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Background: Coronary heart disease (CHD) and cerebral ischemic stroke (CIS) are two major types of 
cardiovascular disease (CVD) that are increasingly exerting pressure on the healthcare system worldwide. 
Machine learning holds great promise for improving the accuracy of disease prediction and risk stratification 
in CVD. However, there is currently no clinically applicable risk stratification model for the Asian 
population. This study developed a machine learning-based CHD and CIS model to address this issue.
Methods: A case-control study was conducted based on 8,624 electronic medical records from 2008 to 
2019 at the Tongji Hospital in Wuhan, China. Two machine learning methods (the random down-sampling 
method and the random forest method) were integrated into 2 ensemble models (the CHD model and the 
CIS model). The trained models were then interpreted using Shapley Additive exPlanations (SHAP). 
Results: The CHD and CIS models achieved good performance with the areas under the receiver 
operating characteristic curve (AUC) of 0.895 and 0.884 in random testing, and 0.905 and 0.889 in sequential 
testing, respectively. We identified 4 common factors between CHD and CIS: age, brachial-ankle pulse 
wave velocity, hypertension, and low-density lipoprotein cholesterol (LDL-C). Moreover, carcinoembryonic 
antigen (CEA) was identified as an independent indicator for CHD. 
Conclusions: Our ensemble models can provide risk stratification for CHD and CIS with clinically 
applicable performance. By interpreting the trained models, we provided insights into the common 
and unique indicators in CHD and CIS. These findings may contribute to a better understanding and 
management of risk factors associated with CVD.
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Introduction

Cardiovascular diseases (CVDs) are a leading cause of 
global mortality and morbidity. In China, 93.8 million CVD 
patients were reported in 2016, more than twice the number 
reported in 1990 (40.6 million) (1). By 2019, cardiovascular 
death accounted for 45.19% of total deaths in rural areas 
and 43.56% in urban areas. The incessant increase in 
CVD prevalence has been highlighted as a global health  
challenge (2). Therefore, improving the efficiency of the 
CVD healthcare system is an urgent task. 

It is now widely accepted that machine learning can 
improve medical efficiency by assisting doctors in analyzing 
large-scale high-dimensional clinical data. The merit of 
machine learning has been consistently supported by several 
predictive and risk stratification studies (3), including 
those for CVD and its subtypes (4,5). Notably, an effective 
stroke classification model was trained using a Chinese 
prospective cohort with 56 stroke patients and 1,075 
non-stroke participants. This study applied a synthetic 
minority over-sampling technique (SMOTE) method for 
data balancing, which achieved an area under the receiver 
operating characteristic curve (AUC) of 0.72 (6). It should 
be noted that CVD patients appear relatively rarely in 
the natural population, which highlights the potential 
imbalance issues in model training. Early risk assessment 
may prevent cardiovascular events in the future (7). In 
clinical practice, people often have poor compliance (8) and 
it may be difficult to identify people at high risk of CVD. 
Therefore, an efficient risk stratification model is necessary. 
Furthermore, the Asian population is underrepresented 
in published studies. As illustrated in Liu’s research, the 
models based on the European population may overestimate 
the risk in Asian populations (9). To address the problems 
of imbalance and population difference, we integrated the 
machine learning models with the under-sampling method 
to create a coronary heart disease (CHD) and cerebral 
ischemic stroke (CIS) risk stratification model that is 
clinically applicable for the Asian population. We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-22-1916/rc).

Methods

Study design 

A case-control study was conducted with participants 
attending a physical examination at Tongji Hospital in 

Wuhan, China, from May 2008 to December 2019. The 
inclusion criteria were as follows: (I) patients aged 30 years 
and older; and (II) patients without a history of tumor, liver 
cirrhosis, or renal failure. Participants with a recorded CHD 
or CIS history were considered cases. Participants without 
any history of CHD and CIS were considered controls. 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Medical Ethics Committee at Tongji 
Medical College, Huazhong University of Science and 
Technology (No. TJ-IRB20191215). Individual consent for 
this retrospective analysis was waived.

Clinical indicators and inclusion criteria

The medical records of all the participants were collated 
at the Tongji Hospital during standardized in-person 
interviews (10). A total of 118 indicators were selected 
from medical records, including lifestyle characteristics and 
clinical measurements. The standardized protocols of data 
collection can be found in the Supplementary Methods 
(Appendix 1). 

The diagnosis of CIS was based on symptoms and 
cerebral infarction confirmed by computed tomography or 
magnetic resonance imaging; CHD was diagnosed according 
to symptoms (mainly angina) and electrocardiography or 
coronary angiography. Patients with self-reported CHD, 
coronary artery bypass grafting, coronary stent implantation, 
percutaneous coronary intervention, or percutaneous 
transluminal coronary angioplasty were also considered 
CHD patients. The patient’s self-reports were confirmed by 
doctors through the medical insurance system.

Imputation

Indicators with a missing rate greater than 45% were 
discarded, and the remaining missing indicators were 
imputed (Table S1). Random forest was applied to impute 
the missing continuous data with the R package missForest 
v1.4 (11). Missing categorical data were imputed by the 
median of each feature.

Model establishment

CHD and CIS datasets were built to train the CHD and 
CIS models. The unreliable data were excluded, defined 
by inconsistency in gender, age (differences larger than  
5 years), or physical examination time with cases. 

https://atm.amegroups.com/article/view/10.21037/atm-22-1916/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1916/rc
https://cdn.amegroups.cn/static/public/ATM-22-1916-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1916-Supplementary.pdf
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In each dataset, 80% of the data before 1 January 
2018 were randomly sampled as the training set, and the 
remaining 20% were used for random testing. The data 
collected after the year 2018 were used for sequential 
testing. 

All continuous variables were standardized with a mean 
of 0 and a variance of 1. Three feature selection approaches 
were applied for continuous features: (I) analysis of variance 
(ANOVA) (12); (II) recursive feature elimination (RFE) (13); 
and (III) Boruta (14). The P value threshold of ANOVA was 
set at 0.05. The basic estimator of both RFE and Boruta 
was a random forest model with default parameters (15). 
Continuous features significant in at least two methods were 
selected for subsequent analysis.

For categorical features, the VarianceThreshold method 
was used to exclude the features that were either 1 or 0 
in more than 80% of the samples. All feature selection 
methods were performed in Python 3.7 using the packages 
sklearn v0.24 and Boruta v0.3 (14,16). 

A bagging classifier was developed with additional 
balancing from BalancedBaggingClassifier using the python 
package scikit-multilearn v0.2 (17). Specifically, the base 
estimator was the random forest model (15). Random 
down-sampling without replacement was used to produce a 
more balanced dataset. The ratio of major classes to minor 
classes was 1, and the number of downsampling (number of 
base models) was 100. The training process included hyper-
parameters selection and model simplification. The hyper-
parameters (n_estimators, max_depth, and min_samples_
split) were searched to maximize the AUC score using 
GridSearchCV in 5-fold cross-validation. To improve the 
efficiency in clinical practice, an approach was applied to 
reduce the number of indicators while ensuring the utility 
of the risk stratification model. The Shapley Additive 
exPlanations (SHAP) explainer (18) was constructed to 
rank the features using Python package shap v0.39, and 
1,000 randomly selected samples were used to calculate 
the feature contribution. We used 80% of the randomly 
selected sets to train a model, and the remaining 20% of the 
samples were used for model evaluation. The features with a 
higher ranking were included unless no improvements were 
observed. The above training and validation process was 
repeated 100 times to secure robustness. Measures (average 
precision, specificity, sensitivity, F-score, and AUC) were 
used to systematically evaluate the performance. The 
trained model was interpreted by SHAP.

To better evaluate the performance of the final model, the 
complex model before reducing feature numbers, random 

forest model, logistic regression model, and support vector 
machine model was constructed. Constructions of the above 
three traditional machine learning models used the same 
characteristics as the complex model. Framingham risk 
scores (FHS) of CHD and CIS were calculated. The risk 
prediction equations of CHD (19) and CIS (20) for 10 years 
are presented in Supplementary Methods. 

Development of risk stratification Python package

A Python package named CCRS (coronary heart disease and 
cerebral ischemic stroke risk stratification) was developed 
for generating better application in clinics by providing 
population risk and relative risk. Population risk would be 
categorized into mild, moderate, and severe. In detail, based 
on CHD and CIS models’ prediction in the training data, 
the threshold between mild and moderate corresponded to 
the true positive rate of 95%, and the threshold between 
severe and moderate corresponded to the true negative rate 
of 95%. The relative risk would be presented as risk ranking 
among peers. For the purpose of clarity, with the individual 
predicted value and age, the ranking of the individuals 
in the same age group of the training set was provided as 
relative risk.

Statistical analysis

Continuous variables were presented as means and standard 
deviations. Categorical variables were described as counts 
and percentages. To evaluate the difference between case 
and control groups, continuous indicators were analyzed by 
the rank sum test and categorical indicators were analyzed 
by the chi-square test. Delong methods were used to test 
the differences in the AUCs of the receiver operating 
characteristic (ROC) curves.

Results

Basic characteristics of the study population

This study included 7,983 (92.6%) controls and 641 (7.4%) 
cases (Figure 1). Among the cases, 302 were CHD patients 
and 302 were CIS patients, and 37 people had both CHD and 
CIS. The mean age of the study population was 51±11.4 years 
and 71.3% of the study population were males.

All 118 clinical indicators are presented in Table S2. The 
lifestyle characteristics and laboratory results relevant to 
blood pressure, glucose, and lipids are summarized in Table 1.  

https://cdn.amegroups.cn/static/public/ATM-22-1916-Supplementary.pdf
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The proportion of smokers and drinkers in the study 
population was 32.2% and 44.3%, respectively. In terms of 
vascular stiffness, 99.2% of the population had normal ankle-
brachial index (ABI; 0.9≤ ABI <1.4) (21), and 55.7% of the 
population had normal brachial-ankle pulse wave velocity 
(baPWV <1,400) (22). These characteristics in the CHD 
dataset (N=7,698) and CIS dataset (N=8,322) are presented 
in Table S3 and Table S4.

The ensemble learning model effectively distinguished 
CHD patients and CIS patients 

The flowchart of model development is shown in Figure 2.  
After standardization, the first step of training was the 
elimination of irrelevant and redundant information. In this 
step, VarianceThreshold, ANOVA, RFE, and Boruta were 
used for features selection. After selection, only 5 of the 
55 discrete variables presented significant contribution in 

both CHD and CIS patients, namely, sex, smoking status, 
drinking, vascular stiffness, and hypertension. Meanwhile, 
23 of the 59 continuous variables were considered 
important in the CHD dataset, and 22 of the 59 variables 
showed importance in the CIS dataset (Table S4). Five 
features, namely, age, prostate-specific antigen (PSA), 
total cholesterol (TC), baPWV, and estimated glomerular 
filtration rate (eGFR), were considered crucial in both 
CHD and CIS patients (Figure S1, Table S5).

GridSearchCV analysis was then applied to optimize 
the balanced bagging classifier (BBC) model. The optimal 
hyper-parameters for the optimal CHD classification 
performance were as follows: estimators 100, maximum 
depth 6, and minimum sample split 7 (Figure S2). In terms 
of the CIS model, the ideal hyper-parameters were as 
follows: estimators 500, maximum depth 4, and minimum 
sample split 2 (Figure S3).

We then used SHAP analysis to reduce the model 

Hospital electronic medical records 
from May 2008 to December 2019 

(N=9,622)

Participants met the inclusion criteria 
(N=8,624)

Controls 
(N=7,983)

Number of coronary heart 
disease (N=339)

Coronary heart disease 
dataset (N=7,698)

Number of ischemic stroke 
(N=339)

Ischemic stroke dataset 
(N=8,322)

Mismatch participants 
excluded (N=0)

Mismatch participants 
excluded (N=624)

Participants excluded (N=998)
• Age <30 years: 838
• Malignant tumor: 127
• History of liver cirrhosis or kidney failure: 33

Cases (N=641)
• Only ischemic stroke: 302
• Only coronary heart disease: 302
• Both ischemic stroke and coronary 

heart disease: 37

Figure 1 A flowchart depicting the study process.

https://cdn.amegroups.cn/static/public/ATM-22-1916-Supplementary.pdf
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complexity. The CHD model performance was retained 
when including the top 8 features (Figure S4). For the CIS 
model, only 5 features were required for maintaining the 
model efficiency (Figure S5). Lastly, the final ensemble 
models were built based on the optimized parameters and 
features.

To evaluate the model performance, multiple reported 
models were constructed, including Framingham risk score 
(19,20), BBC model before reducing feature numbers, and 
traditional machine learning models (logistic regression, 
support vector machine, and random forest), by applying 
multiple measures. These measures included ROC curves, 
sensitivity, specificity, F score, and average precision. In the 
CHD model, the AUCs of the random and the sequential 
validation were 0.895 and 0.905, respectively (Figure 3A). 
The area under the precision-recall curves (AUPRCs) of 
the random and the sequential validation was 0.360 and 
0.304, respectively (Figure 3B). The sensitivity of the random 
and the sequential validation was 0.807 and 0.873, and 
the specificity was 0.831 and 0.788, respectively (Table 2). 
Compared with other models horizontally, the model with the 
best performance was the BBC model before simplification, 
and the final BBC model performed similarly to that of the 
complex BBC model in the sequential test set (Figure S6). In 
the CIS model, the AUCs of the random and the sequential 
test set were 0.884 and 0.889, respectively (Figure 3C). The 
AUPRCs of the random and the sequential validation were 
0.298 and 0.216, respectively (Figure 3D). The sensitivity of 
the random and the sequential validation was 0.808 and 0.877, 
and the specificity was 0.750 and 0.756, respectively (Table 3).  
Interestingly, the performance of the final model was 
superior to that of other CIS models horizontally (Figure S7).  
Notably, in both models, the predictive performance of the 
sequential validation was better than those of the random 
validation. Considering that the AUC can only reflect the 
discrimination of the models, the calibration of the models 
was evaluated (Figure S8). Unfortunately, the calibration of 
the models was generally poor and the BBC models for CHD 
and CIS might overestimate the risk.

Model interpretation

We applied SHAP analysis to interpret and understand 
the mechanism underlying the trained model. Our results 
indicated that hypertension, increased age, baPWV, 

Table 1 Basic characteristics of the study population

Variables Population (N=8,624)

Basic characteristics

Age, years 51.9±11.4

Sex

Male 6,152 (71.3)

Female 2,472 (28.7)

Smoker 2,777 (32.2)

Drinker 3,823 (44.3)

BMI, kg/m2 24.6±3.1

Cardiovascular medical history

CHD 339 (3.9)

CIS 339 (3.9)

Clinical measurements

SBP, mmHg 126.3±16.9

DBP, mmHg 81.7±11.4

LDL-C, mmol/L 2.9±0.8

HDL-C, mmol/L 1.2±0.3

TC, mmol/L 4.7±0.9

TG, mmol/L 1.6±1.4

FBG, mmol/L 5.2±1.2

HbA1c, % 5.8±0.7

baPWV, cm/s 1,409.7±256.5

<1,400 4,800 (55.7)

1,400–1,800 3,191 (37.0)

>1,800 633 (7.3)

ABI 1.1±0.07

<0.9 59 (0.7)

0.9–1.4 8,554 (99.2)

>1.4 11 (0.1)

Continuous variables are described as mean ± SD. Categorical 
variables are described as number (percentage). BMI, body mass 
index; CHD, coronary heart disease; CIS, cerebral ischemic 
stroke; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; LDL-C, low-density lipoprotein cholesterol; HDL-C, 
high-density lipoprotein cholesterol; TC, total cholesterol; TG, 
triglyceride; FBG, fasting blood glucose; HbA1c, hemoglobin 
A1C; baPWV, brachial-ankle pulse wave velocity; ABI, ankle-
brachial index; SD, standard deviation.

https://cdn.amegroups.cn/static/public/ATM-22-1916-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1916-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1916-Supplementary.pdf
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https://cdn.amegroups.cn/static/public/ATM-22-1916-Supplementary.pdf
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hemoglobin A1c (HbA1c), and carcinoembryonic antigen 
(CEA) were associated with a higher risk of CHD. 
Meanwhile, high levels of TC, low-density lipoprotein 
cholesterol (LDL-C), and platelet (PLT) were associated 
with a lower risk of CHD (Figure 4A,4B). An increase in 
LDL-C was negatively correlated with the risk of CIS, 
and hypertension, increased age, baPWV, and ABI were 
positively correlated with the risk of CIS (Figure 4C,4D). In 
both diseases, hypertension appeared to be a common risk 
factor. In addition, the effects of continuous variables were 
linear (Spearman correlation, P<0.001, Figures S9,S10). 
Intriguingly, in the CHD model, the impact of CEA failed 
to enhance when the value was greater than 3.14. In the CIS 
model, the impact of ABI steeply increased when its value 
was greater than 1.1 (Figure 4E). In addition, the effect of 
age presented an S-curve in both models. To further explore 
the characteristics of the CEA influence curve, interaction 
analysis was used. The results showed that the SHAP value 
of CEA in individuals with high levels of LDL-C was 
higher in the plateau stage (Figure 4F).

Although the feature selection process excluded the 
feature of gender, gender differences have been observed 
in CVD (23) We suspected that the effects of some other 
features may vary in different gender groups, which 
was supported by the sex-specific sub-analysis, where 

hypertension remained an important predictor of CHD 
and CIS in males, but the importance decreased in females. 
Other features such as age and baPWV appeared to be 
critical predictors in both males and females (Figure S11). 

Inflammation status could be essential in CVD 
development

For in-depth study, the misclassifications in our model 
predicted accurate samples and predicted wrong controls 
(PWCs) were used for error analysis.  The results 
demonstrated that the PWCs were similar to the predicted 
accurate patients (PAP; P>0.05), but different from the 
predicted accurate controls (PACs) in age, baPWV, HbA1c, 
CEA, and PLT (Figure S12A-S12E, P<0.001). 

However, the percentage of lymphocytes in PWCs 
(33.0±7.9) was close to that in PACs (33.5±7.3, P=0.27) and 
was higher than that in PAP samples (27.2±7.4, P=0.01, 
Figure S12F). Considering that leukocytes are related 
to immunity and inflammation, we further analyzed the 
neutrophil count, neutrophil/lymphocyte ratio (NLR), 
and systemic immune inflammation index (SII) of PWCs 
without antiplatelet medication (Table 4). The SII in 
PWCs (361.9±170.4) was not only lower than that in PAPs 
(525.1±305.0, P<0.001), but also lower than that found in 

CHD/Ischemic stroke model

CHD/Ischemic stroke dataset

Standardization

Training data Random  
testing data

Sequential  
testing data

Standardization

Evaluation

Hyper-parameter selection

Feature selectionTraining

Before 2018.01.01

NoYes

20%80%

Mean & SD

Figure 2 Training and validation of the model. CHD, coronary heart disease; SD, standard deviation.
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PACs (420.8±189.9, P<0.001, Table 5, Figure S13). The 
error analysis revealed that the PWCs were comparable to 
the PAPs in all 5 indicators, but different from the PACs 
(P<0.001) in the CIS model. Unfortunately, error analysis 
could not be performed in predicted wrong cases due to the 
limited sample size.

The constructed model achieved precise risk stratification 
in CVD

When applying the risk stratification model to the 

sequential testing dataset, 93.8% of CHD patients and 
95.0% of CIS patients were classified into the moderate or 
severe group (Figure 5A,5B). The risk stratification model 
was used to calculate the relative risk of participants in each 
age group. The relative risk of CHD and CIS patients was 
higher than that in controls for each age group (one-sided 
rank-sum test P<0.001, Figure 5C,5D). 

Discussion

In this study, an effective model for risk stratification in 

Training dataset ROC curve (area =0.937)
Random dataset ROC curve (area =0.895)
Sequential dataset ROC curve (area =0.905)

Training dataset ROC curve (area =0.904)
Random dataset ROC curve (area =0.884)
Sequential dataset ROC curve (area =0.889)

Training dataset PR curve (area =0.473)
Random dataset PR curve (area =0.360)
Sequential dataset PR curve (area =0.304)

Training dataset PR curve (area =0.344)
Random dataset PR curve (area =0.298)
Sequential dataset PR curve (area =0.216)
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Figure 3 Evaluation of the models. (A) ROC analysis was applied to calculate the AUC, which was used to assess the performance of the 
CHD model in training, random, and sequential testing. (B) The precision and recall curve of the CHD model in training, random, and 
sequential testing. (C) ROC analysis was used to calculate AUC, which was used to evaluate the performance of the CIS model in training, 
random, and sequential testing. (D) The precision and recall curve of the CIS model in training, random, and sequential testing. ROC, 
receiver operating characteristic; PR, precision and recall; AUC, area under the receiver operating characteristic curve; CHD, coronary 
heart disease; CIS, cerebral ischemic stroke.
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Table 2 Evaluation scores for the CHD model

Models AUC (95% CI) Specificity Sensitivity F-score AP

Random testing

FHS-CHD 0.708 (0.65–0.762) 0.545 0.737 0.128 0.063

LR 0.901 (0.868–0.933) 0.836 0.807* 0.303 0.159

SVM 0.874 (0.829–0.915) 0.829 0.772 0.283 0.144

RF 0.899 (0.866–0.929) 0.815 0.789 0.274 0.140 

Complex BBC 0.912 (0.884–0.937)* 0.868* 0.789 0.341* 0.181*

BBC 0.895 (0.860–0.928) 0.831 0.807* 0.297 0.155

Sequential testing

FHS-CHD 0.73 (0.683–0.779) 0.570 0.794 0.157 0.080 

LR 0.900 (0.870–0.927) 0.807 0.857 0.308 0.168 

SVM 0.877 (0.841–0.909) 0.806 0.794 0.287 0.149 

RF 0.903 (0.872–0.932) 0.774 0.905* 0.289 0.160 

Complex BBC 0.905 (0.876–0.931)* 0.827* 0.841 0.325* 0.177* 

BBC 0.905 (0.877–0.931)* 0.788 0.873 0.293 0.160 

*, the highest scores in random testing or sequential testing. CHD, coronary heart disease; AUC, the area under the receiver operating 
characteristic curve; CI, confidence interval; AP, average precision; FHS-CHD, Framingham risk score of coronary heart disease; LR, 
logistic regression; SVM, support vector machine; RF, random forest; BBC, balanced bagging classifier.

Table 3 The evaluation scores for the CIS model 

Models AUC (95% CI) Specificity Sensitivity F-score AP

Random testing

FHS-CIS 0.804 (0.757–0.851) 0.791 0.596 0.172 0.075

LR 0.882 (0.848–0.913) 0.748 0.885* 0.213 0.112

SVM 0.839 (0.793–0.883) 0.776 0.808 0.215 0.107

RF 0.865 (0.821–0.909) 0.842* 0.750 0.260* 0.127*

Complex BBC 0.880 (0.843–0.916) 0.780 0.808 0.218 0.109

BBC 0.884 (0.850–0.919)* 0.750 0.808 0.198 0.098

Sequential testing

FHS-CIS 0.850 (0.812–0.886) 0.815 0.719 0.232 0.110 

LR 0.883 (0.847–0.912) 0.779 0.825 0.229 0.117

SVM 0.813 (0.762–0.857) 0.784 0.754 0.215 0.104

RF 0.872 (0.827–0.912) 0.827* 0.807 0.268* 0.137*

Complex BBC 0.877 (0.836–0.914) 0.787 0.877* 0.249 0.132

BBC 0.889 (0.851–0.919)* 0.756 0.877* 0.225 0.118

*, the highest scores in random testing or sequential testing. CIS, cerebral ischemic stroke; AUC, the area under the receiver operating 
characteristic curve; CI, confidence interval; AP, average precision; FHS-CIS, Framingham risk score of cerebral ischemic stroke; LR, 
logistic regression; SVM, support vector machine; RF, random forest; BBC, balanced bagging classifier.
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Figure 4 Model interpretation through SHAP analysis. (A) An overview the feature impact on the CHD model. Dots represented SHAP 
values of every feature for each sample. Colors represented the feature value (red: high value, blue: low value). (B) A heatmap showing the 
feature values in the CHD dataset. (C) An overview of the feature impact on the CIS model. Dots represented SHAP values of every feature 
for each sample. Colors represented the feature value (red: high value, blue: low value). (D) A heatmap showing the feature values in the 
CIS dataset. (E) The SHAP values changed in predicted CIS as ABI. (F) The SHAP values changed in predicted CHD as CEA. Vertical 
dispersion at a single value of CEA represents the interaction strength with LDL-C. The color represents the LDL-C value. TC, total 
cholesterol; LDL-C, low density lipoprotein cholesterol; baPWV, brachial-ankle pulse wave velocity; CEA, carcinoembryonic antigen; 
HbA1c, hemoglobin A1c; PLT, platelet; CHD, coronary heart disease; ABI, ankle-brachial index; CIS, cerebral ischemic stroke; SHAP, 
Shapley Additive exPlanations.
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CHD and CIS was developed based on 8,624 electronic 
medical records among the Chinese population. With the 
increasing prevalence of CHD and CIS, and especially the 
rising incidence of CVD in young individuals (24), this 
tool may help individuals to understand their risk of CHD 
and CIS. The relative risk score provided by the model 
could raise awareness of early vascular aging among young 
individuals, to motivate them to change lifestyles following 
medical advice. The effectiveness of this model originates 
from the underlying well-performing models. When 
testing the performance in the sequential dataset, the AUC 
of CHD and CIS reached 0.905 and 0.889, respectively. 
Contrary to previous research (4-6), the good performance 
of our models may be attributed to the resolution of the 
imbalanced classification between controls and cases with 
a combination of the random downsampling and ensemble 
learning to ensure the maximal usage of the controls. This 
combination can address the data ambiguity generated from 
random sampling.

The relationships between CVD diseases and various 
indicators were also illustrated in this study. These results 
were consistent with our hypothesis, that the significantly 
related indicators of CHD and CIS were highly overlapped 

with each other, and only a few indicators were different. 
Specifically, age, baPWV, hypertension, and LDL-C were 
considered risk factors in both models. However, HbA1c, 
CEA, PLT were only found to contribute to risk in the 
CHD model, and ABI was only found to be crucial in the 
CIS model. Both ABI (25) and baPWV, as indicators of 
vascular stiffness, have been gradually acknowledged and 
applied in clinical practice. Hyperlipidemia, hyperglycemia, 
and hypertension are recognized as canonical risk factors for 
CVD (26). In this perspective, our research demonstrated 
that hypertension is a common risk factor in CHD and 
CIS and it may have a more significant effect in males than 
in females. This phenomenon might be attributed to the 
gender-specific differences in cell senescence pathways and 
mitochondrial function. Such differences would lead to 
different levels of hypertension-induced organ damage in 
different genders (27). Surprisingly, a negative relationship 
between LDL-C and disease risk was noted in both models, 
and also with TC in the CHD model. This may be partly 
due to the higher proportion of patients taking lipid-
lowering drugs (Tables S3,S4). Sachdeva et al. also witnessed 
a negative correlation between LDL-C and CHD risk in 
the European population, suggesting that it might be caused 
by the shifts in the prevalence of other cardiovascular 
risk factors (28). Furthermore, it is well-known that a 
majority of CHD patients experience chronic low-grade 
inflammation (29). Consistent with previous studies (30,31), 
we identified CEA, one of the inflammatory indicators (32),  
as a potential biomarker of CHD. A total of 7.67% of 
patients presented with abnormally high CEA values (CEA 
greater than 0.5 ng/mL), compared to 3.13% of controls 
with abnormal values (chi-square test P<0.001). Notably, 
a portion of control individuals without CHD showed 
similarities in indicators such as age, baPWV, and HbA1c, as 
CHD patients, but controls had lower inflammatory levels. 
CVD is a complex disease, but the indicators contained 
in the traditional model [such as age, smoking status, and 
systolic blood pressure (SBP)] can only reflect part of the 
body’s condition. As incorporating non-traditional factors 
can improve the effectiveness of the model (33), adding 
indicators that reflect the immune system may be beneficial. 
Unlike SII, CEA is not in the routine set of tests, and the 
clinical value of this tumor marker warrants further large-
scale research.

There were some potential limitations to this study. 
Calibration analysis showed that our models might 
overestimate the risk score, that is, the low-risk population 
might be classified as medium-to-high risk. However, such 

Table 4 Use of antiplatelet drugs in CHD patients  

Use of 
antiplatelet 
drugs

Predicted 
accurate  

cases 

Predicted 
accurate 
controls 

Predicted 
wrong  

controls

Yes 33 8 14

No 21 987 206

CHD, coronary heart disease.

Table 5 Statistical test results (P values) of inflammatory markers in 
the CHD dataset 

Inflammatory 
indicators

PAC vs. PWC PAP vs. PWC PAC vs. PAP

Neutrophils 0.602 2.75×10−2 3.61×10−2

NLR 0.711 4.30×10−3 1.40×10−3

SII 7.27×10−6 5.35×10−3 0.118

CHD, coronary heart disease; PAC, predicted accurate controls; 
PWC, predicted wrong controls; PAP, predicted accurate 
patients; NLR, neutrophil/lymphocyte ratio; SII, systemic immune 
inflammation index, SII was calculated by (N×P)/L (N, P, and L 
represent neutrophil counts, platelet counts, and lymphocyte 
counts, respectively).

http://dict.youdao.com/w/eng/phenomenon/?spc=phenomenon#keyfrom=dict.typo
https://cdn.amegroups.cn/static/public/ATM-22-1916-Supplementary.pdf
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overestimation would not affect the relative risk, because the 
relative risk is based on ranking. In addition, it should be 
noted that this study only included specific medical records 

from an Asian population. Previous studies have suggested 
that the genome and the metagenome of gut microbiota 
may also affect the risk of CVD (34,35). The inclusion 

Figure 5 The performance of the risk stratification model in the sequential validation. (A) and (B) represent the distribution of CHD and 
CIS risk scores. (C) and (D) show the boxplots of the CHD and CIS relative risk scores. Rank-sum test, *** represents significance levels 
P<0.001. CHD, coronary heart disease; CIS, cerebral ischemic stroke.
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of this information may provide a better understanding 
of CVD risk among the population. Therefore, we are 
currently conducting a 10-year prospective cohort study 
including genome and metagenome sequencing data of all 
the participants in China (ChiCTR2100042724).

Conclusions

Herein, we developed 2 well-performing machine learning 
models for predicting CHD and CIS. The relationships 
between the clinical indicators and diseases were consistent 
with previous studies. Based on our models, we constructed 
a CHD and CIS risk stratification tool for the Asian 
population.

Acknowledgments

We would like to thank the general physicians, especially 
those from the Department of Geriatrics of Tongji Hospital, 
Tongji Medical College, Huazhong University of Science 
and Technology for their dedication, commitment, and 
contribution. 
Funding: This work was supported by the National Key 
Research and Development Program of China (No. 
2020YFC2008002; principal investigator CZ) and the 
Major Technology Innovation of Hubei Province (No. 
2019ACA141). The funding sources declare that they had 
no involvement in the process of this study or manuscript 
preparation. The contents do not reflect the official views of 
the government of the Hubei province.

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1916/rc

Data Sharing Statement: Available at https://atm.amegroups.
com/article/view/10.21037/atm-22-1916/dss

Peer Review File: Available at https://atm.amegroups.com/
article/view/10.21037/atm-22-1916/prf

Conflicts of Interest: All authors have completed the 
ICMJE uniform disclosure form (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1916/
coif). All authors declare that this study was supported by 
the National Key Research and Development Program of 

China (No. 2020YFC2008002; principal investigator CZ) 
and the Major Technology Innovation of Hubei Province 
(No. 2019ACA141). BC, LY, YL, XJ, YB, and TL are 
employees of BGI-Shenzhen. The authors have no other 
conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the 
Medical Ethics Committee at Tongji Medical College, 
Huazhong University of Science and Technology (No. TJ-
IRB20191215) and individual consent for this retrospective 
analysis was waived.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Liu S, Li Y, Zeng X, et al. Burden of Cardiovascular 
Diseases in China, 1990-2016: Findings From the 
2016 Global Burden of Disease Study. JAMA Cardiol 
2019;4:342-52.

2. The Writing Committee of the Report on Cardiovascular 
Health and Diseases in China. Report on Cardiovascular 
Health and Diseases in China 2019: an Updated Summary. 
Chinese Circulation Journal 2020;35:833-54. 

3. Ngiam KY, Khor IW. Big data and machine learning 
algorithms for health-care delivery. Lancet Oncol 
2019;20:e262-73.

4. Tama BA, Im S, Lee S. Improving an Intelligent Detection 
System for Coronary Heart Disease Using a Two-Tier 
Classifier Ensemble. Biomed Res Int 2020;2020:9816142.

5. Dinh A, Miertschin S, Young A, et al. A data-driven 
approach to predicting diabetes and cardiovascular disease 
with machine learning. BMC Med Inform Decis Mak 
2019;19:211.

6. Wu Y, Fang Y. Stroke Prediction with Machine Learning 

https://atm.amegroups.com/article/view/10.21037/atm-22-1916/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1916/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-1916/dss
https://atm.amegroups.com/article/view/10.21037/atm-22-1916/dss
https://atm.amegroups.com/article/view/10.21037/atm-22-1916/prf
https://atm.amegroups.com/article/view/10.21037/atm-22-1916/prf
https://atm.amegroups.com/article/view/10.21037/atm-22-1916/coif
https://atm.amegroups.com/article/view/10.21037/atm-22-1916/coif
https://atm.amegroups.com/article/view/10.21037/atm-22-1916/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Annals of Translational Medicine, Vol 10, No 21 November 2022 Page 13 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(21):1156 | https://dx.doi.org/10.21037/atm-22-1916

Methods among Older Chinese. Int J Environ Res Public 
Health 2020;17:1828.

7. Gooding HC, de Ferranti SD. Cardiovascular risk 
assessment and cholesterol management in adolescents: 
getting to the heart of the matter. Curr Opin Pediatr 
2010;22:398-404.

8. Nivette A, Ribeaud D, Murray A, et al. Non-compliance 
with COVID-19-related public health measures among 
young adults in Switzerland: Insights from a longitudinal 
cohort study. Soc Sci Med 2021;268:113370.

9. Liu J, Hong Y, D'Agostino RB Sr, et al. Predictive value 
for the Chinese population of the Framingham CHD 
risk assessment tool compared with the Chinese Multi-
Provincial Cohort Study. JAMA 2004;291:2591-9.

10. Loscalzo J. Harrison's Cardiovascular Medicine, 3rd 
Edition. 2017.

11. Stekhoven DJ, Bühlmann P. MissForest--non-
parametric missing value imputation for mixed-type data. 
Bioinformatics 2012;28:112-8.

12. Thompson HW, Mera R, Prasad C. The Analysis of 
Variance (ANOVA). Nutr Neurosci 1999;2:43-55.

13. Guyon I, Weston J, Barnhill S, et al. Gene Selection for 
Cancer Classification Using Support Vector Machines. 
Mach Learn 2002;46:389-422.

14. Kursa M, Rudnicki W. Feature Selection with Boruta 
Package. J Stat Softw 2010;36:1-13.

15. Breiman L. Random Forests. Mach Learn 2001;45:5-32.
16. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-

learn: Machine Learning in Python. J Mach Learn Res 
2012;12:2825-30.

17. Lemaître G, Nogueira F, Aridas C. Imbalanced-learn: 
A Python Toolbox to Tackle the Curse of Imbalanced 
Datasets in Machine Learning. J Mach Learn Res 
2017;18:1-5.

18. Lundberg S, Lee SI. A Unified Approach to Interpreting 
Model Predictions. NIPS'17: Proceedings of the 31st 
International Conference on Neural Information 
Processing Systems 2017;4768-77.

19. Wilson PW, D'Agostino RB, Levy D, et al. Prediction 
of coronary heart disease using risk factor categories. 
Circulation 1998;97:1837-47.

20. Dufouil C, Beiser A, McLure LA, et al. Revised 
Framingham Stroke Risk Profile to Reflect Temporal 
Trends. Circulation 2017;135:1145-59.

21. Rooke TW, Hirsch AT, Misra S, et al. 2011 ACCF/AHA 
focused update of the guideline for the management 
of patients with peripheral artery disease (updating the 
2005 guideline): a report of the American College of 

Cardiology Foundation/American Heart Association 
Task Force on Practice Guidelines: developed in 
collaboration with the Society for Cardiovascular 
Angiography and Interventions, Society of 
Interventional Radiology, Society for Vascular Medicine, 
and Society for Vascular Surgery. Catheter Cardiovasc 
Interv 2012;79:501-31.

22. Takashima N, Turin TC, Matsui K, et al. The 
relationship of brachial-ankle pulse wave velocity to future 
cardiovascular disease events in the general Japanese 
population: the Takashima Study. J Hum Hypertens 
2014;28:323-7.

23. Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways 
of Sex Differences in Cardiovascular Disease. Physiol Rev 
2017;97:1-37.

24. Andersson C, Vasan RS. Epidemiology of cardiovascular 
disease in young individuals. Nat Rev Cardiol 
2018;15:230-40.

25. Perlstein TS, Creager MA. The ankle-brachial index as 
a biomarker of cardiovascular risk: it's not just about the 
legs. Circulation 2009;120:2033-5.

26. Mahmood SS, Levy D, Vasan RS, et al. The 
Framingham Heart Study and the epidemiology of 
cardiovascular disease: a historical perspective. Lancet 
2014;383:999-1008.

27. Colafella KMM, Denton KM. Sex-specific differences in 
hypertension and associated cardiovascular disease. Nat 
Rev Nephrol 2018;14:185-201.

28. Sachdeva A, Cannon CP, Deedwania PC, et al. Lipid 
levels in patients hospitalized with coronary artery disease: 
an analysis of 136,905 hospitalizations in Get With The 
Guidelines. Am Heart J 2009;157:111-117.e2.

29. Golia E, Limongelli G, Natale F, et al. Inflammation and 
cardiovascular disease: from pathogenesis to therapeutic 
target. Curr Atheroscler Rep 2014;16:435.

30. Ishizaka N, Ishizaka Y, Toda E, et al. Are serum 
carcinoembryonic antigen levels associated with carotid 
atherosclerosis in Japanese men? Arterioscler Thromb 
Vasc Biol 2008;28:160-5.

31. Bae U, Shim JY, Lee HR, et al. Serum carcinoembryonic 
antigen level is associated with arterial stiffness in healthy 
Korean adult. Clin Chim Acta 2013;415:286-9.

32. Gold P, Freedman SO. Specific carcinoembryonic 
antigens of the human digestive system. J Exp Med 
1965;122:467-81.

33. Lin JS, Evans CV, Johnson E, et al. Nontraditional Risk 
Factors in Cardiovascular Disease Risk Assessment: 
Updated Evidence Report and Systematic Review 



Chen et al. Risk stratification tool of CHD and stroke Page 14 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(21):1156 | https://dx.doi.org/10.21037/atm-22-1916

for the US Preventive Services Task Force. JAMA 
2018;320:281-97.

34. Wang Y, Wang JG. Genome-Wide Association Studies of 
Hypertension and Several Other Cardiovascular Diseases. 
Pulse (Basel) 2019;6:169-86.

35. Witkowski M, Weeks TL, Hazen SL. Gut Microbiota and 
Cardiovascular Disease. Circ Res 2020;127:553-70.

(English Language Editors: J. Teoh and J. Jones)

Cite this article as: Chen B, Ruan L, Yang L, Zhang Y, Lu Y, 
Sang Y, Jin X, Bai Y, Zhang C, Li T. Machine learning improves 
risk stratification of coronary heart disease and stroke. Ann 
Transl Med 2022;10(21):1156. doi: 10.21037/atm-22-1916


