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Predictive modeling using neuroimaging data has the potential to improve our understanding of the neurobiology underlying
psychiatric disorders and putatively information interventions. Accordingly, there is a plethora of literature reviewing published
studies, the mathematics underlying machine learning, and the best practices for using these approaches. As our knowledge of
mental health and machine learning continue to evolve, we instead aim to look forward and “predict” topics that we believe will be
important in current and future studies. Some of the most discussed topics in machine learning, such as bias and fairness, the
handling of dirty data, and interpretable models, may be less familiar to the broader community using neuroimaging-based
predictive modeling in psychiatry. In a similar vein, transdiagnostic research and targeting brain-based features for psychiatric
intervention are modern topics in psychiatry that predictive models are well-suited to tackle. In this work, we target an audience
who is a researcher familiar with the fundamental procedures of machine learning and who wishes to increase their knowledge of
ongoing topics in the field. We aim to accelerate the utility and applications of neuroimaging-based predictive models for
psychiatric research by highlighting and considering these topics. Furthermore, though not a focus, these ideas generalize to
neuroimaging-based predictive modeling in other clinical neurosciences and predictive modeling with different data types (e.g.,
digital health data).
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INTRODUCTION
Neuroimaging studies of psychiatry have gained invaluable
insight into neural mechanisms underlying psychiatric dis-
orders. These studies range from activation studies to case-
control designs to identifying individual differences in beha-
vior. However, bridging the gap between the knowledge that
we have gained from these studies to identifying biomarkers
for further applications in therapeutic interventions remains a
challenge [1, 2]. Predictive modeling with neuroimaging data
[3, 4] has the potential to characterize psychiatric disorders and
inform clinical decisions. There is a growing body of literature
demonstrating the promise of this application of predictive
modeling [2, 5–7], explaining the fundamental mathematics
underlying machine learning [8, 9], and establishing best
practices for using these approaches with neuroimaging data
[10–13]. Even more so, there have been many works reviewing
previous mental health studies using machine learning and
neuroimaging data [6, 10–15].
Instead, as our knowledge of mental health and machine

learning continues to evolve, we aim to look forward—or predict
—and present a curated set of topics that we believe will be

important in current and future studies. We begin by discussing
two timely issues from machine learning that may be unfamiliar to
the broader psychiatric neuroimaging community: “bias and
fairness” and “dirty data.” Next, we highlight that the level of
interpretation is crucial for models to achieve their full impact and
depends on the goal of the investigation. Finally, we demonstrate
a role for predictive models in two popular areas of mental health
research: transdiagnostic research and targeting imaging-based
brain markers. The target audience of this work is a researcher
familiar with the fundamental procedures of machine learning
(such as those present in ref. [16], rather than a deep under-
standing of the underlying algorithms and mathematics) who
wishes to increase their knowledge of ongoing topics and issues
in the field. Nevertheless, it can also serve as an introduction for
beginners to topics not generally covered in depth in previous
reviews, as well as a point of discussion for the more experienced.
We aim to maximize the utility and applications of neuroimaging-
based predictive models for mental health research by high-
lighting these topics. While examples are rooted in neuroimaging
data, these topics and considerations apply to other data forms
(e.g., digital health data).
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SECTION 1: TOPICS AROUND DATA REPRESENTATION
We begin by discussing issues in obtaining data and the issues
that arise with how subject populations are represented in our
samples. Using training data that are not representative of the
real-world population of interest is a putative source of bias, which
can cause brain-behavior models to be inaccurate in certain
demographic groups. Appreciating the potential for bias, uncover-
ing sources of bias, and minimizing the impact of bias are critical.
Additionally, we discuss the need to use rich, real-world data with
its associated complexities in these models to understand
psychiatric disorders, with consideration of consequent issues.

Bias and fairness
In machine learning, bias is defined as “results that are system-
atically prejudiced toward an individual or a group based on their
inherent and acquired characteristics” [17], whereas fairness is
defined as “the absence of bias.” Data used to train the model is
often the leading source of this bias. This principle has been
recently highlighted by the PULSE AI [18] photo recreation model;
the model turned a low-resolution image of former President
Barack Obama into an image of a white male. These results are
putatively because the underlying algorithm is trained on a
limited demographic, leading to accurate predictions only for
certain racial groups [19, 20]. In addition, it has been increasingly
recognized that a large proportion of academic studies–including
studies relevant to psychiatric research–are based on a western,
educated, industrialized, rich, and democratic population, as these
participants are most conveniently available [21].
Similarly, studies of particular subpopulations, such as indivi-

duals with psychiatric disorders, are also limited by subjects’
abilities to be scanned; these limitations may include: subjects’
abilities to remain still during a scan, their ability to consent, or
their ability to attend during the scan. Consequently, studying this
limited population biases results by under-representing the
variance in behavior across the broader population of interest.
Additionally, our inability to study these populations also
contributes to training a model that is not representative of
real-world circumstances and the behavioral variabilities

associated with our phenotype of interest. For these reasons,
some argue that bias in machine learning is solely rooted in biased
data and that algorithms are not biased [22]. However, as bias can
stem from nearly limitless sources [23], creating bias-free data may
not be possible [24]. Consequently, the simplistic view of “only the
data is biased” can undercut biases that stem from machine
learning algorithms themselves. Overall, generating and applying
predictive models without acknowledging bias can lead to
inappropriate overgeneralizations where certain populations are
overrepresented, leading to others being underrepresented.
These issues are exacerbated when predicting psychiatric

information from neuroimaging data (Fig. 1). Research on the
complexities in neural mechanisms underlying psychopathology is
still ongoing, and much of this remains unknown to us [25].
Available data are small compared to traditional machine learning
applications and likely, overrepresent specific populations over
others. Additionally, while ever-improving, our knowledge of
brain-behavior associations remains basic, such that sources of
biases may not be readily apparent. Core symptoms and
underlying brain circuits that overlap across different mental
health disorders [26], evolving knowledge and grouping of
symptoms to characterize disorders, and the complexity of real-
world data are potential sources of bias (see “Dirty data”). Further,
there may be important cross-cultural differences in symptom
presentation, as well as differing perspectives on mental health
more broadly. Thus, models trained on one demographic group
may not generalize to others [3, 4, 19, 21]. A failure to generalize
across different populations is not inherently disadvantageous. For
example, sex and age differences have been reported in functional
connectivity and may warrant different models to predict the
same phenotypic measure, reflecting group differences in under-
lying neural circuitry. Such differences between models do not
invalidate any model. Though, it necessitates caution in inter-
pretation and motivates new research [16].
In practice, training algorithms on diverse sets of data, both in

size and demographic distribution, offer a practical way to reduce
bias. Large open datasets that aim to represent the broader
population—i.e., the Adolescent Brain Cognitive Development
Study [27] and the UK Biobank [28]—or datasets from multiple
countries have the ability to provide a more broadly applicable
representation of a disorder. Testing in larger, representative
samples is more likely to pick up on generalizable rather than
idiosyncratic features, leading to decreased inflation of prediction
accuracy [29, 30]. This decrease in accuracy may introduce
publication bias as researchers could forgo this step to improve
effect sizes. While there is no current solution for biases, it is
important to recognize that innate biases exist and that caution
should be taken in study design and result interpretation [31].

Dirty data
Dirty data, as we refer to it here, is characterized by complexities
introduced by missing, inaccurate, incomplete, or inconsistent
data [32]. Dirty data is present in many, if not all, neuroimaging
studies related to mental health research. (Table 1) However,
specifically for predictive models and their subsequent clinical
utility, models must work on real-world data, which is complex
and noisy. While dirty data is often conceptualized as a
shortcoming in research, the complexities and richness of data
in psychiatry are intrinsic and must be carefully considered rather
than immediately eliminated. Only by fully appreciating these
factors can predictive models fulfill their promise of clinical
application.
Subjectivity in phenotypic measures is a source of noise, where

this noise introduces the inherent variability of these measures to
capture the desired behavior accurately. Thus, subjective variability
exists even with expert-trained testing administrators [33–35].
Additionally, while measures can be good at distinguishing
pathology from healthy individuals, they are often nonspecific

Fig. 1 The increasing difficulty of understanding biases as
application complexity increases. In theoretical work, such as
algorithmic proofs, bias is low, putatively, as these works often do
not focus on real-world data. However, biases quickly emerge in
well-established applications in machine learning, like language and
image processing. These biases may be missed during the initial
product development but can quickly become apparent upon
widespread use. Finally, for emerging applications of machine
learning, such as in psychiatry, potential biases are often hard to
observe, understand, and prevent, in part because (1) our knowl-
edge of mental health disorders is still limited in comparison to
traditional applications like image processing and (2) the data may
not be comprehensive enough to model the complexities of mental
health fully.
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between different psychiatric disorders. For example, there exists a
high false-positive rate of an autism diagnosis in adults with
schizophrenia based on the Autism Diagnostic Observation
Schedule [36]. Relatedly, these phenotypic measures present a
further challenge when predicting in a transdiagnostic manner
across health and disease (see “Transdiagnostic prediction”). Many
current measures used in mental health are often skewed to focus
on specific tails of a distribution (i.e., elevated symptoms) [37, 38],
leaving little spread in the “healthy” range. But for predictive
modeling across a broad population, phenotypic measures should
assess the entire distribution, and newer end-points such as
Extended Strengths and Weaknesses Assessment of Normal
Behavior [39] and digital phenotyping [40] might be needed. As
predictive models are only as useful as the quality of their input
data, these measures may not reflect the desired end-point for a
predictive model. However, these behavioral measures largely
serve as the field standard for phenotypic characterization despite
these inherent issues. In fact, improving the quantification of
complex behavior, as opposed to improving neuroimaging data
and prediction algorithms, may lead to the most significant gains
in algorithm performance. Accordingly, other approaches for
phenotypic characterization are gaining traction but are still
nascent in prediction studies. Thus, finding the best end-point
for prediction remains a challenge [5].
Given considerable underlying biological heterogeneity in

mental health, patients themselves add substantial complexity
to the data, with researchers often turning toward small, highly
homogenous cohorts to minimize heterogeneity. Aligned with
this, the majority of neuroimaging predictive models in psychiatry
to date have relied on binary classification approaches (i.e., does
this participant have a disorder or not?) [41]. However, comorbid-
ity among psychiatric disorders is common, with estimates greater
than 50% [42]. Simple classification approaches face limits as our
diagnostic labels are poor due to this heterogeneity. Further, any
mental health disorders are episodic, and classification labels/
results may change depending on disease state. However,
neuroimaging predictive models that adopt transdiagnostic and
dimensional approaches have the potential to appropriately
address comorbidity [43] by examining the generalizability of
common and unique associations with symptoms (see “Trans-
diagnostic prediction”). Moreover, many patients take daily
medications, which may alter the BOLD signal measured by fMRI
[44]. Therefore, predictive models may be confounded by
“learning” medication artifacts instead of changes in neurobiology

underlying the disorder, limiting their potential for both neuro-
biological interpretation and real-world promise (i.e., classifying an
individual as a patient because they take medication is obvious).
Nevertheless, the strength of predictive modeling is the ability to
train on one population (e.g., participants taking medication or
with comorbidities) and test in another (e.g., medication-naive
participants or patients without comorbidities). Models that
generalize across both patient populations are likely free of said
confounds.
Finally, issues around data collection can dirty the data. There is

increasing interest in large-scale consortium studies to increase
sample sizes, patient diversity, and generalization. Despite efforts
to harmonize data, inconsistency exists, and combining datasets
can be challenging [45]. Similar to above, holding out sites or even
whole studies as testing data and showing that a model
generalizes across sites/studies provides strong control for
possible inconsistencies. Missing data are another real-world data
collection problem. Increasing the amount of data (either
neuroimaging or phenotypic) per participant can improve the
accuracy of predictive models [7, 46]. However, as the amount of
data increases, the chances of missing a portion of data also
increases. A common approach to handling missing data is to
exclude participants with missing data. However, since data is
challenging to collect and is more commonly lost in clinical
populations, this approach is suboptimal and can introduce biases
to models (see “Bias and fairness” for how excluding specific
participants can bias models). Data imputation, or the process of
replacing missing data with substituted values, has great promise
to improve predictive performance [47–49] by retaining partici-
pants with missing data in analyses and, thus, increasing sample
sizes. Data imputation is sensitive to the structure of the data,
missing data patterns and mechanisms, the machine learning
algorithms, and the metrics for model performance [50] and
cannot be performed blindly. For example, individuals with more
severe symptoms are more likely to fail quality controls. As many
data imputation algorithms do not work for data “not missing at
random”—or, when the probability of missing data varies for
unknown reasons, imputing these data may introduce an
additional source of dirtiness and bias. Altogether, accounting
for the complexities created by data collection issues can increase
sample sizes, which, in turn, can lead to better-performing models.
As data are inherently dirty, over-controlled studies with small

sample sizes will ultimately overestimate effect sizes that one can
reasonably expect in real-world situations [51]. Leaning into this

Table 1. Sources of dirty data.

Category Problem Examples

Phenotypic measures Measures are subjective • Poor inter-rater reliability and high variability in gold-standard diagnostic tools and
behavioral measures [33–35, 81]

Measures are nonspecific • High false-positive rate on ADOS in adults with schizophrenia [36]

Measures focus on the tails of
behavior

• Healthy controls will be zero inflated on questionnaire data [37, 38]

Participants Comorbidity • Symptoms of psychiatric disorders often overlap across diagnoses, while the
majority of predictive models in psychiatry rely on more binary classification
approaches

Medication • Psychiatric medications have the ability to alter BOLD signal patterns. This
becomes difficult to study the psychiatric phenomena of interest as signals are
confounded

Episodic symptoms • Symptoms change as a function of disease state. Data from scans based on one
day may be vastly different in brain states relative to scans based on another day

Data collection Multi-site • Inter-scanner differences can induce significant variability [82, 83], and the
complexity of the data analysis workflows could affect reproducibility [84]

Missing data • Subjects not completing questionnaires
• Inability to complete behavioral testing or scan sessions in clinical populations
[85, 86]
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dirtiness will ultimately better capture the nuanced nature of the
brain-phenotype association. Given the ultimate goal of predicting
individual values in data not previously seen, predictive modeling
offers a natural approach to investigate if a model (i.e., brain-
phenotype association) generalizes over these complexities.

SECTION 2: INTERPRETATION OR PREDICTION
Models are complex in nature and imperfect in performance and
information extraction. As such, there is often a trade-off between
a model’s interpretability and prediction performance. Models
with high prediction performance tend to operate like a black box
where the inputs and outputs are interpretable, but how the
model itself works remains unclear. On the other hand, placing
emphasis on the interpretability of features usually comes at the
cost of the model’s prediction performance, even though features
are more (Fig. 2). The desired point on this spectrum depends on
one’s goals. For real-world applications (i.e., commercial products),
high prediction performance is generally needed. However, given
that even the best performing neuroimaging-based models show
modest prediction performance, an emphasis on interpretability
may be warranted.
In machine learning, interpretability is defined as “the degree to

which a human can understand the cause of a decision” [52]. For
neuroimaging, this definition can be further refined to “can we
understand the regions, connections, networks, or cognitive
circuits that lead to predicted values?”. In other words, for
neuroscientific interpretation, simply knowing what combinations
of brain features predict is not enough. Understanding how these
features relate to underlying cognition and neurobiology is likely
more useful; thus, sacrificing prediction performance for inter-
pretability (such as using simpler linear models) may be more
advantageous. Because we do not fully understand the neural
circuitry disruptions and abnormalities in psychiatric disorders, a
model aimed toward interpretability can still inform the neural
circuits and their disruptions in a particular disorder even with
modest prediction performance. However, uninterpretable black
box models that do not meet real-world utility have few
redeeming qualities in that they can be used neither as an
application nor for neurobiological insights.
The high dimensional and noisy nature of neuroimaging data

can make neurobiological interpretations difficult, even when a
model is interpretable from a machine learning point of view.
Features (e.g., functional connections, morphometry, or activation

patterns) across the brain are highly correlated, giving rise to
issues for feature selection algorithms. For example, using
approaches designed to account for high correlations among
features (e.g., ‘2 penalty, principal component regression) can lead
to dense models with many features. Likewise, enforcing sparsity
by discarding a portion of highly correlated features can lead to
model instability [53]. Relatedly, features at the smallest scale
(voxels, vertices, or connections) are noisy with low test-retest
reliability and contain shared information with neighboring voxels,
both of which cause instability. As such, selected features may
change with using different iterations of the training data, hurting
interpretability [54]. A solution to increase interpretability for both
dense and unstable models is to examine a model at multiple
levels of summarizations [5]. For example, models based on
functional connectivity could visualize the individual connections
that comprise a model (i.e., edge-level) while also summing the
model weights over each brain region (i.e., node-level) and
canonical functional networks (i.e., network-level). Averaging
features over regions or networks reduces the amount of noise
and redundant sources of information, leading to more stable
interpretations of the underlying anatomy and supporting
modern systems-level interpretations of the brain.
Dirty data and data quality can also influence where a model

falls in the trade-off between interpretability and prediction
performance. Putative confounds, such as head motion or aliasing
of respiratory and cardiac signals into fMRI data, are often
correlated with symptom severity [55, 56], such that those with
the highest symptoms have worse data quality. It can be debated
whether these factors are “signal” or “noise” as it depends on the
goals. For a model prioritizing performance, leveraging these
differences may improve prediction performance at the expense
of neurobiological interpretation. In contrast, removing these
confounds will likely improve neurobiological interpretation at the
expense of prediction performance. Nevertheless, when control-
ling for these or other covariates, training and testing data must
be kept independent (see, for example, Rule #2 from [16]). For
example, simply regressing a covariate from all data before
separation into training and testing data will lead to information
leakage between training and testing data and can inflate
prediction performance.
Perhaps, given the discussion above, the most interpretable

analyses are statistical inference methods that do not focus on
out-of-sample prediction. If so, why use predictive models at all?
Mental health disorders are complex in nature, and beyond the
neural substrates underlying mental health disorders, there
remains a myriad of contributing factors we have yet to
understand. The answer may be as simple as out of sample
testing (i.e., prediction) being better at handling these dirty, real-
world data than many traditional approaches (see “Dirty data” and
“Transdiagnostic prediction”). Additionally, a focus on only
explaining a particular theory or mechanism gives little knowledge
on how that may predict future outcomes, a putative weakness of
understanding of behavior [30]. Overall, interpretable predictive
models can complement explanatory models by filling in gaps left
unexplained by explanatory models.

SECTION 3: TOPICS IN PSYCHIATRIC APPLICATIONS
Finally, we discuss a role for predictive models in two popular
topics in psychiatry: transdiagnostic research and targeting
imaging-based brain markers. While significant discussion sur-
rounding these topics in psychiatry exists [11, 14, 57],
neuroimaging-based predictive models offer unique insights into
these topics. Predictive modeling naturally lends itself to analyzing
data in a transdiagnostic manner. These methods are routinely
used to cluster individuals based on biological factors (e.g.,
neuroimaging data) rather than symptoms. But, as detailed below,
there are other ways to use these approaches for transdiagnostic

Fig. 2 Benefits and trade-offs in using different models. While
exceptions may exist, the interpretability of models usually occurs at
the price of prediction performance and vice versa. In neuroscience
research, including understanding the neural circuits underlying
psychiatric disorders, interpretability (defined as the ability to
understand the cognitive and neurobiological underpinnings of a
model’s features) offers the greatest utility. In contrast, prediction
performance is a priority in many real-world products and
applications. We argue that the target goal for neuroimaging-
based predictive models on the interpretability/prediction perfor-
mance trade-off is on the interpretability side. At the moment,
interpretable predictive models are expected to better advance
neuroimaging research in psychiatry and complement traditional
approaches than models that sacrifice interpretation for prediction
performance.
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Fig. 3 Transdiagnostic prediction. Current theories postulate that symptoms lie on a continuum, where distinct symptoms group together in
overlapping clusters. As a result, and as discussed in “Dirty data”, real-world patients often exhibit many different patterns of symptoms and
comorbidities rather than a single distinct pattern. Such viewpoints make classification into textbook diagnoses difficult as these diagnoses
are based on meeting exemplar symptom patterns. Predictive models offer a solution to transdiagnostic problems, either by placing an
individual into a cluster of patients that most mimic their spectrum of symptoms (i.e., transdiagnostic clustering) or by identifying brain
networks that predict symptoms and generalize across a spectrum of traditional clinical categories and “healthy” individuals (i.e.,
transdiagnostic regression).
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research. Finally, we review the emerging literature to emphasize
how even complex neuroimaging-based predictive models can be
targets for interventions.

Transdiagnostic prediction
The introduction of the NIMH Research Domain Criteria [25] has
helped popularize the idea of transdiagnostic research in
psychiatry. Transdiagnostic research aims to eschew traditional
diagnostic categories, instead representing individuals along
behavioral and biological spectrums encompassing both patients
and individuals with subclinical symptoms. Such approaches can
cause problems for traditional inferential methods (e.g., ANOVAs),
where statistical power is formed by having homogeneous groups
of individuals that are maximally separated from each other.
Nevertheless, to best capture symptoms along a spectrum and
replicate real-world circumstances (see “Dirty data”), the separa-
tion between groups should not be maximized but rather
minimized. Predictive models handle this type of data well [2–
5, 7] and, thus, allow us to take a transdiagnostic approach toward
psychopathology that appreciates the heterogeneity of symptoms
within and across patients and “healthy” individuals (Fig. 3). As
such, transdiagnostic models putatively find more generalizable
brain features underlying behavior–rather than idiosyncratic ones
fit toward a specific disorder.
Currently, the most popular form of transdiagnostic predictive

modeling aims to account for the heterogeneity in mental health
by clustering individuals into smaller subgroups based on
biological measures (e.g., neuroimaging data) rather than
predetermined collections of symptoms (for example, from the
DSM-5 [58]). These promising approaches aim to overcome the
limitation of traditional classification approaches where labels are
poor (see “Dirty data”). Increasing evidence suggests that these
data-derived subgroups, which cut across diagnostic categories,
offer better labels to train on, leading to improved prediction of
treatment outcomes [59]. Accordingly, neuroimaging data have
been the primary data type for this transdiagnostic investigation
[59–65]. Additionally, semi-supervised learning, where labeled and
unlabeled data are used jointly, may represent a promising
approach to account for heterogeneity in mental health [66, 67].
Nevertheless, its goal of creating biologically driven diagnoses can
also be viewed as a weakness in that individuals are still
stringently categorized into groups rather than treating everyone
on a spectrum. Fuzzy clusters with overlapping boundaries
between groups can ameliorate this weakness, possibly even
allowing an individual’s probability of membership to shift as a
function of disease state (e.g., depression, mania). Moreover, when
treating patients, clustering that individual into a definitive group
may offer the most desired outcome as it may provide the clearest
blueprint for treatment. However, this is only optimal when there
are clear differences in treatment efficacy across these derived
groups.
An alternative approach is to predict continuous phenotypic

measures across a sample from diverse mental health back-
grounds with the aim of identifying a “transdiagnostic” network
generalizable across traditional clinical categories [68]. Examples
of this approach include training a model on patients with one
disorder and testing it on patients with a different disorder;
training a model of behavior in healthy individuals and testing to
see if it generalizes to pathology; or training a model of symptom
severity across multiple diagnostic groups. This approach has
been unfavorable in the past due to uncertainty about the
specificity of an effect and a desire for tightly controlled
diagnoses. For example, when mixing participants with psychiatric
disorders and controls for comparisons, the degree to which
outcomes are driven by patients relative to controls is unclear.
Alternatively, given a mix of patients with different mental health
backgrounds, it can be unclear whether models truly measure the
desired phenotype exclusively or are driven by unmeasured

confounds. Nevertheless, if symptoms a) range from average to
subclinical to clinical, b) can dynamically increase and decrease as
disease state changes, and c) putatively rely on the same brain
circuits, this type of approach is needed. Given the strengths of
predictive modeling to train on one population (e.g., healthy
individuals) and test in another (e.g., patients), these questions can
be systematically addressed in a step-wise manner by repeatedly
testing and training in different combinations of diagnostic
categories [69]. Such approaches also eliminate the need to place
an individual into a specific group--whether data-driven or
classically derived. The model itself will capture relevant brain
features about the phenotype being predicted. Nevertheless,
these studies are only emerging, and their ultimate utility is still to
be determined [69–71].

Targeting model features
Given the distributed, whole-brain nature of neuroimaging-based
predictive models and the resulting challenges to interpretation
(see “Interpretation or prediction”), questions remain regarding
how these results can be implemented in clinical practice and
even targeted by interventions. The most direct cases of using
predictive modeling in clinical practice would be using a case-
control classification model for diagnostic purposes or a
transdiagnostic classification model to sub-type an individual into
the intervention with the highest likelihood of success [62].
However, most classification models do not have sufficient
accuracy in, and generalization to, real-world data. As such,
showing that brain features underlying a model can be targeted
and modulated by a potential therapeutic approach provides a
translational avenue for predictive models. In other words, the
most promising models currently available might not be simply
the ones that perform the best, but the ones that can be targeted
by current or novel interventions. A range of works is emerging in
this area.
Given that pharmacology is a front-line treatment for most

psychiatric disorders, showing that the effect of a particular
medication is specific to the underlying brain features of a
predictive model provides both an external validation of the
model and a potential marker to compare competing medications
individually. For example, the medication that best modulates
brain features associated with the improvement of symptoms
potentially represents the best medication to treat those
symptoms. As predictive models operate at the individual level,
this process could help find the best medication for the patient at
hand, given a range of potential medications. Indeed, initial data
suggests that whole-brain predictive modeling approaches can be
effectively modulated with medication [72]. Using a predictive
model of sustained attention—an executive function that is
reduced in individuals with attention deficit/hyperactivity disorder
(ADHD)—it was shown that a single dose of methylphenidate, a
stimulant medication commonly used to treat ADHD, specifically
changed functional connectivity within that model. While
preliminary, these results open a novel line of research centering
around predictive modeling and pharmacological MRI aimed at
ameliorating psychiatric symptoms.
In addition to pharmacological treatment, predictive models

can directly inform newer experimental therapies. For example,
neurofeedback (via EEG, fNIRS, or fMRI) is a neurotherapeutic
approach where an individual learns to modify their brain function
to optimize symptoms, cognition, or behavior [73]. A challenge of
neurofeedback is finding the correct set of brain features for an
individual to learn to control. Putatively, these features should
strongly relate to, or perhaps better predict, the behavior that is to
be improved, such that exerting control over these features will
lead to a change in behavior. It is increasingly recognized that
many symptoms or behaviors cannot be localized to a single
region [74] but instead rely on the orchestrated activity of a
distributed array of regions [75, 76]. As such, pilot studies are
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starting to use complex, whole-brain models trained on indepen-
dent samples of participants as targets for neurofeedback [77, 78].
Nevertheless, this promising approach has only been applied in a
few studies and its efficacy remains unknown.
Finally, like neurofeedback, neuroimaging-based predictive

models have been used to inform which site to target using
transcranial magnetic stimulation (TMS). Connectivity models
based on normative databases have been used to individualize
targets for TMS, producing dramatic increases in treatment
response [79]. Moreover, researchers applied predictive modeling
with independent samples of individuals who received TMS for
major depression to identify distinct TMS targets associated with
improvements in dysphoric vs. anxiosomatic depressive symp-
toms [80]. These results highlight the potential of using whole-
brain predictive modeling approaches to individualize neuromo-
dulatory targets based on symptom presentation and/or indivi-
dual neuroanatomy, as well as to identify novel TMS targets for
clinical applications.
Collectively, there is ample evidence to illustrate that there are a

variety of promising approaches to target model features, all of
which have great potential to improve existing treatments and
facilitate the development of novel treatment approaches.

CONCLUSION
The use of neuroimaging-based predictive models is becoming
increasingly common in psychiatric research. While these are
powerful tools to analyze neuroimaging data, both the fields of
machine learning and psychiatry continue to evolve, adding
further complexities to current best practices [3, 4]. In this work,
we detail topics that we believe to be important in current and
future studies, but that also may be less familiar to the broader
community using neuroimaging-based predictive modeling in
mental health research. Furthermore, we anticipate that many of
these ideas will generalize to neuroimaging-based predictive
modeling in the context of neurological disorders and to
predictive modeling using other data types in psychiatry. Careful
consideration of these emerging topics in machine learning and
psychiatry will help researchers best apply neuroimaging-based
predictive models to push forward our understanding of mental
health.
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