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Alcohol use disorder is associated with DNA methylation-based
shortening of telomere length and regulated by TESPA1:
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Chronic heavy alcohol consumption is associated with increased mortality and morbidity and often leads to premature aging;
however, the mechanisms of alcohol-associated cellular aging are not well understood. In this study, we used DNA methylation
derived telomere length (DNAmTL) as a novel approach to investigate the role of alcohol use on the aging process. DNAmTL was
estimated by 140 cytosine phosphate guanines (CpG) sites in 372 individuals with alcohol use disorder (AUD) and 243 healthy
controls (HC) and assessed using various endophenotypes and clinical biomarkers. Validation in an independent sample of
DNAmTL on alcohol consumption was performed (N= 4219). Exploratory genome-wide association studies (GWAS) on DNAmTL
were also performed to identify genetic variants contributing to DNAmTL shortening. Top GWAS findings were analyzed using
in-silico expression quantitative trait loci analyses and related to structural MRI hippocampus volumes of individuals with AUD.
DNAmTL was 0.11-kilobases shorter per year in AUD compared to HC after adjustment for age, sex, race, and blood cell composition
(p= 4.0 × 10−12). This association was partially attenuated but remained significant after additionally adjusting for BMI, and
smoking status (0.06 kilobases shorter per year, p= 0.002). DNAmTL shortening was strongly associated with chronic heavy alcohol
use (ps < 0.001), elevated gamma-glutamyl transferase (GGT), and aspartate aminotransferase (AST) (ps < 0.004). Comparison of
DNAmTL with PCR-based methods of assessing TL revealed positive correlations (R= 0.3, p= 2.2 × 10−5), highlighting the accuracy
of DNAmTL as a biomarker. The GWAS meta-analysis identified a single nucleotide polymorphism (SNP), rs4374022 and 18 imputed
ones in Thymocyte Expressed, Positive Selection Associated 1(TESPA1), at the genome-wide level (p= 3.75 × 10−8). The allele C of
rs4374022 was associated with DNAmTL shortening, lower hippocampus volume (p < 0.01), and decreased mRNA expression in
hippocampus tissue (p= 0.04). Our study demonstrates DNAmTL-related aging acceleration in AUD and suggests a functional role
for TESPA1 in regulating DNAmTL length, possibly via the immune system with subsequent biological effects on brain regions
negatively affected by alcohol and implicated in aging.
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INTRODUCTION
Chronic heavy alcohol consumption reduces life expectancy, leads
to premature aging worldwide [1–3], and is associated with age-
related diseases such as cardiometabolic diseases, cancer and
decline in brain function [4–10]. It has been reported that
individuals with heavier alcohol use among those with alcohol
use disorder (AUD) have more pronounced age-related disease
and accelerated biological aging compared to healthy individuals
[11, 12]. Even though AUD and heavy alcohol consumption have
been shown to be risk factors for premature aging, the underlying
mechanisms between alcohol use and the aging process have not
been well studied [13, 14].

An emerging biomarker of cellular aging is telomere length (TL),
which has been associated with hypertension, diabetes, serious
mental illnesses, and early mortality [5, 14–16]. Telomeres are
tandem repetitive nucleotide sequences at chromosome ends that
play a critical role in facilitating complete chromosome replication.
Telomeres protect genomic DNA against double-strand breaks and
DNA end-joining and recombination. As a normal cellular process, a
small portion of telomeric DNA is lost with each cell division [17]. TL
shortens with natural aging because it is not fully replicated
during every cell division, so TL has served as a biological marker
to predict lifespan [18]. TL is influenced by genetics with a
heritability of 34–82% [19–22], and is associated with lifestyle
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factors, including cumulative stress exposures, smoking, alcohol use,
and psychiatric disorders that may affect cell aging and induce
damage to DNA [17, 23].
Although cellular TL shortening has been linked with AUD and

other substance use disorders, the association with broader
alcohol consumption phenotypes remains unclear [23–26]. In
addition, despite the importance of TL as a biomarker to illustrate
a direct or indirect association with age-related traits and health
complications, measuring TL remains challenging and subject to
confounding factors, including DNA extraction methods and other
technical variations [27].
In contrast to the classical approaches to measure TL,

innovative methods utilizing DNA methylation are now available
to predict TL [28]. Genome-wide DNA methylation (DNAm)
profiling has been used in AUD populations [29, 30] and can be
used to predict cellular DNA methylation telomere length
(DNAmTL) [28]. In addition, DNAmTL is easier to measure
compared to traditional polymer chain reaction (PCR)-based TL
assessments and might be a more reliable biomarker tracking
clinically important traits because methylation signatures might
represent changes in transcriptional programs and reflect
cumulative effects of exposures over time [28, 31, 32]. Moreover,
DNAmTL correlates strongly with age and performs better in
predicting lifespan, and also exhibits strong negative correlations
with other epigenetic clocks, with proxied TL reduction corre-
sponding to epigenetic age acceleration [28]. Similarly, DNAmTL
is heritable (h2 ≈ 0.48) and differs across race and ethnicities [28];
however, little is known about the genetic architecture under-
lying DNAmTL.
In this study, we first aimed to investigate the relationship

between AUD and DNAmTL shortening in the largest AUD cohort
currently available. Furthermore, we investigated whether
elevated liver function enzyme (LFE) biomarkers, as indicators
of AUD severity, were associated with DNAmTL. Replication was
performed in a large sample with a focus on alcohol consump-
tion. Technical validity of DNAmTL was conducted by comparing
DNAmTL to classic PCR-based methods. Given that aging is
often associated with cognitive decline, memory loss and
decreased hippocampal volumes, we also explored correlation
of DNAmTL with hippocampal structure. The secondary aims of
our study were to perform a genome-wide association study
(GWAS) on DNAmTL to identify genetic contributions to short-
ening in DNAmTL, and to conduct cis-expression quantitative
trait loci (eQTL) analyses of top targets to explore biological
relevance.

MATERIALS AND METHODS
Study participants
The sample consisted of 615 participants, 372 with AUD and 243 healthy
controls (HC) recruited at the National Institute on Alcohol Abuse and
Alcoholism (NIAAA) at the National Institutes of Health (NIH), USA. All
study participants completed the Structured Clinical Interview for
Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV-TR
(SCID-IV) to determine an alcohol-dependence (AD)/AUD diagnosis.
Given the overlap between the DSM-IV alcohol dependence criteria and
the DSM-5 AUD criteria, all participants with AD also met criteria for AUD
diagnosis. Participants provided a blood sample that was used for
genome-wide DNA methylation analysis as well as genome-wide
genotyping analysis and clinical biomarker collection, including LFE for
gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and
aspartate aminotransferase (AST). Participants also completed self-report
questionnaires, including the Timeline Followback (TLFB) [33], a measure
of alcohol intake over the previous 90 days, and the Fagerström Test for
Nicotine Dependence (FTND) [34]. FTND scores range from 0 to 10 with
participants scoring 0 indicating non-smokers, and those with scores >0
defined as smokers. All study participants provided written informed
consent in accordance with the Declaration of Helsinki and were
compensated for their time. The study was approved by the Institutional
Review Board of the NIH.

DNA methylation measurements
DNA methylation levels from whole blood samples were assessed using an
Infinium MethylationEPIC BeadChip microarray (Illumina Inc., San Diego,
California). We implemented a robust strategy to minimize the potential
confounding influence of batch effects on the hypotheses tested in the
data set. Prior to sample processing, all major potential sources of batch-
based confounding were considered including sodium bisulfite modifica-
tion batch (N= 96/plate) and microarray batch (N= 8/array). Within
technical batches, experimental conditions as well as covariates were
matched such that distributions in age, sex, race, and smoking status did
not vary between primary experimental groups within a batch. As such,
even with the presence of technical batch effects, the statistical
interpretation of findings would remain unaffected. Following sample
processing and array hybridization, we performed a batch correction using
scale-based correction of type I and type II probes followed by using Minfi
to correct background noise and WateRmelon for individual red and green
channel quantile normalization prior to beta calculation using the Dasen
method. Evaluation of red and green channel and beta frequency
distributions between batches did not reveal significant cross batch
effects and no further statistical manipulation of the data was deemed
necessary. After methylated and unmethylated intensities were quantile-
normalized, β-values were calculated using the ratio of intensities between
methylated and unmethylated alleles. Relative proportions of 6 types of
cells (granulocytes, monocytes, natural killer cells, B cells, CD4+ T cells,
and CD8+ T cells) were estimated using the Houseman estimation [35].
The final methylome dataset consisted of β-values for 835,928 CpG sites for
all 615 participants.

Calculating DNAm telomere length and statistical analysis
We estimated DNAm telomere length (DNAmTL) using a previously
published weighted average of 140 CpG sites selected by regressing
measured leukocyte telomere length (LTL—assessed by terminal restric-
tion fragmentation) on blood methylation data of 2256 individuals [28].
The predicted LTL, DNAmTL, possesses the same units (kilobase per year)
as that of mean terminal restriction fragments (TRF) measured by Southern
blotting [28] and the estimated DNAmTL in our sample has the same unit.
Age-adjusted DNAmTL was calculated by regressing DNAmTL on
chronological age, with a negative value suggesting that TL is shorter
than expected at a given age whereas a positive value suggests longer
than expected [36–39]. DNAmTL measures have been shown to
significantly correlate with LTL measured with TRF in 12 independent
cohorts (R= 0.4–0.5), indicating that it is an accurate alternative [28]. To
validate the performance of DNAmTL in our sample, we also examined the
correlation between DNAmTL and LTL measured by a ratio of the telomere
(T) to albumin (S) ratio (T/S ratio) in 191 HC that did not meet DSM-IV
alcohol dependence criteria.
To investigate differences in age-adjusted DNAmTL between AUD and

HC and associations with alcohol consumption in the AUD cohort (i.e.
number of heavy drinking days in a past 90 days), a linear model with
adjustment of age, sex, race, AUD diagnosis, and estimated proportions of
six blood cell types was used (basic model). The alcohol consumption
variables were standardized (mean= 0, SD= 1) to improve interpretation
of results from a different scale. The fully adjusted model included
additional covariates for smoking status and body mass index (BMI), which
are potential confounding factors influencing the aging process (full
model). Additional linear models, with the aforementioned basic and full
covariate structures, examined if the standardized alcohol-associated
biomarkers (i.e. GGT, ALT, AST) were associated with age-adjusted
DNAmTL. Furthermore, additional adjustment for comorbid substance
use disorders and psychiatric disorders was performed in the basic model.
There was no evidence to suggest a non-Gaussian distribution of the
residuals from the basic and full models (Shapiro-Wilk test, p > 0.05). As
other drug use disorders may be associated with DNAmTL shortening, we
conducted a sensitivity analysis by removing individuals with any
comorbid drug dependences in AUD and compared the results to those
with AUD with any comorbid substance use disorder. Statistical analyses
were performed in R version 4.0.5 [40].

GWAS analysis for DNAm telomere length
A genome-wide association study (GWAS) was performed in European
Ancestry (EA) and African Ancestry (AA) participants separately with the
Illumina OmniExpress and Illumina OmniExpressExome BeadChips (Illu-
mina, San Diego, CA) and the imputed genotypes. The imputation of EA
and AA was carried out separately by Minimac4 [41] using 1000 Genomes
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phase 3 panels as a reference sample [42]. To obtain ancestry/race
information, we ran EIGENSTRAT [43] and conducted a population
stratification analysis using the genome-wide data of all participants and
2504 individuals of the 1000 Genomes Project Phase 3.
Based on the genetically-identified EA and AA individuals with all

imputed genotypes, we conducted a series of quality control (QC)
procedures within each race group including: imputation accuracy (R2 >
0.7), sex check by X chromosome, Hardy-Weinberg equilibrium test in a
control sample in EA and AA separately (P > 10−5), SNP genotyping rate
(>0.99) and missingness by subjects (<0.03), and minor allele frequency
(MAF) over 1%. The final sample size for the GWAS analyses after QC
procedure was 297 in EA and 280 in AA. The total number of SNPs tested in
the GWAS was 8,640,517 for EA and 14,892,985 for AA.
A linear regression model was utilized to test for association between

each SNP and DNAmTL after adjusting for age, sex, smoking status, BMI,
blood cell counts, and AUD diagnosis. All analyses were performed in EA
and AA individuals separately with an additive genetic model. We then
carried out a meta-analysis with a fixed-effect model weighted by inverse
variance using the GWAS results of EA and AA samples using METAL [44].
SNPs that had substantial heterogeneity across the two GWAS results
(Cochran’s Q test p-value <0.05 and heterogeneity index I2 > 75%) were
removed. The total number of SNPs for the GWAS meta-analysis was
7,230,852. The threshold for the GWAS significant SNPs was set at P < 5 ×
10−8. All genetic analyses were conducted using PLINK 1.90 software.

In silico functional analyses and neuroimaging hippocampus
volume data
Given that a SNP in TESPA1 was a top finding in the meta GWAS and
TESPA1 is highly expressed in hippocampus and cerebral cortex regions
(www.proteinatlas.org [45]), we performed a cis-expression quantitative
trait loci (eQTL) analysis for TESPA1 to examine correlation between the top
variant and the transcript expression level in hippocampus tissue. We used
the Brain Expression Quantitative Trait Loci (eQTL) Almanac (BRAINEAC)
database [46], where the transcripts and exon-specific expression data
were available across 10 brain regions from 134 neurologically normal
European subjects.

Structural neuroimaging of MRI
A subset of our AUD participants (n= 144) completed a structural
magnetic resonance imaging (MRI) scan study. Hippocampus volumes
were measured using the standard Freesurfer (version 5.3.0; surfer.nmr.
mgh.harvard.edu) pipeline [47]. The individual T1-weighted images were
automatically segmented to measure gray matter volume of structures [48]
using the following steps: The images were resampled to 1mm3 voxels
and transformed to Talairach space; the intensity non-uniformity was
corrected [49]; the skull was stripped from the images [50]; and finally
auto-segmentation was performed with labels assigned based on
probabilistic location of structures. We conducted a reliability test by
examining a random number of the auto-segmented volumes from
FreeSurfer’s QA Tools. This included checking for outliers, calculating
signal-to-noise ratio, and visually examining generated snapshots of brain
volume segmentation. Hippocampus volumes were analyzed using a linear
model with the full model additional adjustment for estimated Total
Intracranial Volume (eTIV).

Replication studies with Generation Scotland (GS): Scottish
Family Health Study
Generation Scotland (GS) is a family-structured, population-based cohort
study of over 24,000 people from across Scotland, aged between 18 and 99
years at the study baseline (2006–2011). A broad set of phenotype data
were collected at baseline and data linkage to electronic health records
has enabled follow-up to collect information on incident disease
outcomes. Full details have been reported previously [51, 52]. DNA was
obtained from whole blood in ~20,000 people at the study baseline and
alcohol consumption was measured for the week prior to sampling. Of the
participants reporting normal levels of alcohol consumption relative to a
typical week, 4219 also had DNA methylation data, processed in two sets.
For set 1, a genetic relationship matrix was built using GCTA-GRM, and a
relatedness coefficient of <0.025 was specified to exclude related
individuals and we used only unrelated subject (n= 1501). Set 2 are
unrelated (genetic relatedness <0.05) to each other, and to the participants
from Set 1 (n= 2718). The quality control steps for Set 1 and Set 2
were nearly identical to one another and full details have been reported

previously. More detailed descriptions are included in the Supplementary
Methods. All statistical analyses were performed as per the discovery
analyses, with additional adjustment of 20 genetic principal components.

RESULTS
Study participant characteristics are described in Supplementary
Table S1. Participants with AUD and HC differed significantly in
chronological age (p < 0.0001) and AUD cases were older with a
mean age of 44.5 years (SD= 11). AUD cases had a higher
proportion of males (p= 0.005) and smokers (p < 0.0001), but
neither group differed in race/ancestry. Individuals with AUD
had increased LFTs and heavier clinical alcohol consumptions
than the HC group (p < 0.0001). The comorbidity rates of five
illicit drug dependences (opioid, cocaine, cannabis etc.), MDD,
and any anxiety disorder between AUD and HC were different
(p < 0.01) (Supplementary Table S1). Importantly, we validated
that DNAmTL was significantly correlated with LTL among 191
HC from our sample (R= 0.3, p= 2.2 × 10−5 in Fig. S1), which
confirms the usefulness of DNAmTL as a proxy to study TL-
related traits.

Association of DNAm telomere length with clinical
phenotypes
DNAmTL decreased with age more rapidly in AUD than HC
(Fig. 1A) and the age-adjusted DNAmTL was 0.11 kilobases/yr
shorter in AUD cases compared to HC in the basic model (Fig. 1B,
β=−0.11, p= 4.0 × 10−12). The decreased DNAmTL in AUD
remained significant after additional adjustment for smoking
status, BMI, and estimated blood cell proportions (β=−0.06, p=
0.002). Consistently, we found that DNAmTL was negatively
associated with clinical measures of alcohol consumptions;
DNAmTL was shortened by 0.04 kilobases/yr for every standard
deviation (SD= 8.2) of drinks per day in the past 90-days (Table 1,
β=−0.04; p= 2.1 × 10−6). The negative association remained
significant in the full model (β=−0.03; p= 0.0002). Increased
total drinks and heavy drinking days were also negatively
correlated with DNAmTL (β=−0.04, ps < 0.001). The accelerated
DNAmTL shortening was related to an increased number of
drinking days and alcohol dependence scale (ADS) score only in
the basic model (p < 0.05). Further analysis revealed that elevated
GGT and AST were associated with shortened DNAmTL (β=
−0.02; ps < 0.005) in both models even after adjusting for multiple
testing. These negative associations were also present within AUD
cases (Table S2). Sensitivity analysis showed that after removing all
comorbid substance use disorders (SUD) among individuals with
AUD, the results were attenuated, likely due to reduced sample
size and phenotype variability. In contrast, individuals with AUD
and comorbid SUD had stronger associations between DNAmTL
and drinking variables/GGT suggesting that phenotype severity/
heterogeneity contributes to shortened DNAmTL (Table S3). Sex-
specific analysis exhibited that males had stronger association
between DNAmTL shortening and alcohol use as well as liver
function enzyme abnormalities, while females had associations of
DNAmTL with mainly alcohol use (Table S4). Additional adjust-
ment for comorbid psychiatric disorders such as either/both drug
dependences and mood disorders did not change our main
findings of the association between alcohol and DNAmTL short-
ening (Table S5). Furthermore, the replication study with the two
datasets of Generation Scotland (GS) cohort showed that
increased weekly alcohol use was associated with shortened
DNAmTL (β=−0.002, p < 10−5, Table 1) in both models.

GWAS of age-adjusted DNAm telomere length
Each Manhattan plot of EA and AA GWAS results is shown
separately in Supplementary Figs. S2–3 and Table S6–7. We found
no evidence for genomic inflation in each EA (λGC= 1.01) and AA
studies (λGC= 1.04). We then removed SNPs that had substantial
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heterogeneity between the GWAS results of EA and AA (I2 > 75,
P < 0.05). The total number of SNPs for meta GWAS analysis was
7,230,852. Interestingly, at the genome-wide significant level,
meta-analysis of GWAS for DNAmTL showed that the intronic SNP,
rs4374022 in TESPA1 was significantly associated with DNAmTL
shortening by 0.058 kilobases per year (p= 3.9 × 10−8) with each
additional copy of the major allele C (Figs. 2A, B, 3A, Table 2) and
the additional 18 imputed SNPs in high LD with rs4374022 in
TESPA1 were observed at the genome-wide level (Table 2).
Cis-eQTL analysis using BRAINEAC expression data showed that

the C allele (AF= 78% in EA, 52% in AA) of the genome-wide
significant SNP, rs4374022 associated with a higher DNAmTL

shortening rate also had a significant association with decreased
TESPA1 mRNA expression in hippocampal tissue from postmortem
brains (Fig. 3B, β=−0.37, p= 0.04). The structural neuroimaging
analysis also showed that the C allele was correlated with smaller
left and right hippocampus volumes in the AUD sample (p < 0.01,
Fig. 3C, D). Given that TESPA1 SNP rs4374022 was associated with
DNAm TL shortening and smaller hippocampus volumes and
decreased mRNA expression in BRAINEAC data, further analysis
revealed that DNAmTL shortening among AUD cases was also
related to reduced volumes in hippocampus (Fig. 4A, B, β= 5.6 ×
105, p < 0.05), a key brain region implicated in aging-associated
cognitive decline [53, 54].

Table 1. Association of DNAmTL with alcohol use and liver function enzyme biomarkers.

Basic model Full model

β SE P-value β SE P-value

NIAAA sample

Total drinks −0.042 0.008 3.2 × 10−7 −0.031 0.008 0.0001

No of drinking days −0.023 0.010 0.03 −0.010 0.010 0.34

Average drinks per day −0.040 0.008 2.1 × 10−8 −0.030 0.008 0.0002

Heavy drinking days −0.039 0.011 0.0002 −0.022 0.011 0.04

ADS score −0.003 0.001 0.004 −0.002 0.001 0.023

GGT −0.020 0.007 0.003 −0.021 0.006 0.002

ALT −0.008 0.007 0.25 −0.006 0.007 0.36

AST −0.019 0.007 0.005 −0.018 0.007 0.005

GS sample of unit of weekly alcohol use

Data set1 (n= 1501) −0.0017 0.00032 2.09 × 10−7 −0.0009 0.00032 0.003

Data set2 (n= 2718) −0.0018 0.00025 1.44 × 10−12 −0.0012 0.00025 4.64 × 10−6

AUD alcohol use disorder, GGT gamma-glutamyl transferase, ALT alanine aminotransferase, AST aspartate aminotransferase, ADS Alcohol Dependence Scale,
Heavy drinking days are defined as ≥4 drinks a day for females; ≥5 drinks a day for males. Models were adjusted for age, gender, race, AUD diagnosis, six blood
cell counts in the basic model, and additionally adjusted for smoking status, and body mass index in the full model, NIAAA National Institute on Alcohol Abuse
and Alcoholism, GS Generation Scotland cohort.
Bold values indicate statistical significance P < 0.05.

Fig. 1 Association of age-adjusted DNAmTL with alcohol use disorder. A The scatter plot describes the DNAmTL with a linear fit at AUD and
HC respectively. Individuals with AUD had rapid decrease in DNAmTL comparing to HC. B The bar plots show estimated means of the Age-
adjusted DNAmTL after controlling for sex, race, six blood cell counts (basic model). The DNAmTL differed significantly between AUD cases
and HC (β=−0.11 kilobases per year, p= 4.0 × 10−12).
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Fig. 2 Cross-ancestry GWAS meta-analyses of DNAmTL identifies TESPA1. A Manhattan plot shows the meta-analysis P-values combining
the results of EA and AA GWAS based on a fixed effect model using weight of inverse variance. EA and AA studies comprised of 297 EA and
280 AA individuals. The y-axis reports -log transformed Meta P-values. The horizontal dashed line corresponds to the genome-wide
association threshold (p= 5.0 × 10−8). All SNPs in TESPA1 were colored with red. B Regional association plot of TESPA1 associated with
DNAmTL shortening. The y-axis shows the -log-transformed meta-analysis P-value. The colors represent linkage disequilibrium (LD) R2 in
European Ancestry Sample.
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DISCUSSION
This is the first study using DNAmTL to investigate the impact of
AUD and alcohol-associated clinical phenotypes on TL-related
biological aging. Our study revealed that cellular aging as
indicated by DNAmTL shortening, is accelerated in the AUD
group compared to HC (0.11 kilobases per year shorter in AUD,
p= 4.0 × 10−12). Additionally, we found significant associations
between DNAmTL shortening and heavy alcohol consumption
measured by average drinks per day, the number of heavy
drinking days, and total drinks in past 90 days (Table 1, ps < 0.001)
suggesting a dose-response relationship. Further clinical analyses
substantiated our findings and showed that DNAmTL shortening
was significantly associated with elevated GGT and AST, clinical
measures that often indicate a more severe AUD phenotype or
worse disease progression [8, 55, 8, 56]. These findings are in line
with previous studies that show more severe AUD phenotypes are
associated with accelerated biological aging [11, 12] and brain
aging [57]. Importantly, findings were replicated in a general
population showing that alcohol consumption is associated with
shortened DNAmTL.
While previous reports have shown an association of shortened

TL in AUD [23, 58, 59], we used a novel approach to predict TL via
DNA methylation. To confirm the validity of this approach, we
compared DNAmTL with conventionally measured TL in a subset
of our NIAAA sample and found positive correlations (Fig. S1, R=
0.3, p= 2.2 × 10−05). Lu et al. [28] found that DNAmTL out-
performed TL in showing stronger associations with age, sex,
ethnicity, lifestyle factors (i.e., smoking, BMI, etc.) and several
clinical biomarkers. In addition, DNAmTL had a better predictive

power than TL in capturing a correlation between time to death
and time to coronary heart disease or heart failure, as well as age-
at-menopause and dietary factors [28]. Considering the technical
complexities of traditional TL assessments, DNAmTL is more
robust and cost-effective for studying age-related health out-
comes [28] and captures more biological variation of blood cell
counts and is more strongly related to biomarkers of immunose-
nescence than measured TL [28]. DNAmTL is also an important
epigenetic biomarker, which captures additional aspects of
molecular aging, in particular the link between cell replication
and age-related diseases. Importantly, the 140 CpGs we used to
predict DNAmTL did not overlap with any previously identified
alcohol-related CpGs (2504 CpGs for alcohol consumption [60], 96
for AUD [29]), reducing the likelihood that alcohol might have a
confounding influence on measuring methylation-based TL.
To further elucidate the underlying molecular mechanisms and

genetic factors contributing to DNAmTL shortening in AUD [61],
we conducted GWAS on DNAmTL. Our GWAS meta-analyses
identified a genome-wide significant SNP rs4374022 and several
suggestive SNPs in TESPA1, which is highly expressed in several
brain regions (https://www.proteinatlas.org). TESPA1 is involved in
the development and maturation of T-cells and plays a critical role
in immune defects in the elderly [62]. Furthermore, animal models
have shown that TESPA1-knockout mice (Tespa1−/−, KO) exhibit
more severe inflammation [63]. Given that a critical component of
aging is a set of functional and structural changes in the immune
system that manifests in reduced B and T cell production [62],
genetic variation in TESPA1 might influence the aging process.
This hypothesis is intriguing as TESPA1 has also been identified as

A B

C D

p=3.75x10-8

p=0.002 p=0.01

Fig. 3 Association of TESPA1 rs4374022 with hippocampus volumes and mRNA expression. A The bar plot shows estimated means of Age-
adjusted DNAmTL adjusted for sex, race, blood cell proportions, BMI, and smoking status in all samples combined. Age-adjusted DNAmTL
differed significantly between genotype groups (p= 3.75 × 10−8). Effect allele C of genome-wide significant SNP rs4374022 is associated with
DNAmTL shortening by 0.058 kilobases per year, the y-axis is age-adjusted DNAmTL and the x-axis describes the genotype group of
rs4374022. B Box plot shows association of TESPA1 mRNA expression in the hippocampus brain tissue across genotype groups (p= 0.04), The
effect allele C is associated with decreased mRNA expression. The y-axis is a log2 transformed expression scale. C, D The bar plots show
estimated means left and right hippocampus volumes among AUD sample. C Decreased left hippocampus volumes is associated with the
number of allele C (additive effect: p= 0.002), D Decreased right hippocampus volumes is associated with the number of allele C (additive
effect: p= 0.01).
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one of the top ten differentially expressed genes in a recent study
investigating differential gene expression Alzheimer’s disease (AD)
(compared to healthy controls) in several brain regions [64].
Furthermore, TESPA1 is involved in the Ca2+ transfer from
endoplasmic reticulum (ER) to mitochondria (MT) [65]. The
molecular interactions between ER and mitochondria membrane,
referred as the MT-ER contacts, may play a crucial role in aging
and in the development of aging-associated diseases derived from
mitochondrial dysfunction as consequences of oxidative stress
[66–68]. Genetic variation in TESPA1 might further influence the
effects of heavy alcohol consumptions on immune and mitochon-
drial function, but additional studies are needed to substantiate
this hypothesis.
Biological validation and follow-up analyses using our structural

neuroimaging data and cis-eQTL data showed that the genome-
wide significant TESPA1 SNP, rs4374022, was also associated with
decreased hippocampal volumes and reduced mRNA expression
in hippocampal tissue from postmortem brain. This is the first
evidence that TESPA1 might be associated with brain volume
regulation, possibly via regulation of the immune system such as
modulating T-cell infiltration in hippocampus [69]. This finding is
intriguing as genes regulating the immune system have been
implicated in cognitive decline and Alzheimer’s disease [70–72].
In line with our finding that genetic variation in TESPA1 was

associated with decreased mRNA expression in hippocampus, we
observed that DNAmTL shortening was associated in general with
reduced hippocampal volume among AUD cases (Fig. 4, p < 0.05).
While several brain regions have been shown to be associated
with AUD and aging, the hippocampus is one of the brain regions
most affected by aging and the volume loss is estimated
to reach up to 35% over the age range of 30–90 years [73].
Alcohol misuse might accelerate hippocampal volume loss and
lead to cognitive decline over time [74]. While the exact
mechanisms of brain volumes loss due to heavy alcohol exposure
are unknown, our findings suggest that aging-related changes
in the immune system regulated via TESPA1 in conjunction
with heavy alcohol use might lead to advanced cellular aging,

structural brain changes, and subsequent cognitive declines.
Future studies might be necessary to investigate these possibi-
lities. The Meta-Analysis Gene-set Enrichment of Variant Associa-
tion (MAGENTA) analysis [75] was used to compare the results of
GWAS meta-analysis with gene sets of pre-specified pathways
related to aging and addiction, showing the top 5% findings
involved in the pathological mechanism of alcoholism and other
addictions and of disorders of dopaminergic and serotonergic
pathways (Table S8). Our top 25% findings significantly exhibited
more gene enrichments in long-term depression and drug
addictions pathways. The findings imply that the suggestive
variants may be polygenic and relevant to shared functional
biological pathways with the aging process in addiction.
Our study has several strengths, including a well-characterized

sample and replication cohort, enabling us to conduct various
endophenotypic analyses, including degree of disease severity
analyses. In addition to enrichment of clinical phenotypes, structural
neuroimaging data added power to validate biological function.
Second, all our findings exhibited consistent support in downstream
biological analyses. The variant contributing to DNAmTL shortening
also showed loss of hippocampus volume and decreased mRNA
expression, which could help elucidate the relationship between
the neuronal immune system and biological aging. Despite the
strengths, our findings do not demonstrate whether AUD is a
predisposing factor for shortened DNAmTL or if it is a consequence
of chronic heavy alcohol use. To address this limitation of our cross-
sectional study, future studies could consider collections of
methylation data at the multiple time points to investigate the
effect of long-term alcohol use on DNAmTL shortening [76].
Furthermore, our study was limited in collecting data on other
environmental factors such as exercise and diet that may influence
DNA methylation levels of telomere length and were not included
in the analyses, although we accounted for age, sex, race, smoking
status, and BMI. Our study had adequate power to detect the
association of DNAmTL with alcohol drinking behaviors, but was
underpowered for each ancestry-specific GWAS. Our cross-ancestry
GWAS meta-analysis identified genome-wide significant variants

Fig. 4 Association of DNAmTL with hippocampus volumes among individuals with AUD. A Correlations between age-adjusted DNAmTL
and left hippocampus volume among AUD (n= 144). The line was a linear fit which age-adjusted DNAmTL was regressed on left hippocampus
volume (β= 5.6 × 10−5, p= 0.02) after adjusting for sex, race, blood cell counts, smoking status, BMI, and eTIV. B Correlations between age-
adjusted DNAmTL and right hippocampus volume. The line was a linear fit which DNAmTL was regressed on right hippocampus volume (β=
4.5 × 10−5, p= 0.07) in the full model with additional adjustment for eTIV.
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associated with acceleration in DNAmTL shortening, although we
failed to replicate our findings in the GS cohorts, likely due to
differences in sample characteristics including phenotypic and
genetic heterogeneity [77]. Future studies may be needed to detect
additional common and rare functional variants with large effects in
a cross-ancestry GWAS setting.
In conclusion, DNAmTL shortening was associated with AUD

and heavy alcohol consumption behaviors including alcohol-
related clinical endophenotypes. In addition, we identified an
association between TESPA1 and DNAmTL shortening processes,
indicating a potential role of the immune system on biological
aging. Further important lines of investigation include the analysis
of shared mechanisms underlying heavy alcohol use and age-
related DNAmTL, which could lead to novel methods for detection
and treatment of aging-related morbidities.
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