling.

Assessing robustness of quantitative fate map estimates from experimental data with 
PScov

Despite its central importance in evaluating the robustness of quantitative fate map 

reconstruction, progenitor state sampling fraction cannot be directly obtained from sampled 

terminal cells or their phylogeny. To address this gap, we introduce estimated progenitor 

state coverage (PScov), a proxy for sampling fraction that can be derived from sampled cells 

alone. PScov is defined as the number of observed terminal progeny for a progenitor state 

divided by its estimated population size (Figure 6A). Intuitively, this statistic indicates how 

many terminal descendants were sampled per inferred progenitor cell. We found that a high 
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PScov is indeed predictive of a high sampling fraction (Figure 6B). For example, in our 

3,310 simulated experiments, 69.8% of all progenitor states that are sampled more than 25% 

also have a PScov larger than 5, and more than 99.9% of progenitor states with PScov larger 

than 5 have sampling fractions larger than 25% (Figure 6C). Moreover, average commitment 

time, population size, and commitment bias errors approach zero with increasing PScov 

(Figures 6D–F). Therefore, PScov makes it possible to assess the robustness of quantitative 

fate map parameters for each progenitor state in actual experiments.

Experimental validation of quantitative fate mapping

To test this quantitative fate mapping framework, we used an experimental system in which 

quantitative fate map parameters can be known. We established a human induced pluripotent 

stem cell (iPSC) line with 32 hgRNA barcoding sites (Table S2, Methods). The line also 

includes inducible Cas9 to activate barcoding. 24 of the 32 hgRNAs were determined to 

be active and accumulated random mutations upon Cas9 induction (Figure S7A). We then 

designed growing and splitting schemes in culture that mimic progenitor state hierarchies 

(Figure 7A). In two parallel experiments, starting from single cells, we initiated barcoding 

and passaged growing cells into subpopulations at known times, numbers, and split ratios 

(Figures 7B and S7B,C). The two experiments were similar except that in one (E1), 

progenitor state 3 (P3) was split two days before progenitor state 4 (P4), whereas in the 

other (E2), P4 was split two days before P3. In effect, the last populations of split cells 

in these experiments represent terminal cell types and their ancestral populations represent 

progenitor states. In the end, we sequenced barcodes from 192 single cells in each terminal 

population (Methods). After data processing, we obtained on average 158 cells per terminal 

population with a median of 26 hgRNAs detected per cell (Figures 7C and S7D,E). We 

also conducted simulations on the E1 and E2 reference fate maps (Figure S7B) with cell 

division rates derived from the actual progenitor population sizes at each split and hgRNA 

mutation rates (Figure S7C) and allele emergence probabilities respectively obtained from 

time-course measurements and inDelphi predictions (Figure S7F, Table S2). We applied 

Phylotime and ICE-FASE to both simulated and experimental data. The experimental data 

reconstructed the topology correctly for both E1 and E2 (Figure 7D), and so we refer to 

the inferred states by their true state names hereafter. In addition to the correct topology, 

the inferred fate maps recovered the correct orders of commitment in both experiments 

(Figure 7D), including the relative commitment times for P3 and P4 which were switched 

between E1 and E2. This result suggests that our strategy can identify quantitative fate map 

differences in different systems.

PScov ranged from 1.68 to 2.36 in all progenitor states other than the founder (P5), 

indicating that they were highly undersampled. As such, we did not expect to recover 

the exact commitment times and population sizes of the passaged intermediate populations. 

Nevertheless, we evaluated if these estimates would approach the truth with increased 

sampling. We repeated quantitative fate map reconstruction 50 times each with varying 

numbers of terminal cells subsampled from the total sequenced population. In parallel, 

we carried out simulations with the same subsample sizes on reference fate maps. We 

then classified inferred fate maps based on their topology and correctness of relative 

ordering (Figure S7G) and found that the fraction of correct topology and relative order 
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of commitment increased in a similar fashion with increasing sampling in both the simulated 

and experimental datasets. Additionally, commitment time and population size estimates 

for P3 and P4 approached their true values with increasing sampling in simulated and 

experimental sets alike (Figures S7H,I). Together, these observations validate our barcoding 

models used for simulation and suggest that our quantitative fate mapping strategy, ICE-

FASE, and Phylotime are robust to natural variations in cellular behavior.

Discussion

In this study, we have established a robust and versatile approach, called quantitative 

fate mapping, to use cells’ lineage barcode and identity information to retrospectively 

characterize the progenitor field that gave rise to them. Quantitative fate mapping involves 

two stages. The first stage entails inferring a time-scaled phylogenetic tree from single-cell 

lineage barcodes. To do so, we have developed Phylotime, which scales to large trees with 

thousands of terminal branches. Moreover, its mutagenesis model can be adapted to other 

systems with multiple independent mutation sites such as natural somatic mutations. The 

second stage entails reconstructing the hierarchy of progenitor states that led to the observed 

cell types and estimating their commitment times, population sizes, and commitment biases. 

To do so, we have developed the ICE-FASE algorithm which uses nodes in the time-scaled 

phylogenetic tree that are associated with fate decisions as chronometers of progenitor 

population dynamics. While other studies have focused on reversible cell state transitions38, 

non-cumulative barcoding15,39, or single progenitor states34,40, our approach is unique in 

that it evaluates the dynamics of progenitor states using cumulative somatic mutations, 

scales to large and complex progenitor fields, and can tolerate the errors that are inherent to 

phylogenetic inference.

The choice of terminal cell types decides the progenitor states that are analyzed in 

a quantitative fate map. As a simplified example, taking ectoderm-derived neurons, 

mesoderm-derived myocytes, and endoderm-derived hepatocytes in adult mice as terminal 

cell types would analyze their common progenitor states prior to gastrulation. Therefore, 

quantitative fate mapping provides a unique approach to characterize development based 

on differentiated cells. This strategy complements those based on the direct analysis 

of progenitor cells (e.g., single-cell RNA sequencing)41 in multiple ways. Firstly, it 

provides information about the long-term fate of progenitors. Secondly, it enables analyzing 

progenitor states with respect to specific subsets of their progeny which may be of interest, 

for example due to relevance to a specific disorder. Finally, it can be applied to non-model 

species wherein accessing somatic mutations from cadavers is more practical than obtaining 

embryos.

Our results show that only when a progenitor state is sufficiently sampled can its potency 

and dynamics be meaningfully estimated in one individual and improved by combining 

biological replicates; estimates for severely undersampled progenitor populations are not 

meaningful irrespective of the number of replicates. In cases modeled here, adequate 

sampling often required more than 25% of the actual progenitor population to have 

descendants among sampled terminal cells (PScov > 5). To meet this sampling criterion 

in practice, the number of descendants that are analyzed should be, at least, in the same 
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order as the actual progenitor population size. We propose this as a fundamental rule for 

retrospective lineage analysis. For prohibitively large progenitor populations, this sampling 

rule may be satisfied by bottlenecking the number of sampled progenitors using non-random 

sampling of terminal cells based on anatomical position or other criteria.

In summary, we have described quantitative fate mapping as a framework to characterize 

complex cell fate dynamics during development using retrospective lineage analysis at a 

later point in time. This framework is based on somatic mutations—synthetic or natural—

that accumulate during development. Robust fate mapping requires good representation of 

each progenitor population among sampled cells as well as the ability to infer time-scaled 

phylogenetic trees. This framework facilitates the characterization of cell autonomous and 

non-cell autonomous genetic and environmental effects on development.

Limitations of the study

The parameters of our models were tailored to mouse embryogenesis. Hence, certain 

thresholds and cutoffs associated with specific conclusions may be different in later stages 

of development, other species, and other developmental systems such as organoids. In such 

cases, the simulation strategies described here can be employed to obtain system-specific 

values. Our models assume lineage-independent rates of mutagenesis. While this assumption 

is supported as a first-order approximation5,42, we expect our strategy to be robust to small 

lineage biases in mutation rates. We have not performed experimental validation of this 

framework in a model organism, which may reveal factors that were not considered here and 

require adjustments to ICE-FASE and Phylotime strategies.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Reza Kalhor (kalhor@jhu.edu).

Materials availability—The human induced pluripotent stem cell line generated in this 

study will be shared upon request.

Data and code availability

• FASTQ files from sequencing single-cell hgRNA arrays have been deposited 

at SRA and are publicly available. Accession numbers are listed in the 

key resources table. All quantitative fate maps, simulated datasets, inDelphi 

predictions, and Phylotime-reconstructed phylogenies have been deposited on 

Zenodo. DOIs are listed in the key resources table.

• R package for QFM and code to reproduce the results is publicly available at 

https://github.com/Kalhor-Lab/QFM/ as of the date of publication.

• Any additional information required to reanalyze the data reported in this paper 

is available from the Lead Contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—Human iPSCs were cultured in mTeSR Plus media (STEMCELL 

Technologies) on plates coated with Matrigel Growth Factor Reduced Basement Membrane 

Matrix (Corning). Cells were maintained at 37°C and 10% CO2/5% O2 conditions with 

daily media changes. When up to 80% confluent, cells were passaged by dissociation with 

Accutase (STEMCELL Technologies) and seeded in mTeSR Plus media supplemented with 

5 μM blebbistatin (Millipore Sigma).

Lineage-tracing human induced pluripotent stem cell line—We established a 

clonal iPSC line with 32 hgRNA barcoding sites distributed in its genome as a non-

tandem array. The line also includes doxycycline inducible Cas9 to activate barcoding. 

The EP1 human induced pluripotent stem cell (hIPSC) line was obtained from Bhise 

et al.52, originating from fetal lung fibroblasts obtained from a female donor. A clonal 

lineage-tracing inducible Cas9 cell line was generated by first transfecting the EP1 

cells with plasmids to target and stably insert both a reverse tetracycline-controlled 

transactivator (rtTA) construct and a tetracycline-dependent Cas9 construct into each of 

the two copies of the AAVS1 safe harbor locus. The cells were then transfected with 

a hgRNA PiggyBac library and screened for high numbers of insertions. A KaryoStat™ 

Assay of the final engineered cell line confirmed that the sample originated from a female 

and had no chromosomal aberrations when comparing against the reference dataset. Cells 

were determined to be free of mycoplasma contamination based on MycoAlert® PLUS 

Mycoplasma Detection Kit (Lonza) test results.

METHOD DETAILS

Definition of quantitative fate map—A quantitative fate map (QFM) is characterized 

by a topology in the form of a bifurcating or multifurcating time-scaled tree. Each node in 

the tree is associated with a time, with the root node at time 0 and the terminal nodes at time 

of sampling. Each edge in the tree represents a progenitor state or terminal type, the starting 

and end time of the edge represent the duration for which the state existed. If an edge 

ends at the sampling time, it is a terminal type, otherwise a progenitor state. For progenitor 

states, the end node of the edge represents a commitment event. For terminal types, the end 

node of the edge represents the time at which the process is stopped for sample collection. 

For a bifurcating QFM with Z total terminal types, we denote the progenitor states as Pi, 
i = 1,2, …, (Z − 1) and the terminal types as Tj, j = 1,2, …, Z. Each progenitor state 

or terminal type has a set of parameters associated with it. We take a progenitor Pi as an 

example here. Along the edge representing Pi, cells undergo cell division and cell death at 

rates specific to the state. The doubling time for Pi is denoted dPi. When not committing, 

cells can be (i) dividing (ii) not dividing, or (iii) dying with probabilities cPi,D, cPi,N or cPi,L 

respectively. These probabilities are specific to the progenitor state. At the commitment time 

for Pi, denoted tPi, the cells commit to the downstream states. For a bifurcating commitment 

event, when cells of the Pi state commit to the downstream states, say Pj or Pk, it can do 

so via either via symmetric cell division or asymmetric cell division. For commitment via 

symmetric cell division, each cell of the Pi state gives rise to either two Pj cells or two 

Pk cells. For commitment via asymmetric cell division, each cell gives rise to two cells of 

different downstream states, that is, one cell Pj cell and one Pk cell. The corresponding 
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commitment mode probabilities are denoted (pPjPj, pPkPk, pPjPk), where pPjPj and pPkPk are 

the probabilities of the symmetric modes that commits to Pj or Pk respectively and pPjPk is 

the probability of the asymmetric mode. The commitment bias is defined as the proportion 

of cells of each of the downstream states that are produced. In the above example, the 

commitment bias, denoted as bPi is (2pPjPj + pPjPk, 2pPkPk + pPjPk). In most fate maps 

simulated here, pPjPk = 0 as they did not include a specific asymmetric division mechanism. 

For the purpose of evaluation, for each bifurcating progenitor state, the proportion that 

commits to one of the two downstream states is chosen as a single value representing the 

progenitor state bias and is kept track of consistently throughout. The progenitor population 

size NPi is defined as the number of cells at the commitment time.

Definition of time-scaled phylogeny—A time-scaled phylogeny is defined as a rooted, 

ultrametric, bifurcating phylogenetic tree where branch lengths are in the unit of time and 

represent the time in between cell divisions. Terminal nodes, or tips, of the tree represent 

observed cells. Internal nodes in the time-scaled phylogeny represent cell divisions of 

unobserved progenitor cells. The root node represents the most recent common ancestor 

(MRCA) of all terminal cells. The length of the root edge is the time until the cell division 

of the root MRCA. Cophenetic distance is defined for each pair of terminal cells, which 

is the distance between the cells along the phylogenetic tree. The depth of a node in the 

phylogenetic tree is defined as the distance of a node to the root plus the length of the root 

edge. The ultrametric property requires that all tips are equidistant from the root, that is, 

have the same depth. The total time of a time-scaled phylogeny is defined as the depth of its 

tips.

Constructing a panel of quantitative fate maps—Generating each fate map in our 

panel involved several interrelated and iterative steps. These steps were designed to ensure 

that the fate maps in the panel explore a wide range of possibilities in terms of topology 

and progenitor state parameters while making sure: (i) the fate map generated resembles 

early mouse development (ii) the commitment events are placed within our prespecified 

time window ([2.4,10.9] days) (iii) two consecutive commitment events are at least one 

doubling time apart. For clarity, these steps are briefly listed here and detailed separately 

below. First, a candidate topology in the form of a bifurcating tree was generated from one 

of five categories of varying imbalance. Edges in the bifurcating tree represent progenitor 

states and terminal types; nodes in the tree represent their commitment events. Second, an 

ordering of the commitment events was generated. Third, doubling times of progenitor states 

were drawn, leading to a candidate fate map. Fourth, the timing of commitment events in the 

candidate fate map was checked against the minimum inter-commitment time and total span 

criteria. If the candidate fate map met these criteria, it was accepted and its commitment 

biases and death rates were drawn. Otherwise, a perturbation to the candidate topology was 

suggested, and steps one through four were repeated until a valid fate map emerged.

Generating candidate topologies:  To generate a panel of fate map topologies with 

varying levels of imbalance, tentative tree topologies were generated from five different 

categories: (i) ‘perfectly balanced’ (ii) ‘balanced-TBR’ (iii) ‘random’ (iv) ‘pectinate-TBR’ 

(v) ‘pectinate’. In the perfectly balanced topology, each bifurcation splits all terminal types 
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into two equal halves. The balanced-TBR topologies are generated by applying one random 

TBR move to the perfectly balanced topology. The random topologies are generated by 

creating a sequence of bifurcations, each randomly splitting the set of terminal types into 

two sets; the ‘rtree’ function in the ‘ape’ R package53 was used to generate the random 

topologies. The random category tends to have topologies of medium balance. The pectinate 

topology is in the shape of a comb. In pectinate topology, each bifurcation always splits the 

terminal types such that one of the splits has exactly one terminal type (Figure 1C, bottom 
left). The pectinate topology is the maximally unbalanced topology for a fixed number of 

terminal types. The pectinate-TBR topology is generated by applying a number of TBR 

moves to the pectinate topology.

Generating event ordering:  In the second step, we generated an ordering of commitment 

events following a previously published method44. Briefly, to get an ordering of events in the 

entire topology, a ‘shuffling’ at each bifurcation was generated. A shuffling orders the events 

between two subtrees of a bifurcation without ordering within each subtree. For example, 

two shufflings of a given event are illustrated in Figure S8A. Events from the left subtree 

are shown as hollow circles and events from the right subtrees are shown as solid ones. The 

sequence of solid and hollow circles is defined as a shuffling at the bifurcation. A set of 

shufflings for every bifurcation (internal node) of a tree determines the exact ordering of its 

commitment events.

Generating doubling times and exact commitment times:  Given the event ordering, 

doubling times for each state/type are drawn. To have overall agreement with the mouse 

development but also allow variabilities across cell states/types, the following scheme was 

used. The root state has a doubling time of 0.6 days. All other progenitor states have the 

doubling time drawn from a uniform distribution whose center is determined by the time 

ranking of its commitment event. Specifically, for an event ranked i-th out of total I − 1 

commitment events, the doubling time follows the uniform distribution below:

d(i) uniform 0.5 − (i − 1) * 0.55 − 0.4
I − 2 , 0.6 − (i − 1) * 0.55 − 0.4

I − 2

For example, for a 16-terminal type fate map, the earliest commitment non-root progenitor 

state has doubling time sampled from uniform(0.49, 0.59) and the latest committing 

progenitor state has doubling time sampled from uniform(0.35, 0.45). For all terminal types, 

the doubling time is sampled from uniform(0.35, 0.45) (Figures S1F,G). These doubling 

rates generally agree with rates reported in the literature23.

Next, we generated the duration between consecutive events in the commitment event 

ordering. In our model, consecutive commitment events were required to be at least one cell 

division (doubling time of the earlier state) apart. In addition, all of the commitment events 

need to fit in a predefined time window [l0, l1]. These requirements place constraints on the 

duration in between commitment events. Such a constraint can be formalized as follows:
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Suppose there are I total events, where the duration between the (i − 1)-th and i-th event in 

the event ordering is yi. Let the doubling time of progenitor state i be di, then for an edge in 

the fate map topology that connects the earlier event j to the later event k, we have

∑i = j + 1
k yi − dj ≥ 0 and yi ≥ 0

There are I − 1 total such constraints, one for each edge that is not the root edge. Next, 

we used linear programming to find the vector of yi’s such that ∑i yi is minimized, the 

minimum value of ∑i yi is denoted ytotal. When generating the event timing, we tried to 

place the events within the given time window: [l0, l1] with its total length being ltotal = 

l1 − l0. For a valid placement of events to exist, one needs to have ytotal ≤ ltotal. At this 

stage, we checked if this condition is met. If it was not, the current value of ytotal was 

recorded and the candidate fate map topology is perturbed by applying one tree bisection 

and reconnection (TBR) move. TBR is a tree rearrangement that detaches a subtree from 

the main tree at an interior node and then reconnects to another random branch. After 

the TBR move, all the above steps were repeated and a new ytotal values was computed, 

denoted ytotal′. If ytotal′ < ytotal, then the newly perturbed topology was accepted as the 

tentative fate map topology. Otherwise, the newly generated perturbation was discarded, and 

another perturbation was generated. The process was repeated until a ytotal ≤ ltotal was found. 

With the new ltotal found, we tried to place events uniformly within the time window by 

distributing the remaining duration ztotal = ltotal − ytotal to each interval evenly, which was 

achieved by sampling from the following Dirichlet distribution:

z1
ztotal 

,
z2

ztotal 
, …,

zI − 1
ztotal 

Dirichlet(5, 5, …, 5)

Finally, the commitment time for the u-th event is l0 + ∑i = 1
u yi + zi  (Figure S1D).

Generating commitment bias and death rate:  The raw commitment biases were drawn 

from Beta(5, 5), the raw values were later adjusted to actual values based on how many cells 

were split into each of the downstream fates. For example, when the progenitor population 

had 13 cells, and the raw commitment bias was (0.63,0.37) based on which [13 × 0.63] = 8 

cells are committed to one downstream fate versus [13 × 0.37] = 5 cells to the other, with [.] 

being the rounding operation that rounds to the nearest integer. Then the actual commitment 

bias was adjusted to (8/13,5/13). We required that there are at least 4 cells committing to 

each downstream fate, this requirement resulted in the commitment bias to be closer to 

0.5 for smaller progenitor populations (Figure S1E). The cell death rates were drawn from 

Uniform(0.02,0.08).

Generating the panel of fate maps:  The balance of a fate map topology can be measured 

by the Colless index. The Colless index of a bifurcating tree is defined as the sum of the 

balance values of its internal nodes, where the balance value of an internal node is defined 

as the absolute value of the difference between the number of descendant tips of its pair 

of daughter nodes22. To get a representative panel of fate maps topologies in terms of 
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balance, we generated 1,000 fate maps based on topologies from the balanced-TBR, random 

and pectinate-TBR categories with either 16, 32 or 64 terminal types. After computing the 

Colless index for each topology, we classified the generated topologies into bins of different 

Colless index values by increments of 20. Next, within each bin, we randomly selected five 

(or fewer in bins with fewer than five in total) fate maps (Figure S1C). Finally, we add to 

this list the perfectly balanced topology and the pectinate topology. Note that because of 

the constraints of the minimum duration in between consecutive commitment events and 

the doubling times specified, the pectinate topology does not allow a valid placement of 

commitment events within the [2.4, 10.9] time window for the fate maps with 32 and 64 

terminal types, so it was only added in the case of 16 terminal types. The above procedure 

produced 53 fate maps with 16 terminal types, 108 fate maps with 32 terminal types and 

170 fate maps with 64 terminal types. To see if the steps used here generated topologies 

that show good variabilities, we embedded the tree topologies into the 2-dimensional space 

by applying multi-dimensional scaling to the pairwise KC0 distances. In the embedding, 

we observed that the first principle coordinate correlated well with the Colless index, and 

in addition, the second principle coordinate also had good variations, indicating that our 

topologies cover a range of possibilities (Figures S1A,B).

Generating a count graph for QFM—To carry out computation and generate time-

scaled phylogenies from a QFM, an abstract count graph was constructed based on the 

QFM’s specifications, which is a detailed representation of the computations involved 

(Figure S2).

Each node in the count graph contains a group of cells. To distinguish the terms, we call 

a node in the count graph a ‘count node’. In addition to containing cells, each count node 

has other relevant attributes. It has a time window, which specifies the time during which 

its cells exist, it also has a state/type assignment, which specifies which progenitor state or 

terminal type its cells belong to. Generating a count graph for a QFM starts at its root (t 
= 0) with a single count node. The count nodes in the next time window are generated by 

applying four operations (which are indicated by bold font in text below) to the starting 

count node and its cells according to the QFM specifications to generate the count node(s) 

at the next time window. This process is then repeated on the nascent count nodes one round 

after the other until the entire count graph is created. The detailed implementation of each 

operation is given in the later section (Figure S2, Step 1).

During each time window, which is the length of a cell cycle, based on if the commitment 

time of the progenitor state has been reached in the QFM, each count node undergoes one of 

two processes before creating count node(s) in the next time window:

1. a proliferate-only process

2. a commit and proliferate process

Initially, the count node is in a “default” mode (labeled T), representing its total population 

of cells during the time window. If undergoing process 1 (proliferate-only), the count node 

is split into three sub-count nodes that represent cells that are (i) doubling (labeled D) (ii) 

not doubling (labeled N) or (iii) dying (labeled L). Specifically, cells (of cell state Pi) with 
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N totals cells are split into three sub-count nodes of different proliferation modes, according 

to probabilities cD,Pi, cN,Pi and cL,Pi. Here, the split operation splits a count node into three 

sub-count nodes:

ND, NN, NL = split N, cD, Pi, cN, Pi, cL, Pi , mD = mP = mL = 0 , cD, Pi + cN, Pi + cL, Pi = 1

where ND, NN, NL are the counts of the sub-count nodes, cD,Pi, cN,Pi, cL,Pi are the doubling, 

non-doubling and dying probabilities, and mD, mN and mL are the minimum number of cells 

in each sub-count node after the split.

Then, the doubling sub-count node doubles in number and is merged with the non-doubling 

sub-count node to give rise to the default count node of the next time window, which starts 

one doubling time dPi later than the current time window. The dying sub-count node is lost 

in the process. The double operation doubles the count, and the merge operation adds up the 

counts of sub-count nodes.

If undergoing process 2 (commit and proliferate), cells in the default count node are first 

split into one of the commitment modes and subsequently double or asymmetric double 
depending on which commitment mode they are assigned to in the QFM. The asymmetric 
double operation originates from a sub-count node and gives rise to two sub-count nodes 

of the same size but are of two different downstream states/types. Suppose cells (of some 

progenitor state Pi) are committing during a time window to two downstream fates Pj and 

Pk, then the count node in default mode gets split into three sub-count nodes of different 

commitment modes. There are three different commitment modes when commitment is a 

bifurcation: two symmetric commitment modes Pi-PjPj and Pi-PkPk (one each for the two 

downstream fates) and one asymmetric commitment mode Pi-PjPk . Cells in one of the two 

symmetric commitment modes each gives rise to two cells of the same downstream types. 

Cells in the asymmetric commitment mode each gives rise to two cells of two different 

downstream types. Let the probabilities of the two symmetric commitment modes be pPjPj, 

pPkPk and the probabilities of the asymmetric commitment mode be pPjPk. Specifically, 

during a time window when cells are in process 2 (commit and proliferate), when there are 

N cells in the default count node, the cells are split into the commitment sub-count nodes via 

the split operations:

NPjPj, NPkPk, NPjPk = split N, pPjPj, pPkPk, pPjPk , mjj, mjk, mkk = (4, 0, 4)

Where NPjPj, NPkPk, NPjPk are the counts of the sub-count nodes, pPjPj, pPkPk, pPjPk are 

the probabilities for the commitment modes, and mPjPj, mPjPk, mPkPk are the minimum 

number of cells in each sub-count node after the split. To ensure that there’s no progenitor 

population of very small size, we require that there be at least four cells in the symmetric 

modes in the main panel.

The commitment bias is defined as (2pPjPj + pPjPk, 2pPkPk + pPjPk), the two proportions sum 

to one and are interchangeable, we refer to one of the two sides as the commitment bias 

pPi of the Pi state, which is kept consistent throughout. In the main panel of experiments, 
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all probabilities of the asymmetric commitment modes are set to zero. Subsequently, cells 

of the symmetric commitment modes double and then merge with the daughter cells of the 

asymmetric commitment modes for each of the downstream states. For Pj, N′Pj = 2NPjPj + 

NPjPk, and for similarly for Pk, N′Pk = 2NPkPk + NPjPk.

Backpropagation to generate progenitor population sample sizes—To generate 

a phylogeny for a set of sampled cells based on the quantitative fate map, the number 

of sampled cells was generated at each (sub-)count node in the count graph (Figure S2, 

Step 2). This process draws, for each (sub-)count node in the count graph, an additional 

quantity called its sample size. A progenitor cell is sampled if any of its progeny at the 

sampling time is sampled. The total number of sampled cells is defined as its sample size. 

The process was accomplished by propagating backwards in the count graph. During the 

backward propagation, each forward operation is replaced with a corresponding backward 

reverse operation. The detailed implementation of each operation is given in the later 

section, and the operations are again indicated with bold text. The sample size for the 

terminal population is set to the sample size of the experiment. For fixed sampling, the 

size is the same for all the terminal types. For proportional sampling, the total sample 

size is distributed to each terminal type according to their abundance, which is done using 

the stochastic split operation. The stochastic split operation is the reverse operation of 

merge. Given the sample size of the merged population, the reverse operation draws the 

number of cells sampled in each mode based on a multivariate hypergeometric distribution. 

In addition, the reverse operation for split is merge, which adds up the sample size of 

count nodes of different modes to the sample size of a count node with the default mode. 

The reverse operation for double is stochastic coalesce: given the number of sampled 

cells in a doubled population, the operation draws the number of cells that are sampled in 

the pre-doubling population. The reverse operation for asymmetric double is stochastic 
asymmetric coalesce: given the number of cells sampled in each of the populations after 

asymmetric doubling, the operation draws the number of cells sampled in the population 

pre-asymmetric double. In summary, the backpropagation process generates the sample 

size for each (sub-) count node in the count graph given the sample size of the terminal 

populations.

Generating phylogeny of sampled cells—Given sample size of each count node 

derived in the previous section, we moved to generate the phylogeny for a group of sampled 

cells. Before the individual cells were generated and connected to construct a cell phylogeny, 

the count graph was first reorganized (Figure S2, Step 3a). At this step, we are only 

concerned with the sample sizes of the count nodes, not the population sizes. During the 

reorganization, the three sub-count nodes during process 1 (proliferate only) were replaced 

with two new sub-count nodes, and the three sub-count nodes during process 2 (commit 

and proliferate) were replaced with five new sub-count nodes. The reorganization is done 

based on if a sampled cell in the current sub-count node either gives rise to one or two 

cells in the next (sub-)count node. Note that the sample size(s) for the next count node(s) 

determines exactly how many cells in the current count node give rise to one and how 

many give rise to two cells. For example, when there are 5 sampled cells in the current 

count node of the doubling sub-count node and there are 8 cells in the doubled sub-count 
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node, then exactly 3 cells in the current count node give rise to two cells at the doubled 

sub-count node and 2 cells give rise to one. As another example, if the Pi-PjPk sub-count 

node have 5 cells sampled and the Pi doubled sub-count node has 3 cells sampled and the 

Pj doubled sub-count node has 4 cells sampled, then there are exactly 2 cells with both 

daughters sampled, 1 cell with one A daughter sampled and 2 cells with one B daughter 

sampled. We call progenitor cells with both daughters sampled ‘coalesced’, and progenitor 

cells with only one daughter sampled non-coalesced. Subsequently, the sub-count nodes are 

reorganized based on if cells are coalesced or non-coalesced as well as cells of which cell or 

state they give rise to.

For process 1, coalesced cells in the doubling sub-count node are organized into a new 

‘coalesced’ sub-count node (labeled C) and non-coalesced cells in the doubling sub-count 

node sampled are combined with cells in the non-doubling sub-count node and organized 

into a new non-coalesced (labeled NC) sub-count node. Cells in the death sub-count node 

are lost. The original doubled sub-count node is replaced with the coalescing (labeled CI) 

sub-count node (Figure S2, Step 3a, top example).

For process 2, coalesced cells in each of the three original sub-count nodes (Pi-PjPj, Pi-PkPk 
and Pi-PjPk) that give rise to two cells in the next count nodes are organized into their 

respective new sub-count nodes (labeled the same name). Two new sub-count nodes were 

added that represent cells that give rise to only one cell (of either of the downstream 

types) in the next count node, (labeled Pi-Pj and Pi-Pk). Non-coalescent cells in the Pi-PjPj 
sub-count node are merged with non-coalesced cells that give rise to only one Pj cell in the 

Pi-PjPk sub-count node. Similarly, non-coalesced cells in the Pi-PkPk sub-count node are 

merged with cells that give rise to only one Pk cell in the Pi-PjPk sub-count node.

The reorganized count graph (Figure S2, Step 4a, right) specifies the number of sampled 

cells at each stage but does not distinguish between individual cells. To generate the sampled 

cell phylogeny, we next listed individual cells and specified which cells give rise to one or 

two sampled cells at the next time point without specifying which cells at the next stage 

they were connected to (Figure S2, Step 3b). Next, cells in an earlier time window were 

connected to cells in the later time window to make up the phylogeny (Figure S2, Step 4a). 

Finally, the phylogeny was further simplified by removing internal nodes that give rise to 

one cell only (Figure S2, Step 4b).

Definition of commitment time and progenitor population size—In our model, 

the fate commitment modes are assigned at the beginning of the process 2 time (commit 

and proliferate) window, before cells proliferate to become the downstream states or types. 

In fact, the fate decision could have been made any time during the previous cell cycle. 

Hence, the exact commitment time could be chosen as either at the beginning of the previous 

time window or at the end of the window. Similarly, the progenitor state population size 

may be defined as the number of cells at either time point. As detailed in Figure S8B, 

it can be observed that, for symmetric commitments, the time of fate separation (where 

daughter cells are exclusively one of the downstream states) on the phylogeny is, at the 

latest, at the beginning of the cell cycle (t1). On the contrary, for commitment by asymmetric 

cell division, fate separation is at the end of the cell cycle (t2). Therefore, we define 
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the beginning of the window as the commitment time for progenitor states undergoing 

symmetric mode of commitment, and the end of the window as the asymmetric commitment 

time. The progenitor population sizes for symmetric and asymmetric commitment modes are 

defined as the number of cells N1 and N2 at the corresponding commitment times.

Definition of operations to generate count graph—The operations used in the count 

graph generation and backward propagation of sample sizes are formally defined here. Four 

deterministic operations are defined for generating the population counts in quantitative fate 

maps.

split: (N, (p1, p2, …, pI), (m1, m2, …, mI)) ↦ (N1, N2, …, NI)

The split operation splits some total count N into a vector of output counts N1, N2, …, NI 

based on the input probabilities p1, p2, …, pI and ensures the post-split counts: (i) add up 

to the total count, (ii) are larger than some minimum values m1, m2, …, mI and (iii) are all 

integers. First, let m be the smallest m such that pm ≥ pi, for i ∈ {1,2, …, I}. Then, the Ni = 

max([Npi], mi) for all i ≠ m, and Nm = N − ∑i≠m Ni, where [x] is the rounding operation that 

returns the integer that is closest to x.

merge: (N1, N2, …, NI) ↦ N

The merge operation takes a vector of input counts and them, i.e. N = ∑i Ni

double: N ↦ 2N

The double operation multiplies the input count by two.

asymm double: N ↦ (N, N)

The asymmetric double operation takes the input count and produces two input counts of 

the same size.

For each of the four forward operations, a reverse operation is defined for generating the 

sample sizes based on the population sizes.

stochastic split: (S, (N1, N2, …, NI)) ↦ (S1, S2, …, SI)

stochastic split is the reverse operation of merge. (S1, S2, …, SI) follows a multivariate 

hypergeometric distribution with the following probability mass function

p Si = ki ∣ Ni, S = ∏
i = 1

I Ni
ki

/
Σi Ni

 S

merge is the reverse operation of split.

stochastic coal: (S, N) ↦ S′
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stochastic coalesce is the reverse operation of double. When S cells are sampled from 

2N cells that are direct descendants of N cells, S′ is the number of cells sampled in N 
cells. Here, the number of coalescences C = S − S′, follows the distribution with the below 

probability mass function:

p(C = z ∣ S = k) = n
z

n − z
k − 2z 2(k − 2z) / 2n

k

After drawing C, S′ is computed with S′ = S − C.

stochastic asymm coal: ((S1, S2), N) ↦ S′

stochastic asymmetric coalesce is the reverse operation of asymmetric double. When N 
parent cells double, and each cell gives rise to two cells of two different downstream states/

types, and S1 out of N cells of type A and S2 of N cells of type B are sampled. Then the 

number of cells sampled in the parent population is S′. Here, the number of coalescences C 
= S1 + S2 − S′ follows the distribution with the below probability mass function:

p C = z ∣ S1 = k1, S2 = k2 = n
z

n − z
k1 − z

n − k1
k2 − z /

n
k1

n
k2

After drawing C, S′ is computed with S′ = S1 + S2 − C.

Fate map topology reconstruction with FASE—To determine if a node is a FAte 

SEparation (FASE), a list of unique terminal types is generated for all internal nodes of 

the phylogeny which constitutes its observed fate. A node is classified as a FASE (for at 

least one pair of terminal types) if either of its daughter nodes has an observed fate that is 

less potent. FASEs are identified across the entire phylogenetic tree. Next, for each FASE, 

all pairs of terminal types that the FASE separates are listed. A pair of terminal types is 

separated if one terminal type is seen in only one branch of the node and the other type 

only in the other. Then, for a pair of terminal types, the mean depth of the FASEs that 

separated the terminal fates were computed, referred to as the FASE time. If no FASE 

existed for a pair of terminal types, the FASE time was taken to be zero. Finally, the FASE 

distance between a pair of terminal types is equal to the difference between total time of the 

phylogenetic tree and their average FASE time. To reconstruct the topology from the full 

distance matrix, the upgma function from the “Phangorn” package54 was applied, which is a 

wrapper of hclust in base R.

Fate map topology reconstruction with SPS—Computation of shared progenitor 

scores was implemented as specified elsewhere6. The shared progenitor score or SPS was 

calculated between two terminal types as the number of internal nodes in the phylogeny 

that have both terminal types scaled by the number of total terminal types each internal 

node contributes to. The score was computed by going through all the internal nodes in the 

phylogeny. For each internal node, let T1, T2, …, TL be the list of terminal types it gives 

rise to, with L being the length of the list, then its contribution to all pairs of terminal types 

derived from the list is 1/(2L−1). For example, if an internal node is capable of {T1, T2, T3}, 
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and let SPS Ti, Tj  denote the shared progenitor score for the pair of terminal types Ti and Tj, 

then for we can compute the contribution of the internal node as 1/(23−1) = 1/4. Then

SPS T1, T2 + = (1/4)

SPS T1, T3 + = (1/4)

SPS T2, T3 + = (1/4)

After iterating over all internal nodes, a matrix of shared progenitor scores MSPS was 

generated. The SPS matrix was converted to a similarity matrix by 1 − MSPS/max(MSPS). 

Finally, UPGMA clustering was applied to the similarity matrix to obtain the fate map 

topology.

Random topology generation—For providing a baseline of topology reconstruction 

errors, we generated a random topology for each experiment compared in Figures 2F and 

5A using the same method as described in the fate map reconstruction section. Briefly, the 

‘rtree’ function in the ‘ape’ R package53 was used. This method creates bifurcations by 

randomly assigning terminal types to each side of the bifurcation based on draws from a 

uniform distribution.

Mapping of inferred progenitor states to true progenitor states—Upon initial 

reconstruction of fate map topology, the correspondence between the inferred progenitor 

states and the true progenitor states in the original fate map is not known. For downstream 

evaluations, true and inferred progenitor states were matched based on their potency and 

commitment patterns. An inferred progenitor state was considered correctly resolved if there 

existed a true progenitor state that met the following conditions:

i. the true progenitor state had the exact same potency as the inferred progenitor 

state.

ii. the immediate downstream states or types of the true progenitor state had the 

exact same potencies as the immediate downstream states/types of the inferred 

progenitor state.

Node state assignment in time-scaled phylogeny—One characteristic of a 

progenitor state is its potency: the set of terminal types it can lead to. Each node in the 

time-scaled phylogeny also had an observed potency determined by the set of states its 

progeny covers. The inferred progenitor state of a node of the phylogeny was assigned based 

on its potency: the node was assigned an inferred state that had the same potency as itself. 

If no such state existed in the fate map, then it was assigned the least potent state in the fate 

map that was more potent than the node but included all observed fates of the node in its 

potency.
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Commitment time inference with ICEs—To infer commitment time of a progenitor 

state, a set of Inferred Commitment Events (ICEs) were identified. A node in the time-scaled 

phylogeny was considered an ICE if both daughters had a different assigned state than itself. 

Unlike FASEs, which are defined for each pair of terminal fates, ICEs are defined with 

respect to inferred progenitor states. If a node is an ICE, it is also a FASE for at least some 

pair of terminal states, but the opposite is not necessarily true. Each ICE was associated with 

a progenitor state. The depths of all ICEs associated with a state defined the ICE times. The 

mean of ICE times was used as an estimate for the commitment time. In the case where 

inferred commitment times of the downstream state was earlier than that of the upstream 

state, the commitment time of the downstream state was set to that of the upstream state. 

This situation is indicative of the lack of evidence supporting the relative ordering the two 

commitments in question.

Progenitor population size and commitment bias inference—To identify the 

population present at the commitment time of a progenitor state, first, a set of extended 

states was defined for each inferred progenitor state. The extended states included the state 

itself, its upstream states up to root and its downstream states down to the terminal types. 

Next, a state path was constructed on fate map topology for each branch that spanned the 

commitment time of the progenitor state: the state path included all the inferred progenitor 

states in the fate map topology between the state of the incoming node (closer to the root 

of the phylogeny) and the state of the outgoing node (closer to tips of the phylogeny) of the 

branch (Figure 3G). A branch was considered associated with the progenitor state if its state 

path was a subset of the extended states of the progenitor state. To estimate the progenitor 

population size, the collection of incoming nodes of the associated branches were counted 

(Figure 3H).

To quantify the bias of a progenitor state’s commitment, each associated branch was further 

classified as (i) committing to one of the downstream states, or (ii) uncommitted. The 

classification was made based on the state path; if the state path covered one of the 

immediate downstream states, it was classified accordingly. Otherwise, it was classified 

as uncommitted. For commitment bias, the proportion of committed branches committing to 

each downstream state of the inferred progenitor state was used.

Barcoding mutagenesis model—Let there be i = 1,2, …, I total barcoding sites. A 

barcoding site is unmutated at the beginning (i.e., t = 0) and once activated, starts to 

accumulate heritable mutations over time. Mutation events happen independently for each 

site according to a Poisson point process with a constant rate after activation (Figure 4A). 

Let the mutation rate of the Poisson process be λi for site i, then the probability of having 

a mutation event in a small time window [t, t + Δt] is λΔt. In our model, once a site has 

mutated, it can no longer mutate further. A mutant allele is inherited from a cell by all its 

descendants. The Poisson point process has the memoryless property, which means that if no 

mutation event has happened up until time t, then the probability of getting a mutation event 

in the time window [t, t + d] is 1 − e−λd, which does not depend on the value of t.

When a mutation event occurs, an unmutated active copy of the site is converted into one of 

many possible mutated inactive alleles, each with a distinct emergence probability (Figure 
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4A). Let Ai1, Ai2, …, AiJi be the set of possible alleles for site i, and ai1, ai, 2, …, aiJi be their 

corresponding probabilities, then a mutant allele Xi of site i created by a mutation event 

has P(Xi = Aij) = aij. To summarize, the parameters of the barcode mutagenesis model 

include the mutation rates {λi}i=1, …, I, and each site’s mutant allele emergence probabilities 

ai1, …, aiJi, i = 1, …, I.

Parametrization of barcode mutagenesis model with MARC1 mouse data—
To simulate lineage barcodes that mimic a realistic system, the mutagenesis model was 

parametrized based on the MARC1 (Mouse for Actively Recording Cells 1) system5 

wherein extensive embryonic barcoding data are available30. In MARC1 mice, somatic 

mutations are induced in tens of independent homing guide RNA loci (hgRNAs)29. We 

estimated the mutation rates of MARC1 hgRNAs (i.e., rate of the Poisson process) using 

embryonic time course data (Figure S4A). We estimated emergence probabilities of mutant 

alleles for each hgRNA by adapting the inDelphi algorithm that predicts CRISPR-Cas9 

mutations31. The details of this estimation can be found in the Quantification and Statistical 

Analysis section. We compared and verified inDelphi’s predictions against published 

MARC1 data (Figure S4B). To test how well the results resembled actual lineage barcoding 

data, we simulated barcoding in whole-mouse embryos for E3.5 to E16.5 in samples of 

2,000 cells (or fewer when there were fewer than 2,000 cells in the organism) and compared 

the results to that of experiments. See Figures S4A–G and their legends for the results and 

their interpretation.

Parameters for simulating MARC1 lineage barcodes—Parameter estimates from 

the MARC1 data were used to simulate lineage barcodes from time-scaled phylogeny. 

The corresponding estimated mutation rates and inDelphi predicted allele emergence 

probabilities for each MARC1 hgRNA were used as parameters for the mutagenesis model. 

For reconstructing Phylotime phylogeny in Figure 5A,B, 50 hgRNAs of the ‘intermediate’ 

or ‘fast’ category were randomly sampled from the MARC1 pool of hgRNAs for each 

simulation.

Phylotime for reconstructing time-scaled phylogeny from lineage barcodes—
Our approach to reconstructing time-scaled phylogenetic trees for thousands of cells was 

based on a maximum likelihood estimation of pairwise temporal distances between cells. 

Given a pair of terminal cells, with their MRCA being N1, the branch length parameter tN1
was estimated, which is the time since the MRCA of the two cells (Figure S4H).

For a barcoding site i with a mutation rate of λi, and probabilities ai = a1, a2, …, aJi, i of 

mutating into alleles A1, A2, …, AJi, i, the likelihood of observing the given alleles MiC1 and 

MiC2 in a single barcoding site in two cells (c1, c2) is the sum of two terms:

pi = pi,  N1, 1 + pi,  N1, 0 pi, C1pi, C2 (Eq. 1)
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The first term, pi,  N1, 1, is the probability that a mutation has occurred before the MRCA, 

leading to identical alleles in both cells. The second term is the probability of observing 

the allele in each terminal cell respectively (pi, C1 and pi, C2) conditional on no mutation 

occurring before the MRCA (the probability of which is pi,  N1, 0).

For the first term, we first define the term pi, N1, Aij for each mutant allele Aij, where 

pi,  N1, Aij = 1 − e−λitN1 aij if both C1 and C2 carry allele Aij for the site, and pi,  N1, Aij = 0

otherwise. Then the first is calculated as:

pi,  N1, 1 = ∑
j = 1

Ji
pi,  N1, Aij

which is the sum over all probable mutations, where at most one term can be non-zero. For 

the second term, we have

pi,  N1, 0 = e−λitN1

and

pi, c = 1 − e−λi T − tN1
1 − Ind Mic = "0"

∏
j

aij
Ind Mic = Aij e−λi T − tN1

Ind Mic = "0"

where Mic denote the allele observed for c = C1, C2 and “0” denotes an unmutated allele, 

and Ind(.) is the indicator function.

Because barcoding sites in our model are assumed to be independent, the likelihood for 

the set of alleles observed in all barcoding sites is then the product of their individual 

likelihoods:

p λi, ai i, tN1 = ∏i pi (Eq. 2)

To get estimates of pairwise distance, or equivalently, time since MRCA between two cells 

(tN1), we first plugged in estimates of mutation rates and allele emergence probabilities. 

In the simulation experiments in this work, the true values of mutation rates and allele 

emergence probabilities were plugged in. In actual experiments, we suggest using naïve 

estimates for the mutation rate: λl = − 1
T log 1 − Fi , where Fi is the mutated fraction for site 

i and T is the total time from the start of the experiment to the sample collection. For mutant 

allele emergence probabilities, we suggest using estimates obtained from independent 

experiments or predictions such as inDelphi. If no such information is available, we suggest 
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using a uniform prior, i.e. aj = 1/Jj = 1, …, J. To get the optimal value of tN1, the following 

score equation was solved using the Newton-Raphson method:

dlog p tN1
dtN1

= 0 (Eq. 3)

The distance between the two cells is 2 T − tN1 . Once all pairwise distances were computed 

with the above method, we applied UPGMA hierarchical clustering to derive a phylogenetic 

tree wherein branch lengths represent actual time. We called this approach Phylotime.

Phylogenetic tree inference with Hamming distance and Cassiopeia—The 

Hamming distance between barcodes of two cells is defined as the number of sites for 

which the two cells do not share the same allele. To infer the phylogeny, UPGMA was 

applied to the pairwise Hamming distance matrix. For computing KC1 distance, the total 

length of the inferred tree is scaled to the sampling time. Phylogeny was also inferred 

with Cassiopeia, a phylogenetic reconstruction software package which was designed for 

barcode-based reconstruction35. Cassiopeia was run with default parameters with a single 

thread. The software uses a greedy top heuristic and an integer linear program bottom solver. 

We allowed Cassiopeia up to 24 hours to solve each tree. The Cassiopeia-reconstructed 

tree lacked branch lengths and also contained multifurcations that were not fully resolved. 

The multifurcations were resolved randomly using the ‘multi2di’ function from the ‘ape’ R 

package53, initial branch lengths were assigned to the tree using the Grafen option, and the 

‘chronos’ function was applied to estimate the final branch length.

Simulations of experimental readout errors—To assess how quantitative fate 

mapping may be affected by readout errors, two common modes of experimental error were 

considered. These errors include allele dropout, when a fraction of barcoding sites is not 

detected in every single cell. This form of error is common in experiments where barcoding 

sites are directly amplified from a single cell’s genome or transcriptome8. To simulate allele 

dropouts, alleles were set to missing completely at random (MCAR), meaning that missing 

happens with the same probability for all cells and all sites. We also considered allele 

switching, an error that occurs when an allele from one cell is assigned to another. This 

form of error can emerge if template switching takes place during barcoding amplification, 

a possible outcome for synthetic barcoding loci that have a high degree of homology30. 

To simulate allele switching, we considered a single barcoding site where there are N total 

cells. For the site, the number of cells with different alleles were first counted: N1, …, NJ 

cells each with a different unique allele, the counts were then normalized to proportions fj 

= Nj/N. Given the probability of allele switching pswitch the number of cells with error was 

calculated as Nerror = ceiling(Npswitch). To set the error alleles, the Nerror cells were first 

drawn, and alleles for those cells were set randomly by a multinomial distribution where 

the probabilities were the f1, f2, …, fJ computed earlier. The process was repeated for each 

barcoding site.
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In each case, we applied the error to 5, 10, 20, 30, 40, or 50% of the data from our panel 

of 3,310 simulated barcoding experiments then applied Phylotime followed by ICE-FASE to 

reconstruct quantitative fate maps. For allele dropout, we used a strategy to impute missing 

alleles before applying Phylotime. The strategy, detailed in the next section, predicts missing 

alleles for each barcoding site using a machine learning algorithm (XGBOOST)55 while 

leveraging information from all the other sites, and it does so sequentially from the site with 

the least amount of missing data to the site with the most.

Imputation of missing alleles with XGBoost—Given a character matrix that is the 

cell by site matrix where each element in the matrix is the allele observed, the missing 

percentages of all barcoding sites were computed first. Next, each site was imputed one by 

one going from the one missing in the fewest cells to the one missing in the most cells, using 

information from all other sites (Figure S8C).

Specifically, when imputing missing alleles of a single site, an ‘XGBoost’ model with 

multinomial ‘softmax’ objective was trained where all the cells whose alleles were observed 

for the site55 were used as the training examples, and all sites that is not the one to be 

imputed were used as training features, and treated as categorical variables, where each 

mutant allele is a category. The design matrix of the model was constructed by one-hot 

encoding each site, treating the missing in the other sites as unmutated, and subsequently 

column concatenating all one-hot matrices. The parameters ‘max_depth=4’ and ‘nrounds = 

20’ were used for the XGBoost model.

Simulation of experiments with different sampling time—A progenitor field may 

be studied by obtaining its descendant cell types immediately after its development or 

at a later time point. For instance, development of the primary germ layers (mesoderm, 

ectoderm, endoderm) during gastrulation may be analyzed by obtaining these cell types 

immediately after gastrulation (~E7 in mouse) or in late gestation (~E15) by obtaining 

neuronal cells as ectoderm descendants, muscle cells as mesoderm descendants, and 

hepatocytes as endoderm descendants. To investigate the effect of sampling time, we 

simulated phylogeny and barcoding with 50 hgRNAs for all our 16-terminal type fate maps 

while sampling 100 cells from each terminal type at days 11.5, 12.5, 13.5, 14.5, or 15.5 

days (Figure S5E), repeating each condition twice (53 fate maps × 2 sampling strategies 

× 2 repeats). We then applied Phylotime and ICE-FASE to obtain a quantitative fate map 

in each case and compared quantitative fate map reconstruction with terminal cell types 

sampled at various time points after the last commitment (Figures S5F–I). We also applied 

ICE-FASE to the true phylogeny for comparison (Figures S5J–M). For the results and 

detailed interpretation see Figures S5E–M and their legends.

Simulation of experiments with increased cell death—Because cell death is a 

prevalent developmental control mechanism36, we assessed how it affects quantitative fate 

mapping. In our fate maps with 16 terminal types, we set cell death per division to 

increasing levels for either all terminal types or all progenitor states with at least 500 cells at 

their times of commitment (Figure S5N). After simulating barcoding outcomes and applying 

Phylotime and ICE-FASE, we compared fate map reconstruction accuracy as a function of 
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cell death rates. For the results and detailed interpretations, see Figures S5N–S and their 

legends.

Simulation of experiments with commitment via symmetric vs asymmetric 
divisions—Next, we considered stereotyped cell fate commitment involving asymmetric 

cell divisions, analogous to those seen in fruit flies eye development37. Asymmetric cell 

divisions are also common at later stages of development in mammals56. To investigate 

the effect of this mechanism of commitment on quantitative fate mapping, we simulated 

barcoding experiments on a pectinate 16 terminal type fate map (Figure 1C, bottom 

left) with commitments happening with either asymmetric divisions or symmetric division 

exclusively. The pectinate fate map with 16 terminal types was modified slightly for the 

comparison of commitment via symmetric and asymmetric cell division. All progenitor state 

biases were set to 0.5. To obtain a fate map whose terminal types have similar population 

sizes, the doubling time for the terminal state that was the i-th to emerge was set to 0.6 − 

0.5/16i. Moreover, the cell death probabilities for the terminal population were set to 0.1 

and a cell doubling probability per doubling time (cTj,L for terminal type Tj) of 0.4 was 

instituted. For the asymmetric mode, one daughter cell commits to the downstream terminal 

type and the other commits to the downstream progenitor state after commitment (Figure 

S5T). For the symmetric mode, each cell randomly commits to one of the downstream 

fates based on predefined probabilities and subsequently undergoes symmetric divisions 

(similar to all previous simulations) (Figures 1 and S5T). In each case, we simulated 

one hundred experiments with 50 hgRNAs and 50 cells sampled from each terminal type 

(Figures S5U,V). We then applied Phylotime and ICE-FASE to obtain quantitative fate maps 

and compared the results between the two commitment modes. For the results and detailed 

interpretation, see Figures S5T–Z and their legends.

ICE-FASE for multiple replicates—First, the FASE distance matrix was computed for 

each phylogeny separately. The distance matrices were then averaged, and a consensus 

topology was obtained by applying UPGMA clustering to the average FASE distance matrix. 

The set of inferred progenitor states were defined based on the consensus topology. For each 

replicate’s phylogeny, each of its nodes were assigned one of the progenitor states based 

on their potencies, based on which ICEs were identified. Next, ICEs identified from all 

replicates were pooled, and their average time was taken to be the consensus commitment 

time. Finally, edges associated with each inferred progenitor state were identified in each 

replicate’s phylogeny based on its consensus commitment time. The resulting population 

sizes of the progenitor states, and population sizes committing to each downstream states 

or types were averaged. The average population size was taken as the consensus population 

size and the proportion of average population size committing to each downstream state was 

taken as the consensus commitment bias.

Simulation of experiments with prolonged commitment—Commitment events 

modeled thus far involve all the progenitor population committing within one cell cycle. 

Because some progenitor states undergo gradual commitment during development, we 

expanded our models to allow progenitor states to commit over more extended time periods. 

We then created three fate maps with 16 terminal types that are identical in topology and 
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other parameters, except that P11 commits to its downstream states (P1 and P9) between day 

5.8 and 6.3 in the first map, between day 5.8 and 6.9 in the second map, and between 5.8 

and 7.5 days in the third map (Figure S6A). The details of the modifications are given in the 

next section. We simulated phylogenies based on these fate maps with fixed sampling of 100 

cells from each terminal type and repeated simulations one hundred times for each. After 

applying Phylotime followed by the ICE-FASE algorithm, we compared the accuracy of 

quantitative fate map reconstruction in each case. For the results and detailed interpretations, 

see Figures S6B–E and their legends.

Modified fate map with prolonged commitment—To illustrate the effect of 

progenitor cells committing over longer times, we modified an existing fate map with 16 

terminal types from our panel. In the original fate map, the progenitor state P11 commits 

within a single cell cycle from 5.8 and 6.3 days. In a first modified version, the commitment 

happens within two cell cycles from 5.8 and 6.9 days. A random ⅓ of all the P11 population 

commits at the original time whereas the remaining population self-renews by going through 

an extra round of cell division. After the extra round of self-renewal, they commit to the 

downstream cell states of P9 and P1 according to the P11 commitment bias. Finally, in a 

second modified version, commitment happens over three cell cycles from 5.8 and 7.5 days. 

A random third of all the progenitor population again commit at the original commitment 

time. After one extra round of self-renewal, half of the remaining uncommitted population 

commit while the other half self-renew for yet another round, after which they also commit. 

To accommodate commitments happening over more than one cell cycle, the definition of 

commitment time and progenitor population size were modified accordingly. The progenitor 

population size was defined as the sum of the population size committing to downstream 

states during each cell cycle. The commitment time was defined as the start of the cell 

cycle during which commitment has happened weighted by the number of cells that have 

committed during the cell cycle. The ICE-FASE estimates of P11 for each fate map were 

compared to the respective definition of commitment time and progenitor population size.

Simulation of experiments with multifurcating fate commitments—Commitment 

events modeled thus far involved bifurcating progenitor states. However, some progenitor 

states in development may simultaneously commit to more than two immediate downstream 

states (e.g., trifurcate). To investigate this, our generative model was extended to simulate 

n-furcations in general. The details of the model extension are given in the next section. 

Next, we assessed whether the ICE-FASE algorithm can resolve trifurcations. First, a 

trifurcation in a 16 terminal type fate map was introduced by removing the progenitor state 

P8 from the fate map and making its downstream states (P5 and P6) directly emerge from 

the commitment event of its upstream state P11 (Figure S6F). We refer to this trifurcating 

progenitor state as P11*, compared to the original bifurcating P11 as they have identical 

potencies, commitment times, and population sizes. We then simulated phylogenies and 

barcoding with 50 hgRNAs based on both the original bifurcating and the new trifurcating 

fate maps with fixed sampling of 100 cells from each terminal type and repeated each 

simulation one hundred times. Finally, we applied Phylotime followed by the ICE-FASE 

algorithm to reconstruct a quantitative fate map based on each simulated experiment. For the 

results and detailed interpretation see Figures S6G–L and their legends.
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Count graph for simulating progenitor state multifurcation—When the fate map 

involved a multifurcation, the model to generate cell phylogeny was extended. Only 

multifurcation via symmetric cell division was considered, where only minor adjustment 

to the methods described earlier needed to be made. Take a trifurcation of progenitor state 

Pi into Pj, Pk and Pl as an example. All computations with regard to process 1 (proliferate 

process) remained the same. During process 2 (commit and proliferate process) in the 

count graph generation step, the default count node was split into three sub-count nodes 

of commitment modes Pi-PjPj, Pi-PkPk and Pi-PlPl. The sample size generation step was 

carried out as usual. In the reorganization step, six different new sub-count nodes were 

created to replace the original three, including Pi-PjPj, Pi-PkPk, Pi-PlPl, Pi-Pj, Pi-Pk and 

Pi-Pl. During reorganization, non-coalesced cells in Pi-PjPj, Pi-PkPk, Pi-PlPl are moved to 

their respective non-coalesced sub-count nodes. The remaining steps were carried out as 

usual.

Generation of an inducible Cas9 barcoded stem cell line

Knock-in of an Inducible Cas9 Cassette:  EP1 iPSCs were modified to express Cas9 

protein under doxycycline induction. CRISPR/Cas9 was used to target and insert both a 

reverse tetracycline-controlled transactivator (rtTA) construct and a tetracycline-dependent 

Cas9 construct into each of the two copies of the AAVS1 safe harbor locus. To stably 

introduce the cassette, cells were grown to 80% confluency and then dissociated with 

Accutase for 13 minutes to generate a single cell suspension. Dissociated cells were 

resuspended in mTeSR Plus media with 5 μM blebbistatin and counted- 50,000 cells 

were seeded into one well of a 24-well plate coated in Matrigel. The following day, 350 

ng of plasmid expressing Cas9 and an AAVS1-targeted guide RNA (modified PX459, 

with T2A replaced by P2A) and 500 ng each of plasmids containing the Cas9 donor 

sequence (modified Addgene #58409 with blasticidin resistance)47 and rtTA donor sequence 

(Addgene #60843)50 were combined and added to 48 ul Opti-MEM (ThermoFisher). 2 ul 

of Lipofectamine Stem Transfection Reagent (ThermoFisher) were added to the transfection 

mix, which was then vortexed and incubated for ten minutes at room temperature. The entire 

transfection mix was added to one well of cells. Media was replaced the following day. 

40 hours after transfection, cells were transiently selected for 24 hours with 0.95 ug/mL 

puromycin (MilliporeSigma), 5 ug/mL blasticidin (MilliporeSigma), and 200 ug/mL G418 

sulfate (ThermoFisher).

Surviving cells were cultured to 30% confluency, and then dissociated to a single cell 

suspension for clonal expansion. 500–1000 cells were seeded in one well of a 6-well plate 

and cultured for 7–10 days before clonal colonies were picked and screened for the intended 

insertions. PCR was performed with a reverse primer complementary to the right homology 

arm of the targeted AAVS1 locus (GGAACGGGGCTCAGTCTGA) and a forward primer 

either targeting the Cas9 knockin (CACCTTGTACTCGTCGGTGA) or the rTTA constructs 

knockin (GCTGATTATGATCCTGCAAGC). Positive colonies were cultured and clonally 

expanded once more, with a second round of colony picking and PCR screening to ensure 

clonality of the final cell line.
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Selected clones were then further screened for functionality of the inducible Cas9 

cassette. Cells were treated with 2 ug/mL doxycycline (MilliporeSigma) for 5 days 

and cells were harvested for RNA extraction. RNA was converted into cDNA and 

qPCR was performed to confirm both Cas9 and rtTA mRNA expression when 

normalized against housekeeping genes GAPDH, CREBBP, and ACTB (Cas9 Fwd: 

CCGAAGAGGTCGTGAAGAAG; Cas9 Rev: GCCTTATCCAGTTCGCTCAG; rtTA Fwd: 

GCTAAAGTGCATCTCGGCAC; rtTA Rev: TGTTCCTCCAATACGCAGCC; GAPDH 
Fwd: TAGCCAAATTCGTTGTCATACC; GAPDH Rev: CTGACTTCAACAGCGACACC; 

CREBBP Fwd: GAGAGCAAGCAAACGGAGAG; CREBBP Rev: 

AAGGGAGGCAAACAGGACA; ACTB Fwd: GCGAGAAGATGACCCAGATC; ACTB 
Rev: CCAGTGGTACGGCCAGAGG).

Transfection with a homing guide RNA library:  50,000 cells from the doxycycline-

inducible Cas9 line were seeded into one well of a 24-well plate. The following day, 

300 ng of Super PiggyBac Transposase (SBI System Biosciences), 700 ng of PB-U6insert 

hgRNA library (Addgene #104536)5, and 50 ng of PB-U6insert-EF1puro library (Addgene 

#104537)5 were combined and added to 48 ul Opti-MEM (Gibco). 2 ul of Lipofectamine 

Stem Transfection Reagent (Thermo Fisher) were added to the transfection mix, which was 

then vortexed and incubated for ten minutes at room temperature. The entire transfection 

mix was added to one well of cells. Media was replaced the following day. Transfected cells 

were selected with 0.95 ug/mL puromycin for one week.

Selected cells were dissociated to single cell suspensions, and 500–1000 cells were 

seeded in one well of a 6-well plate and cultured for 7–10 days before clonal colonies 

were picked. Colonies were screened for relatively high numbers of hgRNA insertions 

using qPCR. Genomic DNA was extracted from each colony and the relative number of 

hgRNA insertions was measured by subtracting Cq values of genomic hgRNA amplification 

(Fwd: ATGGACTATCATATGCTTACCGT; Rev: TTCAAGTTGATAACGGACTAGC) from 

Cq values of genomic SOX11 amplification (Fwd: TGATGTTCGACCTGAGCTTG; 

Rev: TAGTCGGGGAACTCGAAGTG). Colonies with the largest cycle threshold value 

difference, indicating the highest number of hgRNA insertions, were cultured and clonally 

expanded once more. Colonies were picked one additional time to ensure clonality of the 

final EP1-Cas9-hgRNA iPS cell line.

Barcoding activity of cell line-integrated hgRNAs:  Cell line hgRNA identifiers 

and mutation activity levels were determined by performing a doxycycline time-

course experiment- cells were treated with 1 ug/mL doxycycline daily for 11 

days. Genomic DNA was extracted from cells after 0, 4, 8 and 11 days of 

doxycycline treatment and Cas9 induction. hgRNA sequencing libraries were prepared 

as follows: 5 ng of genomic DNA was amplified on a real-time PCR machine in 

1X KAPA SYBR FAST (Roche) with 0.0625 uM hgRNA PCR1 forward primer 

(ACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGACTATCATATGCTTACCGT), 

0.1875 uM hgRNA PCR1 truncated forward primer 

(CTACACTCTTTCCCTACACGAC), 0.0625 uM hgRNA PCR1 reverse primer 

(TGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCATACCAATGGGCCCGAA), 

Fang et al. Page 35

Cell. Author manuscript; available in PMC 2023 November 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and 0.1875 uM hgRNA PCR1 truncated reverse primer (GTGACTGGAGTTCAGACGTG). 

Reactions were denatured at 95°C for three minutes, and then cycled at 95°C for 20 seconds, 

64°C for 20 seconds, and 72°C for ten seconds. The reactions were stopped when the 

real-time PCR curve reached early-to-mid-exponential phase. Reactions were then diluted 

10–100 fold. 1 ul of diluted PCR was used as template for a subsequent PCR reaction 

in 1X KAPA HiFi HotStart ReadyMix (Roche) with 1X SYBR Green I Nucleic Acid 

Stain (ThermoFisher) and 0.25 uM each dual indexing primer pair for Illumina. Reactions 

were denatured at 98°C for thirty seconds, and then cycled at 98°C for 10 seconds, 64°C 

for 20 seconds, and 72°C for ten seconds. Reactions were stopped when the real-time 

PCR curve reached early-to-mid-exponential phase. Libraries were purified with DNA 

Clean & Concentrator-5 columns (Zymo), sequenced on an Illumina MiSeq instrument, 

and analyzed. hgRNA sequencing reads were analyzed using the published MARC1 data 

analysis pipeline30. The percent of reads for each hgRNA identifier sequence that were 

mutated was calculated at each time point (Figure S4), determining the relative activity for 

every hgRNA.

In vitro quantitative fate map experiments—Single cells from the EP1-Cas9-hgRNA 

iPSC cell line were FACS sorted into a 96-well plate coated with Matrigel and 

containing mTeSR plus medium supplemented with 5 μM blebbistatin, 10% CloneR 

(STEMCELL Technologies), 1 μM Pifithrin-α hydrobromide (Tocris Bioscience), 1X 

Antibiotic-Antimycotic (ThermoFisher), and 0.2 ug/uL doxycycline. Supplemented media 

was exchanged every other day. Three days after sorting, wells with surviving cells were 

identified and assigned to follow the quantitative fate map for either experiment one (E1) or 

experiment two (E2).

For E1, cells were grown in the sorted wells until there were approximately 32 cells, or 

6 doublings, which was considered to be P5 of the QFM. P5 cells were then carefully 

dissociated and passaged- media was aspirated from wells and 30 ul of Accutase was added 

and incubated at 37°C for 8 minutes. The Accutase was then gently triturated to detach all 

cells from the plate, and 10 ul was directly added to a new well filled with supplemented 

media, corresponding to P3 of the QFM. The remaining 20 ul was directly added to a new 

well corresponding to P4, resulting in a 1:2 split of the cells. Passaged cells were incubated 

for 2 hours to allow cells to settle and attach to the Matrigel coating, after which a 50% 

media exchange was performed to decrease the total amount of Accutase remaining in the 

wells. Once the cells in P4 had gone through approximately two doublings, they were passed 

following the same protocol, this time splitting the cells evenly between progenitor states 

P1 and P2. After P3’s cells had gone through approximately 4 doublings since their passage 

they were split once again, evenly into terminal types T5 and T6. P2 cells were given four 

doublings before being split evenly into terminal types T3 and T4, and finally P1 was split 

evenly after five doublings into terminal types T1 and T2.

For E2, cells were propagated using the same techniques as E1, but following a slightly 

altered QFM. P3 cells were split into terminal types T5 and T6 after just two doublings, 

and P4 cells were split into P1 and P2 after four doublings, representing a switch in the 

order of commitment P3 and P4 commitment times between the E1 and E2 fate maps. 

After cells were passaged into their terminal wells, doxycycline treatment was ended so that 
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barcode editing would discontinue. Cells were then passaged into 6-well plates and grown to 

confluency for terminal cell barcode extraction and analysis.

Sequencing single-cell lineage barcodes—Each terminal well from E1 and E2 were 

dissociated into single cell suspensions by incubating the cells in accutase for 14 minutes. 

Single cells were resuspended and diluted in PBS pH 7.4 for FACs sorting. Single cells 

from each terminal group were sorted into 192 wells of a 384-well plate (half a plate per 

terminal group), with each well containing 1 ul of QuickExtract DNA Extraction Buffer 

(Lucigen). Plates were vortexed and spun down directly after sorting to ensure cells were in 

the QuickExtract buffer. DNA was extracted from single cells by incubating the sorted plates 

for 10 minutes at 65°C followed by 5 minutes at 98°C to inactivate the QuickExtract.

Single-cell hgRNA sequencing libraries were generated using three serial PCR reactions 

as per the published protocol from Leeper et al.30, with each cell treated as an individual 

sample. Each well of single-cell DNA received 9 ul of PCR0 mix containing 1X DreamTaq 

Hot Start PCR Master Mix (ThermoFisher) and 0.5 uM each hgRNA pre-amplification 

forward and reverse primers (Fwd: AAGTAATAATTTCTTGGGTAGTTTGCAG; Rev: 

GAAAAAGCCATACCAATGGGC). Reactions were denatured at 95°C for three minutes, 

cycled five times for 95°C for 20 seconds, 55°C for 30 seconds, and 72°C for one minute, 

and then cycled 20 times for 95°C for 20 seconds, 60°C for 30 seconds, and 72°C for 30 

seconds.

One microliter of each cell’s PCR0 reaction was used as template for the proceeding 

PCR1 reaction. Reactions for PCR1 and 2 were carried out as described above in the 

section “Determining profiles for integrated hgRNAs”, with each single cell continuing 

to be amplified and indexed as an individual sample. After PCR2, the reactions for each 

terminal cell type were normalized and purified together to create one combined sequencing 

library per terminal group. Libraries were quantified using the Qubit dsDNA HS Assay Kit 

(ThermoFisher) sequenced on a MiSeq System using Miseq Reagent Micro Kits (Illumina).

Determining actual progenitor population size from in vitro experiments—For 

each experiment, brightfield images were taken of P5, P4, and P3 wells just before passaging 

(Figure S6). To estimate the cell numbers at each progenitor state, images were analyzed in 

ImageJ. Outlines were drawn around 5 different cells within a colony and their average area 

was measured. All colonies within a well were then outlined and the total combined area of 

the colonies was measured and divided by the average cell area of a cell to estimate the total 

number of cells present in each well.

Processing of in vitro experimental data—Identifier and spacer sequence pairs 

were extracted for each sample using the initial step (BLAST search) detailed in the 

published pipeline30. For cells that were sequenced more than once, pair counts for unique 

“identifier+spacer” were first merged for each cell. The merged data were then provided as 

input to the remainder of the pipelines for sequencing error correction and filtering.

A total of 32 hgRNAs were identified from the filtered results, each observed in more 

than 921 cells. Sequencing errors among identifier sequences were first corrected. For each 
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identifier sequence that was not one of the 32 hgRNAs observed in the unmutated sample, 

if the identifier sequence was within a hamming distance of 1 to any true identifiers, its 

spacer counts were merged with that of the known hgRNA’s. After the correction, no other 

identifiers other than the 32 known hgRNAs were observed in more than 3 cells.

Spacer sequencing errors were corrected next. First, the error reads within each cell and 

hgRNA combination were corrected. In one of our sequencing runs, one cycle of sequencing 

returned ‘N’ for all spacer sequences. These errors were computationally corrected: if there 

existed another spacer sequence for the same identifier and cell that was exactly the same 

except for the ‘N’ base pair, the count of the error spacer with the ‘N’ base was merged with 

the other spacer. Next, the spacer sequencing errors across different cells were corrected. 

Again, the error involving ‘N’ base pairs were further corrected across the cells using the 

same criteria as the within cell correction.

Each allele was labeled as unmutated or mutated by comparing the spacer sequences 

to that of the reference sequencing result, that is, if a spacer sequence was 

observed in the parent for the same identifier, it was labeled as unmutated. One 

identifier “GCCAAAAGCT” did not amplify in the parent data, and the sequence 

“GAAACACCGGTGGTCGCCGTGGAGAGTGGTGGGGTTAGAGCTAGAAATAG” was 

identified as the unmutated spacer based on alignments of its different observed alleles.

Noisy reads were further filtered for cell+hgRNA combinations that had more than one 

spacer observed. If the most abundant spacer was at least four times more abundant than 

all the other spacer reads observed, only the most abundant spacer was kept. All the spacer 

counts with fewer than five total reads were also excluded.

After processing, 1197 cell+hgRNA combinations out of the total 54,012 (2.2%) still had 

more than one spacer observed. If more than two spacers were observed for more than two 

hgRNAs in a single cell, the cell was likely a doublet. 33 such cells were identified and 

filtered. Each cell had a median 25 out of 32 hgRNAs detected. Each hgRNA was detected 

in a median of 83% of all cells (Figure S7D). Before reconstruction, non-informative cells 

and hgRNAs were filtered out. Any hgRNA with a diversity of one, that is, all cells in which 

an hgRNA was observed had the same allele, was considered non-informative and was 

excluded. An allele was considered informative if it was mutated and observed in more than 

one cell in each group, and cells with less than three informative alleles were filtered out. 

In all, 970 out of 1051 cells for 31 hgRNAs passed the filters for E1 and 943 out of 1032 

cells for 29 hgRNAs passed filters for E2. For Phylotime reconstruction, naïve estimates for 

mutation rate and uniform prior for mutant allele emergence probabilities were used.

Simulation and ground truth fate map of in vitro experiment—To conduct 

simulations that best resembled the in vitro experiment, the effective cell division rates 

during the experiment were first determined. First, the division rate of P5 was chosen so 

that the population size at the first split is the most consistent with what was observed. 

Next, we assumed that cells were split in proportion to the volume of the suspension as P5 

was split into P3 and P4. The division rate of P3 and P4 were set so that their respective 

population sizes at the split agreed with what was observed. The division rate for P1, P2 and 
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all the terminal cells were set to once every 20 hours. The exact division rate chosen and 

the population size at each stage are detailed in Figure S7B. Notice that the commitment 

happens one cell division prior to the well split, so the ground truth commitment time is 

one cell division earlier than the spit time, and the progenitor field size is half of what was 

observed in the well at the split.

To simulate hgRNA barcodes from ground truth fate map, mutation rates were estimated 

from the time course data of bulk mutated fractions from the iPSC line. For mutant allele 

emergence probabilities, predictions from inDelphi were used.

QUANTIFICATION AND STATISTICAL ANALYSIS

Estimation of mutagenesis parameters in MARC1 mice—To get posterior estimates 

of mutation rates of MARC1 hgRNAs (i.e., λ, rate of the Poisson process), a grid search 

was conducted to match empirical distributions of mutated fractions among simulated 

and observed data across several embryonic time points. Previously reported hgRNAs 

formed three classes: the ‘slow’ class generated mutations on the order of 0.001 mutations/

day, ‘intermediate’ class generated ~0.1 mutations/days, and fast class generated ~1.0 

mutations/day during early mouse development. The ‘slow’ and ‘fast’ estimates expectedly 

had large uncertainties as most observed fractions are close to 0 or 100 percent mutated. 

Alternatively, a naïve estimate of mutation rate can also be used. If mutated fractions Fi were 

observed at time Ti in animal i for i = 1, …, N, then λ = 1
N ∑i = 1

N − 1
Ti

log 1 − Fi  is a naïve 

estimate.

For mutant alleles of a barcoding site, estimating the probabilities of individual repair 

outcomes created by Cas9 DNA break-repair (mutant emergence probabilities) was 

challenging. Normally, the fraction of cells carrying a particular mutant allele among all 

cells with a mutated allele (within-animal estimates) is a good estimator of the allele 

emergence probabilities. However, when cells divide and mutate starting from a small 

field size, these fractions are largely affected by the time of the mutagenesis events, as 

early events result in larger clones carrying the same exact mutation. On the other hand, 

when hgRNA genotypes are observed for multiple animals, the fraction of animals that 

carry a particular genotype, once normalized, and when the probability is small, can be 

good estimates to the mutation probabilities (across-animal estimates) (Figures S4B,C). In 

this case, the estimation accuracy depends on the number of animals analyzed. From the 

MARC1 time course data, the within-animal estimates were calculated for each animal 

and averaged, and the across-animal estimates were calculated based on 173 embryos 

from 2 mouse lines. To get a more complete profile of possible mutant alleles and their 

occurrence probabilities for each hgRNA, we adapted the inDelphi machine learning 

algorithm to predict CRISPR-Cas9 mutation results31 for hgRNAs. We observed that the 

inDelphi-predicted probabilities agreed well with the across-animal estimates from MARC1, 

but poorly with within-animal estimates (Figure S4B). Further, the fact that the majority 

of the low probability mutations were not observed in any mouse suggests that the limited 

number of hgRNA mutation events during mouse development does not sufficiently cover 

a large portion of the mutational profiles. These conclusions were further validated by 

simulating multiple animal lineage barcode data based on inDelphi-predicted mutational 
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profiles and comparing the within- and across-animal estimates from the simulated data of 

the true parameters (Figure S4C).

InDelphi predictions of hgRNA allele emergence probabilities—The emergence 

probabilities of hgRNA mutant alleles were computed by inDelphi. inDelphi is a machine 

learning algorithm to predict heterogeneous insertions and deletions resulting from CRISPR/

Cas9 double-strand break31. In this study, inDelphi model trained with the mouse embryonic 

stem cell mutation dataset was used to predict the probabilities of hgRNA mutants from 

MARC1 mice. The original 64 hgRNA sequences in MARC1 mice were used as inputs. 

Since Cas9 nuclease cuts 3 bp upstream of the Protospacer Adjacent Motif (PAM, NGG 

sequence)1, the possible mutations from the cut site at −3 bp from the PAM sequence were 

computed. To take into account the repeated targeting of hgRNAs, inDelphi is first applied 

to predict a set of first-round mutations. Subsequently, the resulting first-round mutations 

were used as inputs to the next round of inDelphi predictions. Notably, only mutant 

sequences with >16 bp protospacer and PAM were subject to the second-round analysis 

as gRNA without >16 bp spacer sequence loses its activity57. Here, the probabilities of the 

next generation mutants were computed by multiplying the probabilities of the mutant in the 

current round by the probabilities of the mutant in the previous round. Repetitive application 

of inDelphi produces exponentially growing numbers of potential mutant alleles. Therefore, 

the analysis was limited to three cycles, resulting in first to third generations of mutants. 

The same mutation can be created in multiple rounds, in such cases, the probabilities from 

multiple rounds were summed. Finally, probabilities of all mutant alleles were normalized to 

have a sum of one. The inDelphi predictions for hgRNAs are provided on Zenodo (see Key 

Resources Table).

Assessing accuracy of progenitor state parameter estimates with RMSE—As a 

measurement of accuracy for the progenitor state parameter estimation, that is commitment 

time, progenitor population size and commitment bias, the root mean square error (RMSE) 

was used to quantify the amount of error in parameter estimation. The root mean square 

error is defined as

RMSE = 1
I ∑i

I xl − xi
2

where the i index is over the number of progenitor states in the reconstructed fate map, xi 

is the true parameter and xl is its estimate. For progenitor population size, RMSE was 

computed for the log2 transformed population sizes. In cases where the reconstructed 

topology is used to assess parameter estimation accuracies, only the inferred progenitor 

states that could be correctly mapped to the truth were included. In cases where the true 

topology was used to assess parameter estimation accuracies, the RMSE is over all the 

progenitor states. Note that combining all progenitor states irrespective of sampling fraction 

inflates the RMSE values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Cumulative lineage barcodes record developmental dynamics

• Phylotime infers time-scaled cell phylogenies from lineage barcodes

• ICE-FASE reconstructs progenitor hierarchy and dynamics from time-scaled 

phylogenies

• Progenitor State Coverage (PScov) measures the robustness of fate map 

inferences
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Figure 1. Simulating time-scaled phylogenetic trees of sampled cells based on a panel of 
quantitative fate maps.
(A) Topology of a quantitative fate map. Arrows represent cell states, colored rectangles 

represent their commitment events. Triangles represent terminal types at the time of 

sampling.

(B) Quantitative fate map in A annotated with commitment time, population size, and 

commitment bias of its progenitor states. Pie charts show sampling fraction under fixed 

sampling at progenitor state commitment time or terminal type sampling; numbers on pies 

show corresponding true population sizes. The bottom two rows show the number of cells 

sampled from each terminal type under fixed and proportional sampling.

(C) The panel of 331 quantitative fate maps. The maps are in three sizes of 16, 32, and 64 

terminal cell types. Three examples of each size are shown, including the most balanced 

(top) and the most unbalanced (bottom).
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(D) Example time-scaled phylogeny of sampled cells generated by fixed sampling of 100 

cells from each terminal type in the fate map shown in A. Node colors based on A.

See also Figures S1 and S2.
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Figure 2. Reconstructing fate map topology from time-scaled phylogeny of sampled cells.
(A) Example phylogenetic subtree. Each internal node is labeled with its observed fate. 

T4–T5 FASEs are colored orange.

(B) Phylogeny from Figure 1D showing T4–T5 (orange) and T15–T16 (blue) FASEs. T4, 

T5, T15, and T16 are colored according to the key on the bottom.

(C) Boxplots showing the temporal distribution of T4–T5 and T15–T16 FASEs in the tree in 

B.

(D) Heatmap showing the FASE distance matrix for all pairs of terminal types in the tree in 

B. Dendrogram shows hierarchical clustering result.

(E) The fate map topology reconstructed by clustering the FASE distance matrix in D. 

Triangles: observed terminal types; diamonds: inferred progenitor states (iPs).

(F) Scatter plots showing error of fate map topology reconstruction (KC0) using FASE 

algorithm (red) or SPS (blue) as a function of imbalance for all 3,310 simulated phylogenies 

faceted by fate map size (columns) and sampling strategy (rows). The gray points are 

based on random topology reconstructions. Solid trend lines are locally weighted smoothing 

(LOESS).

See also Figure S3.
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Figure 3. Obtaining progenitor state commitment times, population sizes, and commitment 
biases from time-scaled phylogeny of sampled cells.
(A) Phylogeny in Figure 2B with internal nodes colored according to their inferred 

progenitor state. Color key in Figure 2E.

(B) A subtree from A where each internal node is labeled by its inferred progenitor state or 

terminal type. Asterisks signify ICE nodes.

(C) The tree in A with nodes inferred as iP5 (orange) and iP8 (pink) labeled. Darker shades 

mark the nodes that are also ICEs.

(D) Boxplots showing the distribution of ICE times for all inferred progenitor states in the 

tree in A, representing their commitment times. The ICE times for iP5 and iP8 are boxed in 

red.

(E) Scatterplots showing the correlation between true commitment time of each progenitor 

state to the value estimated from the phylogenetic tree across all 3,310 simulated 

phylogenies broken down by sampling strategy. Dot colors represent progenitor states’ 
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sampling fractions based on the key on the right. Blue line and value respectively show 

trendlines (LOESS) and Spearman’s ρ for progenitors with sampling fraction >= 25%. 

Those for progenitor states with sampling fraction < 25% are shown in red. Spearman’s ρ 
for all progenitor states is shown in black. Black lines are y=x.

(F) Scatter plot showing the error of inferred commitment time for progenitor states as a 

function of their sampling fraction (top) aligned to a histogram of sampling fraction for all 

progenitor states in the panel (bottom). Error is the absolute value of the difference between 

estimated and true commitment times. The vertical dashed line shows sampling fraction 

cutoff of 0.25. Trendline (LOESS) is in blue.

(G) The edges and the nodes relevant to population size and commitment bias of iP5 and 

iP8 are shown on the tree from A (left) aligned to the corresponding reconstructed fate map 

(right). Horizontal lines mark iP5 and iP8 commitment times. Edges in the phylogeny are 

classified and colored based on the commitment they represent, and nodes based on their 

inferred progenitor state or terminal type, with the fate map serving as the color key. Circular 

arrows on the fate map indicate divisions without commitment (self-renewal).

(H) Tally of edges and pre- and post-commitment nodes associated with iP5 (left) and iP8 
(right) from the phylogeny in G, a part of which is magnified for added clarity. The number 

next to each edge indicates how many times the combination of incoming and outgoing 

progenitor state or terminal type was observed. Gray boxes on top indicate the nodes that 

were counted towards progenitor state population size, gray boxes on the bottom indicate 

post-commitment nodes counted for commitment bias. The number next to each gray box 

indicates the total count of nodes in that box. Arrows from G inset show in parenthesis 

counts being added to relevant tallies from the inset. Color key same as G.

(I) Barplots showing the estimated population size of each inferred progenitor state in A. 

Red boxes mark iP5 and iP8 estimates from H.

(J) Stacked barplots showing the estimated post-commitment population size of each 

inferred progenitor state in A, stacked and colored according to the downstream state they 

lead to. Red boxes mark estimates relevant to iP5 and iP8, colored according to Figure 2E.

(K,L) Scatter plots showing the correlation between true and estimated population size 

(K) and commitment bias (L) of inferred progenitor states in fixed (left) and proportional 

sampling (right) across all 3,310 simulated phylogenies. Other plot features identical to 

panel E.
See also Figure S3.
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Figure 4. Modeling barcoding mutagenesis and inferring time-scaled phylogenies from lineage 
barcodes using Phylotime.
(A) Model of a barcoding site which mutates with a constant rate (λ) to convert to one of 

many possible mutant alleles (Mut1, …, Mutj), each with an emergence probability (a1, …, 

aj).

(B) Example time-scaled phylogeny showing the inheritance of a single barcoding site. 

Rectangles represent the site, their colors represent its allelic state according to A. Asterisks 

denote mutation events. Only the unmutated allele (black) can change, mutated alleles 

(colored) are inherited from a cell by all its descendants. The time since MRCA is shown for 

two terminal cells, m and n.

(C) Character matrix showing the output of a simulated barcoding experiment based on 

Figure 1A,B fate map with each barcoding site as a column and each cell as a row. 

Unmutated alleles are in black, mutant alleles in other colors. Color bar on the right shows 

cell types with Figure 1A as color key.
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(D) Heatmap showing the estimated pairwise time since MRCA for all cells in C.

(E) Time-scaled phylogenetic tree inferred by applying Phylotime to D. Colors of terminal 

nodes signify cell type.

(F,G) Error of phylogenetic reconstruction using Phylotime (red), Hamming distance 

with UPGMA (green), and Cassiopeia (blue), with 25, 50, or 100 barcoding sites when 

considering only tree topology (F) or tree topology and branch length (G) across the panel 

of 530 simulated barcoding experiments with 16 terminal types (Mean ± SEM, N=530; SEM 

very small).

See also Figure S4.
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Figure 5. Quantitative fate map reconstruction from lineage barcodes using Phylotime and 
ICE-FASE.
(A) Scatter plots showing error of fate map topology reconstruction (KC0) after applying 

ICE-FASE algorithm to true (light blue) or Phylotime-inferred (dark blue) phylogeny as a 

function of map imbalance for all 3,310 simulated barcoding experiments faceted by fate 

map size (columns) and sampling strategy (rows). The faded pink points establish baseline 

error based on random topology reconstruction. Trendlines (LOESS) are shown.

(B) Barplots of Spearman’s correlation between true and estimated commitment (cmt) time, 

population (pop.) size, cmt bias for all progenitor states in 3,310 simulated experiments, 

faceted by sampling fraction (columns) and sampling strategy (rows). Values from true 

phylogenies are shown in light blue and those from Phylotime-inferred in dark blue.

(C–F) Lineplots showing the performance of quantitative fate map reconstruction as a 

function of the number of replicates combined when sampling 50 (green), 100 (orange), or 

200 (purple) cells on average from each terminal type in the panel of 16-terminal type fate 
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maps, measured by the error of topology (C), cmt time (D), pop. size (E), and cmt bias (F) 

estimates (Mean±SEM; N=106).

(G–I) Same as D–F but estimates separated for well-sampled (solid lines) and undersampled 

(dotted lines) progenitor states.

See also Figures S4, S5, and S6.
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Figure 6. PScov measures robustness of reconstructed quantitative fate maps.
(A) Schematic showing how PScov is calculated. Each circle represents a cell, colors 

represent different progenitor states the cells have been assigned to, gray circles represent 

unsampled progenitor and terminal cells. Est: estimate; pop: population.

(B) Area Under the Receiver Operating Characteristics (auROC) curve for PScov shows a 

high sensitivity and specificity in detecting well-sampled progenitor states. CI: confidence 

interval.

(C) Scatter plot of progenitor state sampling fraction as a function of its PScov in 3,310 

simulated experiments. Trendline (LOESS) shown in blue.

(D–E) Scatter plots showing the error of cmt time (D), pop. size (E), and cmt bias (F) 

estimates for progenitor states as a function of their PScov in our panel of 3,310 simulated 

experiments.

Trendline (LOESS) shown in blue.
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Figure 7. Validation of quantitative fate mapping using cell culture model system.
(A) Split–passage scheme in cultured iPSCs for E1 and E2 experiments. Arrows show 

passages.

(B) Quantitative fate maps implemented in E1 and E2 using scheme in A. Numbers under 

progenitor states mark split ratios (left:right); red box highlights the differences between 

progenitor state order. F: founder cell; P: progenitor states; T: terminal type.

(C) Character matrices of lineage barcodes (left) and heatmaps of pairwise time since 

MRCA matrix from hundreds of sequenced single cells in E1 (top) and E2 (bottom). 

Phylotime-inferred phylogeny is aligned to the matrix. Color bar on left marks the type of 

each cell according to B. Other plot features are the same as Figures 4C,D.

(D) Reconstructed quantitative fate maps for E1 (left) and E2 (right). The red box highlights 

the differences in progenitor state ordering. Labels same as B.

See also Figure S7.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAVS1-Neo-M2rtTA DeKelver et al.50 Addgene Cat#60843

Chemicals, peptides, and recombinant proteins

Accutase™ STEMCELL
Technologies

Cat#07920

Antibiotic-Antimycotic (100X) ThermoFisher Cat#15240062

Blasticidin S hydrochloride MilliporeSigma Cat#15205

(−)-Blebbistatin MilliporeSigma Cat#B0560

CloneR STEMCELL
Technologies

Cat#05888

Doxycycline hyclate MilliporeSigma Cat#D9891

DreamTaq Hot Start PCR Master Mix ThermoFisher Cat#K9012

Geneticin™ Selective Antibiotic (G418 Sulfate) ThermoFisher Cat#10131035

KAPA HiFi HotStart ReadyMix Roche Cat#07958935001

KAPA SYBR FAST qPCR Kits Roche Cat#07959389001

Lipofectamine™ Stem Transfection Reagent ThermoFisher Cat#STEM00001

Matrigel Growth Factor Reduced Basement Membrane Matrix Corning Cat#354230

mTeSR™ Plus STEMCELL
Technologies

Cat#100–0276

Opti-MEM I Reduced Serum Media ThermoFisher Cat#31985062

Pifithrin-α hydrobromide Tocris Bioscience Cat#1267

Puromycin dihydrochloride MilliporeSigma Cat#P8833

QuickExtract™ DNA Extraction Solution Lucigen Cat#QE09050

SYBR Green I Nucleic Acid Gel Stain ThermoFisher Cat#S7563

Critical commercial assays

DNA Clean & Concentrator-5 Zymo Research Cat#D4014

MiSeq Reagent Micro Kit v2 (300-cycles) Illumina Cat#MS-103–1002

MycoAlert® PLUS Mycoplasma Detection Kit Lonza Cat#LT07–701

Qubit dsDNA HS Assay Kit ThermoFisher Cat#Q32851

Deposited data

Single-cell hgRNA sequencing raw FASTQ files for E1 and E2 This study SRP386685

MARC1 sequencing data for determining hgRNA mutation rates Kalhor et al.5

Leeper et al.30
SRP155997

All quantitative fate maps This study 10.5281/zenodo.7112097

inDelphi predicted mutant allele probabilities for hgRNAs in MARC1 
mice and iPSC line

This study 10.5281/zenodo.7112097

Simulated phylogenies, sets of MARC1 hgRNAs used, single 
cell lineage barcodes, Phylotime reconstructed phylogenies for all 
experiments

This study 10.5281/zenodo.7112097

Experimental models: Cell lines
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REAGENT or RESOURCE SOURCE IDENTIFIER

iPSC line: EP1-Cas9-hgRNA This study N/A

Oligonucleotides

See Table S3 for oligonucleotides used in this study. This study N/A

Recombinant DNA

Modified pSpCas9(BB)-2A-Puro (PX459) V2.0 Eldred et al.45 N/A

Modified Puro-Cas9 donor Eldred et al.45 N/A

PB-U6insert hgRNA library Kalhor et al.5 Addgene
Cat#104536

PB-U6insert-EF1puro library Kalhor et al.5 Addgene
Cat#104537

Super piggyBac Transposase expression vector System Biosciences Cat#PB210PA-1

Software and algorithms

Cassiopeia Jones et al.35 https://github.com/YosefLab/Cassiopeia

ICE-FASE This study https://github.com/Kalhor-Lab/QFM/
DOI:
10.5281/zenodo.7114804

ImageJ Schneider et al.51 https://github.com/imagej/ImageJ

InDelphi Shen et al.31 https://github.com/rnaxwshen/inDelphi-
model

Phylotime This study https://github.com/Kalhor-Lab/QFM/
DOI:
10.5281/zenodo.7114804

MARC1 analysis pipeline Leeper et al.30 https://github.com/Kalhor-Lab/MARC1-
Pipeline

Other
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