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Introduction
Multiple sclerosis (MS) is an immune-mediated cen-
tral nervous system (CNS) disorder marked by 
chronic inflammation and demyelination, and loss of 
neurons that causes motor, sensory, and cognitive 
disabilities. The dysregulated immune system in 
MS, combined with the wide variety of immu-
nomodulatory effects of MS disease-modifying ther-
apies (DMTs), could affect the host response to 
infections, including severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) that causes cor-
onavirus disease 2019 (COVID-19). Comprehensive 
understanding of the immunology of the disease and 
vaccine response will allow clinicians to inform 
patients and help guide their decisions about vac-
cines and treatment.

Risk factors associated with COVID-19 clinical 
severity include age, comorbidities, and extent of MS 
disability; MS itself does not appear to be a risk factor.1 
MS DMTs may, in a modality-dependent fashion, 
affect the immune response to SARS-CoV-2 infection 
and COVID-19 vaccination. The immune response to 
SARS-CoV-2 infection involves various cell types 
beyond virus-specific, antibody-producing B cells.2,3 
Most of the literature on COVID-19 vaccine responses 
has focused on humoral (i.e., antibody) responses, 
due to the accessibility and feasibility of serologic 
tests to assess antiviral immunity. However, cell-
mediated responses (e.g., CD4 and CD8 T cells) and 
innate immunity (neutrophils, macrophages, and nat-
ural killer cells) are integral to fighting infection and 
the development of protective immunity.2 In this 
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review, we provide a brief overview of innate and 
adaptive immune responses against the SARS-CoV-2 
virus, with a focus on SARS-CoV-2-specific T cell 
immunity in COVID-19 and responses to COVID-19 
vaccination in MS.

Immune responses to COVID-19

Innate immunity against COVID-19
The innate immune system is the first line of defense 
against pathogens. Upon pathogen entry, host pattern 
recognition receptors (PRRs) expressed by innate 
immune cells rapidly recognize pathogen-associated 
molecular patterns. Activation of PRRs induces the 
production of interferons (IFNs) and other cytokines 
by innate immune cells (e.g., plasmacytoid dendritic 
cells, monocytes/macrophages, and natural killer cells) 
for pathogen elimination.4 The large SARS-CoV-2 
genome encodes multiple viral proteins that facilitate 
evasion of host innate immunity, speeding infection 
of host cells, viral replication, and spread to other 
cells.5 During severe COVID-19, patients exhibit 
delayed and impaired type I and III IFN responses, 
yet elevated pro-inflammatory cytokine (e.g., inter-
leukin [IL]-6 and IL-12) levels, generating a 
“cytokine storm” and respiratory tract inflammation.5 
Dysregulated innate responses to SARS-CoV-2 in turn 
do not effectively prime adaptive immune responses to 
clear the virus, and hence reduce protective immune 
memory.3

Humoral immunity against COVID-19
Adaptive immunity, which includes humoral and cell-
mediated responses, generates pathogen-specific 
responses and memory of the infection. Humoral 
immunity is mediated by B cells that produce anti-
bodies to combat infection by circulating pathogens.4 
Following exposure to an antigen during infection/
immunization, naïve B cells differentiate into effector 
B cells (plasma cells) or memory B cells. Plasma cells 
secrete antibodies (primary immunity); memory  
B cells differentiate into antigen-specific plasma cells 
upon re-exposure to the antigen (secondary immu-
nity). Immunoglobulin G (IgG) and M (IgM) antibod-
ies bind to the SARS-CoV-2 receptor-binding domain 
(RBD) of the spike or nucleocapsid proteins.3 In most 
SARS-CoV-2-infected individuals, development of 
neutralizing antibodies, predominantly anti-spike, 
occurs within 2 weeks.6 The presence and titer of anti-
spike neutralizing antibodies are inversely associated 
with COVID-19 infection rate in vaccinated 
patients.7–9 However, there is heterogeneity in the 

kinetics and magnitude of both virus- and vaccine-
induced antibody responses, and SARS-CoV-2-
specific antibody titers often wane 5–8 months after 
symptom onset.10

Humoral responses to SARS-CoV-2 do not fully 
reflect protective immunity against the virus.11–13 Ig 
levels are not the sole determinants of protective immu-
nity, but easily accessible serologic tests (e.g., enzyme-
linked immunosorbent assays [ELISAs]) are often the 
only tests used to assess antiviral immunity.10,13 Low/
undetectable levels of SARS-CoV-2-specific antibod-
ies in some recovered patients suggest that a mini-
mum protective response involves other components 
of immunity.3 In support, circulating antibody levels 
may not predict the quantity of SARS-CoV-2-specific 
T cell responses, highlighting the importance of other 
cells involved in fighting the infection.10

Cell-mediated immunity against COVID-19
Cell-mediated immunity, enacted by T cells, helps 
clear intra- and extracellular pathogens once infection 
has occurred. Cell-mediated immunity controls ongo-
ing infections, rather than preventing their occur-
rence. On encountering an antigen, naïve CD8 and 
CD4 T cells proliferate and differentiate into effector 
or memory cells.4 CD8 cytotoxic T cells kill cytosolic 
pathogens in infected cells. Naïve CD4 T cells can 
differentiate into multiple subsets of helper T cells 
(Th), including Th1, Th17, Th2, and induced regula-
tory T (Treg) cells, each of which have distinct 
cytokine profiles.14 Th1 cells activate CD8 cytotoxic 
T cells, macrophages, and B cells; Th2 cells activate 
naïve B cells and inhibit Th1 cells.4 Upon antigen re-
exposure, quiescent CD4 and CD8 memory T cells 
rapidly generate effector T cells to combat the patho-
gen (secondary immunity, recall response).4 A third 
subset, Treg, inhibits proliferation of cytotoxic CD4  
T cells and cytokine production, preventing pathogen-
induced autoimmunity and unbridled inflammation.4 
Finally, mature, or antigen-experienced, CD4 T folli-
cular helper (Tfh) cells migrate to germinal centers in 
lymph nodes and the spleen, and help cognate B cells 
to generate high-affinity, neutralizing antibodies.4

The balance of T cell subsets is crucial. Increased 
cytotoxic CD4 Th1 and Tfh cells and reduced SARS-
CoV-2-reactive Tregs are associated with severe 
COVID-19 disease and hospitalization.15 In some 
severe cases, the naïve/memory Th ratio increases, 
elevating pro-inflammatory serum cytokines.16 The 
decrease in regulatory and memory T cells and subse-
quent cytokine storm are associated with severe 
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COVID-19 and tissue damage,17 including neurovas-
cular inflammation in immunocompromised patients 
and patients with MS.18

SARS-CoV-2-specific T cell response. T cells 
broaden the antiviral defense against COVID-19 and 
the response to vaccination.19 SARS-CoV-2- 
specific CD8 and CD4 T cells help control COVID-19 
severity and the development of antiviral immunity. 
Although complex and seldom commercially avail-
able, diagnostic tests can detect the magnitude of  
T cell responses at different phases of SARS-CoV-2 
infection and following vaccination (Table 1).

T cell response is associated with milder COVID-19 
disease and improved outcome. Asymptomatic 
SARS-CoV-2-infected individuals mount a more 
robust virus-specific T cell response, with increased 
IFN-γ and IL-2 secretion, than patients with symp-
tomatic disease.20 These functional SARS-CoV-2-
specific CD4 and CD8 T cells induced during the 
initial phase of SARS-CoV-2 infection are associated 
with mild COVID-19 and rapid viral clearance.21 
Immunosuppressed patients on chemotherapy or  
B cell-depleting therapy who are hospitalized for 
COVID-19 have better COVID-19 outcomes if 
early T cell responses are strong.22 Patients with 
hematologic cancer and impaired humoral immu-
nity have higher COVID-19 mortality rates than 
those with solid cancer and without any cancer. 
However, patients with hematologic malignancies 
have improved survival if they have high levels of 
SARS-CoV-2-specific CD8 T cells.22 These studies 
show that SARS-CoV-2-specific T cell responses 
diminish acute SARS-CoV-2 infection.

After infection, some recovered COVID-19 patients 
develop functional SARS-CoV-2-specific CD4 and 
CD8 memory T cells, irrespective of symptoms or 
degree of SARS-CoV-2-specific serology.25 SARS-
CoV-2-specific memory T cell responses are sus-
tained up to 8 months post-infection10 and maintained 
for 10 months regardless of COVID-19 severity.23 
These recovered patients develop SARS-CoV-2-
specific polyfunctional stem cell-like memory  
T cells with multiple, simultaneous effector functions 
and antigen-induced recall responses.23 Given the 
longevity of this virus-specific T cell memory, and the 
observation that human T cells recognize more than 
1400 SARS-CoV-2 epitopes, T cell responses should 
be included in evaluation of COVID-19 vaccine 
efficacy.28

T cells induced by mRNA COVID-19 vaccines mediate 
protection against COVID-19. The Pfizer-BioNTech 

BNT162b2 vaccine elicits similar, multi-specific T cell 
responses in COVID-19-recovered patients and unin-
fected COVID-19-naïve individuals.29 However, com-
pared with natural infection alone, T cell responses are 
boosted in COVID-19-recovered individuals receiving 
vaccine, and pre-existing virus-specific T cells can 
respond rapidly upon antigen re-exposure.29 Likewise, 
the Moderna mRNA-1273 vaccine generates spike-
specific CD8 and memory CD4 T cells 6 months post-
immunization, at similar levels to natural SARS-CoV-2 
infection.26 Interestingly, vaccinated individuals with 
pre-existing cross-reactive CD4 T cell memory to coro-
naviruses have higher vaccine-induced CD4 T cell 
responses.26 Similarly, BNT162b2 and mRNA-1273 
induce memory CD4 and CD8 T cells 6 months post-
vaccination, regardless of prior infections, with only a 
slight boost in the memory T cell responses of individ-
uals with prior exposure to SARS-CoV-2.30 Thus, 
mRNA vaccination induces primary protection and 
often enhances recall T cell response to SARS-CoV-2, 
supporting revaccination to boost protective T cell 
immunity. Importantly, antibodies can have lower 
affinity for emerging SARS-CoV-2 strains, but viral 
epitopes recognized by T cells remain as targets, as evi-
denced by virus- and vaccine-induced T cells with 
cross-reactivity to the initial Omicron variant.27

Vaccine response in patients with MS on DMTs
Patients with MS mount variable humoral immune 
responses to natural SARS-CoV-2 infection and 
COVID-19 vaccination. Data on T cell responses 
have, until recently, been limited. MS DMTs gener-
ally exert their therapeutic effect by downregulating 
cytotoxic T cell function and pro-inflammatory 
cytokine secretion. IFN-β and glatiramer acetate 
(GA), both of which induce anti-inflammatory CD4 
and CD8 T cells, appear to decrease the risk of get-
ting, or having severe COVID-19.31–33 IFN-β is a 
potent antiviral agent with effects that are enhanced 
by vitamin D.34 It activates antiviral T cell and mono-
cyte responses to prevent infection, and could also 
reduce mid-stage COVID-19 disease severity by 
reducing pro-inflammatory cytokine levels and dys-
regulated genes in MS, and inducing multiple immu-
noregulatory pathways.35–37 GA shifts T cell 
phenotypes from pro-inflammatory (e.g., Th1 and 
Th17) to anti-inflammatory and regulatory (e.g., Th2, 
CD8 Treg),38 perhaps reducing the virus-induced 
cytokine storm to avoid severe COVID-19.

Other DMTs reduce or temper the activation of pro-
inflammatory subsets of B and T cells that may be exac-
erbated in COVID-19. Fingolimod, ozanimod, 
ponesimod, and siponimod reduce circulating numbers 
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of naïve and central memory CD4 T cells.39–42 
Teriflunomide reduces proliferation of activated  
T and B cells.43 Cladribine depletes peripheral B cells 
(and less so CD4 and CD8 T cells).44 Alemtuzumab 
induces prolonged depletion of memory B and CD4 
and CD8 T cells.45 In contrast, natalizumab (anti-
VLA4 monoclonal antibody [mAb]) is not associated 
with lymphopenia, and instead sequesters effector 

memory CD4 and CD8 T cells away from the CNS to 
the peripheral blood, where they may engage with 
pathogens at sites of entry.46 Post-vaccination studies 
of patients with MS treated with all of these therapies, 
excepting sphingosine 1-phosphate (S1P) modulators in 
some studies, show that robust SARS-CoV-2-specific  
T cell responses are generated after COVID-19 
mRNA vaccination (Supplementary Table 1).

Table 1. Functions and methods of T cell detection assays.

Assay 
(References)

Function/method Notes

ELISpot20–24 Quantify the frequency of isolated T cells 
secreting cytokines (i.e., functional T cells) in 
response to stimulation with SARS-CoV-2-
specific peptide pools. Chromogenic detection 
of cytokine “spots” correlates with individual-
activated T cells. T cell subsets can be identified 
by their cytokine signature (e.g., Th1 cells secrete 
IFN-γ, IL-2, and TNF-α)

•    In vitro stimulation of PBMCs using SARS-CoV-2 peptide pools 
revealed pre-existing memory CD4 T cells cross-reactive to 
SARS-CoV-2 and common cold HCoVs

•   SARS-CoV-2 peptide pools mapped T cell responses to 
individual SARS-CoV-2 epitopes, which were predominantly 
S-specific

Whole-blood 
cytokine 
release19,20

Detect secreted cytokines from natural SARS-
CoV-2 infection- and COVID-19 vaccine-induced 
T cells in peptide-stimulated whole blood

•   Facilitated rapid quantification of secreted IFN-γ and IL-2 in 
whole blood stimulated with S-specific peptide pools from 
BNT162b2-vaccinated individuals, and from convalescent 
asymptomatic and symptomatic COVID-19 patients

•   IL-2 demonstrated better sensitivity than IFN-γ in detecting 
S-specific T cell responses 2–3 months post-vaccination and  
12 months post-infection in convalescent COVID-19 patients

ICS23,25–27 Quantify frequency of T cells secreting cytokines 
in response to stimulation with SARS-CoV-2-
specific peptide pools. Immunostaining of 
cytokines enables quantification by FACS

•   Levels of IFN-γ-secretion of SARS-CoV-2-specific memory CD4 
and CD8 T cells were greater in recovered COVID-19 patients 
than in their close contacts (i.e., exposed to SARS-CoV-2, but 
lacking detectable infection)

•   Polyfunctionality (the ability to secrete multiple cytokines,  
such as IFN-γ, IL-2, or TNF-α) was observed in the  
SARS-CoV-2-specific CD4 (25%–40%) and CD8 (30%–50%) 
T cells of recovered patients 2 months post-symptom onset, and 
was maintained for ~9 months post-symptom onset

AIM10,23,24 Detect natural SARS-CoV-2 infection- and 
COVID-19 vaccine-induced T cells by measuring 
upregulation of TCRs upon stimulation with 
antigen-specific peptide libraries followed by 
FACS

•   AIM assays using SARS-CoV-2 peptide pools (S and non-S) and 
markers for CD4 (e.g., CD137+ OX40+) or CD8 (e.g., CD137+ 
CD69+) T cells identified SARS-CoV-2-specific CD4 and CD8  
T cells in recovered patients

•   Memory CD4 T cells of individuals unexposed to SARS-CoV-2 
are cross-reactive to homologous SARS-CoV-2 and HCoV 
peptide pools

MHC Multimer 
Staining23,28,29

Detect T cells expressing TCRs capable of binding 
specific complexes of SARS-CoV-2 epitopes and 
multimers of MHC/HLA class I or II molecules 
by FACS

•   SARS-CoV-2-specific MHC-I multimer staining detected subsets 
of stem cell-like memory T cells in recovered individuals, 
peaking ~4 months post-symptom onset

Single-cell 
immune 
profiling: 
scRNA-seq and 
scTCR-seq29

Elucidate gene expression profiles of FACS-
sorted, SARS-CoV-2-specific T cells by next-
generation sequencing and analysis of the single-
cell transcriptome (scRNA-seq) or TCR sequence 
(scTCR-seq)

•   A combination of MHC multimer staining, scRNA-seq, and 
scTCR-seq using pools of 18 DNA-barcoded MHC-I multimers 
revealed similar levels of S-specific T cell responses in individuals 
after natural SARS-CoV-2 infection and mRNA COVID-19 
vaccination, though the target antigens differ. These T cell 
responses were boosted in recovered, vaccinated individuals

AIM: activation-induced marker; COVID-19: coronavirus disease 2019; ELISpot: enzyme-linked immune absorbent spot; FACS: fluorescence-activated 
cell sorting; HCoV: human coronavirus; HLA: human leukocyte antigen; IFN: interferon; IL: interleukin; ICS: intracellular cytokine staining; MHC: major 
histocompatibility complex; PMBC: peripheral blood mononuclear cell; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; scRNA-seq: single-cell 
RNA sequencing; scTCR-seq: single-cell T cell receptor sequencing; S: spike; TCR: T cell receptor; Th1: T helper cell type 1; TNF: tumor necrosis factor.
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The various mAbs directed against CD20 are of 
potential concern because CD20 is a surface marker 
expressed on pre-B cells, naïve B cells, and memory 
B cells, and at low levels on a small subset of T cells. 
Anti-CD20 mAbs strongly deplete B cells. Their 
ability to reduce relapses in MS derives from deple-
tion of putatively pathogenic B cells and possibly 
loss of B cell collaboration with T cells. B cell deple-
tion by the anti-CD20 mAb, rituximab (RTX), limits 
the abnormal activation of pro-inflammatory CD4 
and CD8 T cells.47 The anti-CD20 mAbs, RTX, ocre-
lizumab (OCR), and ofatumumab (OMB) spare the 
majority of antibody-secreting plasma cells but  
B cell depletion reduces new antibody responses to 
SARS-CoV-2 infection. Buffering the poor antibody 
response, the anti-CD20s do not appear to compro-
mise T cell responses to SARS-CoV-2 infection in 
MS.48–51 SARS-CoV-2-specific CD4 and CD8 T cell 
responses are detected for at least 1 year after infec-
tion, similar to healthy recovered controls.48

COVID-19 outcomes in patients treated with anti-
CD20 mAbs have varied. Treatment with RTX or OCR 
is associated with an increased incidence of severe 
COVID-19 (including hospitalization) in patients with 
MS.1 Conversely, in a recent study of OMB-treated 
patients with relapsing MS with 210 confirmed and 35 
suspected cases of COVID-19, 90.6% were of mild or 
moderate severity, and 9% were severe or life-threaten-
ing.52 At study cutoff, 98.4% of patients had recovered 
or were recovering, with 23 patients being hospitalized 
and 2 deaths. This represents a case fatality rate that 
compares favorably with the general population statis-
tics for most nations.53

With mRNA COVID-19 vaccination, T cell  
and humoral responses of patients with MS may  
vary between treatments (Supplementary Table 1; 
Figure 1).49–51,54–63 Patients treated with B cell-deplet-
ing anti-CD20 therapy have lower antibody responses 
to mRNA COVID-19 vaccines, for months after the 

MS MANAGEMENT 

Host Immunity to  SARS-CoV-2 / COVID-19 Vaccine

▼
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↔

↔
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SARS-CoV-2-speci�c Response vs HC

Anti-CD20

Other DMT*

No Treatment
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††

Figure 1. SARS-CoV-2-specific humoral and T cell responses in patients with MS.
*Other DMT refers to GA, IFN-β, teriflunomide, fumarates, cladribine, natalizumab, alemtuzumab, and S1P modulators.
In patients with MS, humoral and cellular immune responses to SARS-CoV-2 infection and COVID-19 vaccination depend on the 
DMT. Patients with MS on RTX, OCR, OMB, or S1P receptor modulators exhibit decreased SARS-CoV-2-specific humoral responses 
compared with healthy controls. RTX-, OCR-, and OMB-treated patients still mount SARS-CoV-2-specific T cell responses, but S1P-
treated patients may have reduced T cell responses. Patients with MS on other DMTs, including GA, IFN-β, teriflunomide, fumarates, 
cladribine, natalizumab, and alemtuzumab, also generate virus-specific T cell responses. Treatment with RTX, OCR, OMB, or non-S1P-
modulating oral therapies was associated with enhanced T cell response after a two-dose vaccination with a mRNA COVID-19 vaccine.
Ab: antibody; COVID-19: coronavirus disease 2019; DMT: disease-modifying therapy; GA: glatiramer acetate; HC: healthy  
control; IFN: interferon; OCR: ocrelizumab; OMB: ofatumumab; RTX: rituximab; SARS-CoV-2: severe acute respiratory syndrome 
coronavirus 2; S1P: sphingosine 1-phosphate.
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last anti-CD20 treatment.49–51,64 However, with OMB, 
a third booster vaccination can mitigate the decreased 
antibody responses and allow elevation of titers.49–51 
In addition, SARS-CoV-2-specific T cell responses 
after full-course vaccination can occur in patients 
treated with anti-CD20 therapy (Supplementary  
Table 1). SARS-CoV-2-specific memory T cell 
responses are comparable in BNT162b2-vaccinated 
healthy controls, untreated patients with MS, and 
OCR-treated patients with MS when assessed 
4.3 months (median) after last DMT treatment.55 
SARS-CoV-2-specific CD4 and CD8 T cell responses 
are not reduced after mRNA or viral vector COVID-
19 vaccination in any MS treatment group compared 
with untreated patients with MS; rather, IFN-γ+ CD8  
T cell responses are increased in RTX-treated 
patients.58 After a full course of mRNA or viral vector 
COVID-19 vaccination, patients with MS on RTX, 
OCR, or non-S1P-modulating oral therapies have 
higher levels of IFN-γ-producing T cells than patients 
not on DMTs 8 weeks after vaccination.56 Thus, anti-
CD20 mAbs may enhance vaccine-induced T cell 
responses in patients with MS.

Treatment with S1P receptor modulators is associated 
with impaired humoral response to vaccination.58,61,63 
In one prospective study, 51.4% of patients receiving 
S1P receptor modulators (35 received fingolimod 
and 1 received siponimod) seroconverted 30–90  
days post-vaccination versus > 92.0% with other 
DMTs.61 In addition, there are reduced SARS-CoV-2-
specific CD4 T cell responses in patients with MS 
receiving S1P therapies versus both alternatively 
treated and untreated patients, likely due to CD4  
T cell lymphopenia or altered T and B cell interac-
tions in lymph nodes (Supplementary Table 1).58,61 
Studies of COVID-19 outcomes, and variation 
between different S1P modulators, in S1P modulator-
treated patients are urgently required.

In summary, COVID-19 infection is less severe in 
patients with MS receiving IFN-β and GA, but 
slightly more severe with anti-CD20 therapies. 
Responses to COVID-19 vaccination are normal 
with most DMTs, but some anti-CD20 therapies 
reduce B cell responses, and some S1P modulators 
reduce B and T cell responses.

The role and impact of SARS-CoV-2-specific T cell 
responses in patients with MS after natural or post-
vaccination infection and responses to COVID-19 
vaccination need further investigation to fully under-
stand the mechanisms behind the host response to 
natural infection in patients treated with DMTs. 

Several ongoing studies will delineate the degree of 
protective effect of the SARS-CoV-2-specific T cell 
immunity mounted by patients with MS on B cell-
depleting therapies, including RTX (NCT04877496), 
OCR (NCT04843774), and OMB (NCT04869358, 
NCT04486716). Other studies include a broad MS 
DMT spectrum (NCT05121662, NCT04796584, 
NCT05060354).

Perspectives and concluding remarks
The ongoing COVID-19 pandemic raises concerns 
over the risk of infection and disease severity in indi-
viduals with dysregulated immune systems. Patients 
with MS may have other risk factors associated with 
poorer COVID-19 outcomes, and certain DMTs could 
further affect immune responses to SARS-CoV-2 and 
COVID-19 vaccines.1 However, innate, humoral, and 
T cell immune responses all combat COVID-19 and 
generate protective immunity.

Assays detecting cytokine expression by T cells show 
an association between SARS-CoV-2-specific T cell 
responses and milder/asymptomatic COVID-19 and 
protective immune memory.10,23,25,26,28–30 Several 
DMTs suppress excessive pro-inflammatory T cell 
responses in MS, yet patients on these DMTs mount 
robust SARS-CoV-2-specific T cell responses after 
mRNA COVID-19 vaccination.54–58 The extent to 
which these T cell responses compensate for attenu-
ated humoral responses in conferring protection 
against COVID-19 remains to be determined,  
but some studies provide reassurance. Studies of 
COVID-19 vaccine response and post-COVID-19 
immunity in people with MS on DMTs should  
ideally include comprehensive assessment of innate, 
humoral, and T cell responses.
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