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Artificial intelligence (AI) solutions that automatically extract information from digital histology images have shown great promise
for improving pathological diagnosis. Prior to routine use, it is important to evaluate their predictive performance and obtain
regulatory approval. This assessment requires appropriate test datasets. However, compiling such datasets is challenging and
specific recommendations are missing. A committee of various stakeholders, including commercial AI developers, pathologists, and
researchers, discussed key aspects and conducted extensive literature reviews on test datasets in pathology. Here, we summarize
the results and derive general recommendations on compiling test datasets. We address several questions: Which and how many
images are needed? How to deal with low-prevalence subsets? How can potential bias be detected? How should datasets be
reported? What are the regulatory requirements in different countries? The recommendations are intended to help AI developers
demonstrate the utility of their products and to help pathologists and regulatory agencies verify reported performance measures.
Further research is needed to formulate criteria for sufficiently representative test datasets so that AI solutions can operate with less
user intervention and better support diagnostic workflows in the future.
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INTRODUCTION
The application of artificial intelligence techniques to digital tissue
images has shown great promise for improving pathological
diagnosis1–3. They can not only automate time-consuming
diagnostic tasks and make analyses more sensitive and repro-
ducible, but also extract new digital biomarkers from tissue
morphology for precision medicine4.
Pathology involves a large number of diagnostic tasks, each

being a potential application for AI. Many of these involve the
characterization of tissue morphology. Such tissue classification
approaches have been developed for identifying tumors in a
variety of tissues, including lung5,6, colon7, breast8,9, and prostate9

but also in non-tumor pathology, e.g., kidney transplants10.
Further applications include predicting outcomes11,12 or gene
mutations5,13,14 directly from tissue images. Similar approaches are
also employed to detect and classify cell nuclei, e.g., to quantify
the positivity of immunohistochemistry markers like Ki67, ER/PR,
Her2, and PD-L115,16.

Testing AI solutions is an important step to ensure that they
work reliably and robustly on routine laboratory cases. AI
algorithms run the risk of exploiting feature associations that are
specific to their training data17. Such “overfitted” models tend to
perform poorly on previously unseen data. To obtain a realistic
estimate of the prediction performance on real-word data, it is
common practice to apply AI solutions to a test dataset. The
results are then compared with reference results in terms of task-
specific performance metrics, e.g., sensitivity, specificity, or area
under the receiver operating characteristic curve (ROC-AUC).
Test datasets may only be used once to evaluate the

performance of a finalized AI solution17. They may not be
considered during development. This can be considered a
consequence of Goodhart’s law stating that measures cease to
be meaningful when used as targets18: If AI solutions are
optimized for test datasets, they cannot provide realistic
performance estimates for real-world data. Test datasets are also
referred to as “hold-out datasets” or “(external) validation

Received: 6 May 2022 Revised: 24 July 2022 Accepted: 25 July 2022
Published online: 10 September 2022

1Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany. 2Technische Universität Berlin, DAI-Labor, Ernst-Reuter-Platz 7, 10587 Berlin,
Germany. 3Institute of Pathology, Carl Gustav Carus University Hospital Dresden (UKD), TU Dresden (TUD), Fetscherstrasse 74, 01307 Dresden, Germany. 4Charité –
Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117 Berlin, Germany.
5Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany. 6Medical University of Graz, Diagnostic and Research Center for Molecular
BioMedicine, Diagnostic & Research Institute of Pathology, Neue Stiftingtalstrasse 6, 8010 Graz, Austria. 7MoticEurope, S.L.U., C. Les Corts, 12 Poligono Industrial, 08349 Barcelona,
Spain. 8Lakera AI AG, Zelgstrasse 7, 8003 Zürich, Switzerland. 9QuIP GmbH, Reinhardtstraße 1, 10117 Berlin, Germany. 10Helmholtz-Zentrum Dresden Rossendorf, Bautzner
Landstraße 400, 01328 Dresden, Germany. 11Olympus Soft Imaging Solutions GmbH, Johann-Krane-Weg 39, 48149 Münster, Germany. 12Tribun Health, 2 Rue du Capitaine Scott,
75015 Paris, France. 13Mindpeak GmbH, Zirkusweg 2, 20359 Hamburg, Germany. 14These authors contributed equally: André Homeyer, Christian Geißler, Lars Ole Schwen, Falk
Zakrzewski, Theodore Evans, Klaus Strohmenger, Max Westphal, Roman David Bülow. ✉email: andre.homeyer@mevis.fraunhofer.de

www.nature.com/modpathol

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41379-022-01147-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41379-022-01147-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41379-022-01147-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41379-022-01147-y&domain=pdf
http://orcid.org/0000-0002-9910-7136
http://orcid.org/0000-0002-9910-7136
http://orcid.org/0000-0002-9910-7136
http://orcid.org/0000-0002-9910-7136
http://orcid.org/0000-0002-9910-7136
http://orcid.org/0000-0002-2464-4842
http://orcid.org/0000-0002-2464-4842
http://orcid.org/0000-0002-2464-4842
http://orcid.org/0000-0002-2464-4842
http://orcid.org/0000-0002-2464-4842
http://orcid.org/0000-0003-0195-9603
http://orcid.org/0000-0003-0195-9603
http://orcid.org/0000-0003-0195-9603
http://orcid.org/0000-0003-0195-9603
http://orcid.org/0000-0003-0195-9603
http://orcid.org/0000-0002-8527-7353
http://orcid.org/0000-0002-8527-7353
http://orcid.org/0000-0002-8527-7353
http://orcid.org/0000-0002-8527-7353
http://orcid.org/0000-0002-8527-7353
http://orcid.org/0000-0001-8431-9710
http://orcid.org/0000-0001-8431-9710
http://orcid.org/0000-0001-8431-9710
http://orcid.org/0000-0001-8431-9710
http://orcid.org/0000-0001-8431-9710
http://orcid.org/0000-0001-7173-3680
http://orcid.org/0000-0001-7173-3680
http://orcid.org/0000-0001-7173-3680
http://orcid.org/0000-0001-7173-3680
http://orcid.org/0000-0001-7173-3680
http://orcid.org/0000-0001-9921-4284
http://orcid.org/0000-0001-9921-4284
http://orcid.org/0000-0001-9921-4284
http://orcid.org/0000-0001-9921-4284
http://orcid.org/0000-0001-9921-4284
http://orcid.org/0000-0002-9691-4872
http://orcid.org/0000-0002-9691-4872
http://orcid.org/0000-0002-9691-4872
http://orcid.org/0000-0002-9691-4872
http://orcid.org/0000-0002-9691-4872
https://doi.org/10.1038/s41379-022-01147-y
mailto:andre.homeyer@mevis.fraunhofer.de
www.nature.com/modpathol


datasets.” The term “validation,” however, is not used consistently
in the machine learning community and can also refer to model
selection during development17.
Besides overfitting, AI methods are prone to “shortcut learn-

ing”19. Many datasets used in the development of AI methods
contain confounding variables (e.g., slide origin, scanner type,
patient age) that are spuriously correlated with the target variable
(e.g., tumor type)20. AI methods often exploit features that are
discriminative for such confounding variables and not for the
target variable21. Despite working well for smaller datasets
containing similar correlations, such methods fail in more
challenging real-world scenarios in ways humans never would22.
To minimize the likelihood of spurious correlations between
confounding variables and the target variable, test datasets must
be large and diversified20. At the same time, test datasets must be
small enough to be acquired with realistic effort and cost. Finding
a good balance between these requirements is a major challenge
for AI developers.
Comparatively little attention has been paid to compiling test

datasets for AI solutions in pathology. Datasets for training, on the
other hand, were considered frequently9,23–28. Training data are
collected with a different goal than test datasets: While training
datasets should produce the best possible AI models, test datasets
should provide the most realistic performance assessment for
routine use, which presents unique challenges.
Some publications address individual problems in compiling

test datasets in pathology, e.g., how to avoid bias in the
performance evaluation caused by site-specific image features in
test datasets29. Other publications provide general recommenda-
tions for evaluating AI methods for medical applications without
considering the specific challenges of pathology30–34.
Appropriate test datasets are critical to demonstrate the utility

of AI solutions as well as to obtain regulatory approval. However,
the lack of guidance on how to compile test datasets is a major
barrier to the adoption of AI solutions in laboratory practice.
This article gives recommendations for test datasets in

pathology. It summarizes the results of extensive literature reviews
and discussions by a committee of various stakeholders, including
commercial AI developers, pathologists, and researchers. This
committee was established as part of the EMPAIA project
(Ecosystem for Pathology Diagnostics with AI Assistance), aiming
to facilitate the adoption of AI in pathology35.

RESULTS
The next sections discuss and provide recommendations on
various aspects that must be considered when creating test
datasets. For meaningful performance estimates, test datasets
must be both diverse enough to cover the variability of data in
routine diagnostics and large enough to allow statistically
meaningful analyses. Relevant subsets must be covered, and test
datasets should be unbiased. Moreover, test datasets must be
sufficiently independent of datasets used in the development of
AI solutions. Comprehensive information about test datasets must
be reported and regulatory requirements must be met when
evaluating the clinical applicability of AI solutions.

Target population of images
Compiling a test dataset requires a detailed description of the
intended use of the AI solution to be tested. The intended use
must clearly indicate for which diagnostic task(s) the solutions
may be used, and whether the use is limited to images with
certain characteristics. All images an AI solution may encounter in
its intended use constitute its “target population of images.” A test
dataset must be an adequate sample of this target population (see
Fig. 1) to provide a reasonable estimate of the prediction
performance of the AI solution. For all applications in pathology,

the target population is distributed across multiple dimensions of
variability, see Table 1.
Biological variability: The visual appearance of tissue varies

between normal and diseased states. This is what AI solutions are
designed to detect and characterize. But even tissue of the same
category can look very different (see Fig. 2). The appearance is
influenced by many factors (e.g., genetic, transcriptional, epige-
netic, proteomic, and metabolomic) that differ between patients
as well as between demographic and ethnic groups36. These
factors often vary spatially (e.g., different parts of organs are
differently affected) and temporally (e.g., the pathological altera-
tions differ based on disease stage) within a single patient37.
Technical variability: Processing and digitization of tissue

sections consists of several steps (e.g., tissue fixation, processing,
cutting, staining and digitization) all of which can contribute to
image variability38. Differences in section thickness and staining
solutions can lead to variable staining appearances39. Artifacts
frequently occur during tissue processing, including elastic
deformations, inclusion of foreign objects, and cover glass
scratches40. Differences in illumination, resolution, and encoding
algorithms of slide scanner models also affect the appearance of
tissue images38.
Observer variability: Images in test datasets are commonly

associated with a reference label like a disease category or score
determined by a human observer. It is well known that the
assessment of tissue images is subject to intra- and inter-observer
variability41–47. This variability results from subjective biases (e.g.,
caused by training, specialization, and experience) but also from
inherent ambiguities in the images48,49.
Routine laboratory work occasionally produces images that are

unsuitable for the intended use of an AI solution, e.g., because
they are ambiguous or of insufficient quality. Most AI solutions
require prior quality assurance steps to ensure that solutions are
only applied to suitable images50,51. The boundary between
suitable and unsuitable images is usually fuzzy and there are
difficult images that cannot be clearly assigned to either category
(see Fig. 3).
Defining the target population is challenging and presumes a

clear definition of the intended use by the AI developer. The target
population of images must be defined before test data are
collected. It must be clearly stated which subsets of images fall
under the intended use. Such subsets may consist of specific
disease variants, demographic characteristics, ethnicities, staining
characteristics, artifacts, or scanner types. These subsets typically
overlap, e.g., the subset of images of one scanner type contains
images from different patient age groups. A particular challenge is
to define where the target population ends. Examples of images
within and outside the intended use can help human observers
sort out unsuitable images as objectively as possible.

Data collection
Test datasets must be representative of the entire target
population of images, i.e., sufficiently diverse and unbiased. To
minimize spurious correlations between confounding variables
and the target variable and to uncover shortcut learning in AI
methods, all dimensions of biological and technical variability
must be adequately covered for the classes considered20,28, also
reflecting the variability of negative cases without visible
pathology28,52.
All images encountered in the normal laboratory workflow must

be considered. One way to achieve this is to collect all cases that
occurred over a given time period52 long enough for a sufficient
number of cases to be collected (e.g., one year9). These cases
should be collected from multiple international laboratories, since
they differ in their spectra of patients and diseases, technical
equipment and operating procedures. Data should be collected at
the point in the workflow where the AI solution would be applied,
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taking into account possible prior quality assurance steps in the
workflow.
All data in a test dataset must be collected according to a

consistent acquisition protocol (see “Reporting”). The best way to
ensure this is to prospectively collect test data according to this
protocol. Retrospective datasets were typically compiled for a
different purpose and are thus likely to be subject to selection
bias, that is difficult to adjust for53. If retrospective data are used in
a test dataset, a comprehensive description of the acquisition
protocol must be available so that potential issues can be
identified54.

Annotation. Test datasets for AI solutions contain not only
images, but also annotations representing the expected analysis
result, e.g., slide-level labels or delineations of tissue regions. In
most cases, such reference annotations must be prepared by
human observers with sufficient experience in the diagnostic use
case. Since humans are prone to intra- and inter-observer
variability, annotations in test datasets should be created by
multiple observers from different hospitals or laboratories. For
unequivocal results, it can be helpful to organize consensus
conferences and to use standardized electronic reporting
formats41. Any remaining disagreement should be documented
with justification (e.g., suboptimal sample quality) and considered
when evaluating AI solutions. Semi-automatic annotation meth-
ods can help reduce the effort required for manual
annotation55,56. However, they can introduce biases themselves
and should therefore be monitored by human observers.

Curation. Unsuitable data that does not fit the intended use of
an AI solution should not be included in a test dataset. Such data
usually must be detected by human observers, e.g., in a dedicated
data curation step or during the generation of reference
annotations. To avoid selection bias, it is important not to exclude
artifacts or atypical images that are part of the intended use of the
product9,52,57.
There are automated tools to support the detection of

unsuitable data58. Some approaches detect unsuitable images
based on basic image features such as brightness, predominant
colors, and sharpness59,60 or by detecting typical artifacts like
tissue folds and air bubbles61,62. Other methods analyze domain
shifts63–65 or use dedicated neural networks trained for outlier
detection66. There are also approaches for detecting outliers
depending on the tested AI solution63,67–70. Although these
approaches can help exclude unsuitable images from test
datasets, they do not yet appear to be mature enough to be
used entirely without human supervision.

Synthetic data. There are a variety of techniques for extending
datasets with synthetic data. Some techniques alter existing
images in a generic (e.g., rotation, mirroring) or histology-
specific way (e.g., stain transformations26 or emulation of image
artifacts40,71–76). Other techniques create fully synthetic images
from scratch77–81. These techniques are useful for data
augmentation1,2,82, i.e., enriching development data in order
to avoid overfitting and increase robustness. However, they

cannot replace original real-world data for test datasets. Because
all of these techniques are based on simplified models of real-
world variability, they are likely to introduce biases into a test
dataset and make meaningful performance measurement
impossible.

Sample size
Any test dataset is a sample from the target population of images,
thus any performance metric computed on a test dataset is
subject to sampling error. In order to draw reliable conclusions
from evaluation results, the sampling error must be sufficiently
small. Larger samples generally result in lower sampling error, but
are also more expensive to produce. Therefore, the minimum
sample size required to achieve a maximum allowable sampling
error should be determined prior to data collection.

Fig. 1 Schematic overview of sampling regimes for performance assessment in the entire target population of images or in specific
subsets. Overall performance assessment requires a representative sample along all dimensions of variability, relevant subsets are typically
limited along one dimension (e.g., age range or scanner type).

Table 1. Examples of data variabilities within the intended
use20, 26, 36, 38–40, 61, 136–138.

Origin Variabilities

Patient • Patient ethnicity
• Patient demographics
• Disease stage/severity
• Rare cases of disease
• Comorbidities
• Biological differences (genetic,
transcriptional, epigenetic, proteomic, and
metabolomic)

Specimen
sampling

• Tissue heterogeneity
• Size of tissue section
• Coverage of diseased/healthy/boundary
regions

• Tissue damage, e.g., torn, cauterized
• Surgical ink present

Slide processing • Inter-material and device differences
• Preparation differences (fixation,
dehydration; freezing; mechanical
handling)

• Cutting artifacts (torn, folded, deformed,
thick or inhomogeneously thick tissue)

• Foreign matter/floaters in specimen
• Over-/under-staining, inhomogeneous
staining

• Foreign objects on slide/cover slip (dirt,
stain residue, pen markings, fingerprint)

• Cracks, air bubbles, scratches
• Slide age

Imaging/image
processing

• Inter- and intra-scanner differences
• Out-of-focus images, heterogeneous focus
• Amount of background in analyzed
image region

• Magnification/image resolution
• Heterogeneous illumination
• Grid noise, stitching artifacts
• Lossy image compression

Ground truth
annotation

• Inter- and intra-observer differences
• Ambiguous cases
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Many different methods have been proposed for sample size
determination. Most of them refer to statistical significance tests
which are used to test a prespecified hypothesis about a
population parameter (e.g., sensitivity, specificity, ROC-AUC) on
the basis of an observed data sample83–85. Such sample size
determination methods are commonly used in clinical trial
planning and available in many statistical software packages70.
When evaluating AI solutions in pathology, the goal is more

often to estimate a performance metric with a sufficient degree of
precision than to test a previously defined hypothesis. Confidence

intervals (CIs) are a natural way to express the precision of an
estimated metric and should be reported instead of or in addition
to test results86. A CI is an interval around the sample statistic that
is likely to cover the true population value at some confidence
level, usually 95%87. The sample statistic can either be the
performance metric itself or a difference between the perfor-
mance metrics of two methods, e.g., when comparing perfor-
mance to an established solution.
When using CIs, the sample size calculation can be based on the

targeted width of the CI which is inversely proportional to the

Fig. 2 Examples of variability between biopsy images, illustrating a combination of inter- and intraindividual biological variability
(tissue structure) and inter-individual technical variability (staining). The images show H&E-stained breast tissue of female patients with
invasive carcinomas of no special type, scanned at 40× objective magnification.

Fig. 3 Examples of different severity levels of imaging artifacts. The leftmost images are clearly within the intended use of algorithms for
analyzing breast cancer histologies, whereas the rightmost images are clearly unsuitable. However, it is not obvious where to draw the line
between those two regimes. The top row shows simulated foreign objects, the bottom row shows simulated focal blur, the original tissue
images show H&E-stained breast tissue of female patients with invasive carcinomas of no special type, scanned at 40× objective magnification
(same as in Fig. 1).
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precision of the performance estimation86. Several approaches
have been proposed for that matter88–92. To determine a
minimum sample size, assumptions regarding the sample statistic,
its variability, and usually also its distributional form must be
made. The open-source software “presize” implements several of
these methods and provides a simple web-based user interface to
perform CI-based sample size calculations for common perfor-
mance metrics93.

Subsets
AI solutions that are very accurate on average often perform much
worse on certain subsets of their target population of images94, a
phenomenon known as “hidden stratification.” Such differences in
performance can exceed 20%22. Hidden stratification occurs
particularly in low-prevalence subsets, but may also occur in
subsets with poor label quality or subtle distinguishing character-
istics22. There are substantial differences in cancer incidence, e.g.,
by gender, socioeconomic status, and geographic region95. Hence,
hidden stratification may result in disproportionate harm to
patients in less common demographic groups and jeopardize the
clinical applicability of AI solutions22. Common performance
measures computed on the entire test dataset can be dominated
by larger subsets and do not indicate whether there are subsets
for which an AI solution underperforms96.
To detect hidden stratification, AI solutions must be evaluated

independently on relevant subsets of the target population of
images (e.g., certain medical characteristics, patient demo-
graphics, ethnicities, scanning equipment)22,94, see Fig. 1. This
means in particular that the metadata for identifying the subsets
must be available30. Performance evaluation on subsets is an
important requirement to obtain clinical approval by the FDA (see
“Regulatory requirements”). Accordingly, such subsets should be
specifically delineated within test datasets. Each subset needs to
be sufficiently large to allow statistically meaningful results (see
“Sample size”). It is important to provide information on why and
how subsets were collected so that any issues AI solutions may
have with specific subsets can be specifically tracked (see
“Reporting”). Identifying subsets at risk of hidden stratification is
a major challenge and requires extensive knowledge of the use
case and the distribution of possible input images22. As an aid,
potentially relevant subsets can also be detected automatically
using unsupervised clustering approaches such as k-means22. If a
detected cluster underperforms compared to the entire dataset,
this may indicate the presence of hidden stratification that needs
further examination.

Bias detection
Biases can make test datasets unsuitable for evaluating the
performance of AI algorithms. Therefore, it is important to identify
potential biases and to mitigate them early during data
acquisition28. Bias, in this context, refers to sampling bias, i.e.,
the test dataset is not a randomly drawn sample from the target
population of images. Subsets to be evaluated independently may
be biased by construction with respect to particular features (e.g.,
patient age). Here, it is important to ensure that the subsets do not
contain unexpected biases with respect to other features. For
example, the prevalence of slide scanners should be independent
of patient age, whereas the prevalence of diagnoses may vary by
age group. Bias detection generally involves comparing the
feature distributions of the test dataset and the target population
of images. Similar methods can also be used to test the diversity
or representativeness of a test dataset.
For features represented as metadata (e.g., patient age, slide

scanner, or diagnosis), the distributions of the test dataset and
target population can be compared using summary statistics (e.g.,
mean and standard deviation, percentiles, or histograms) or
dedicated representativeness metrics97,98. Detection of bias in an
entire test dataset requires a good estimate of the feature

distribution of the target population of images. Bias in subsets can
be detected by comparing the subset distribution to the entire
dataset. Several toolkits for measuring bias based on metadata
have been proposed99,100 and evaluated101.
Detecting bias in the image data itself is more challenging.

Numerous features can be extracted from image data and it is
difficult to determine the distribution of these features in the
target population of images. Similar to automatic detection of
unsuitable data, there are automatic methods to reveal bias in
image data. Domain shifts63 can be detected either by comparing
the distributions of basic image features (e.g., contrast) or by more
complex image representations learned through specific neural
network models63,66,102. Another approach is to train trivial
machine learning models with modified images from which
obvious predictive information has been removed (e.g., tumor
regions): If such models perform better than chance, this indicates
bias in the dataset103,104.

Independence
In the development of AI solutions, it is common practice to split a
given dataset into two sets, one for development (e.g., a training
and a validation set for model selection) and one for testing17. AI
methods are prone to exploit spurious correlations in datasets as
shortcut opportunities19. In this case, the methods perform well
on data with similar correlations, but not on the target population.
If both development and test datasets are drawn from the same
original dataset, they are likely to share spurious correlations, and
the performance on the test dataset may overestimate the
performance on the target population. Therefore, datasets used
for development and testing need to be sufficiently independent.
As explained below, it is not sufficient for test datasets to merely
contain different images than development datasets17,19.
To account for memory constraints, histologic whole-slide

images (WSIs) are usually divided into small sub-images called
“tiles.” AI methods are then applied to each tile individually, and
the result for the entire WSI is obtained by aggregating the results
of the individual tiles. If tiles are randomly assigned, tiles from the
same WSI can end up in both the development and the test
datasets, possibly inflating performance results. A substantial
number of published research studies are affected by this
problem105. Therefore, to avoid any risk of bias, none of the tiles
in a test dataset may originate from the same WSI as the tiles in
the development set105.
Datasets can contain site-specific feature distributions29. If these

site-specific features are correlated with the outcome of interest,
AI methods might use these features for classification rather than
the relevant biological features (e.g., tissue morphology) and be
unable to generalize to new datasets. A comprehensive evaluation
based on multi-site datasets from The Cancer Genome Atlas
(TCGA) showed that including data from one site in development
and test datasets often leads to overoptimistic estimates of model
accuracy29. This study also found that commonly used color
normalization and augmentation methods did not prevent models
from learning site-specific features, although stain differences
between laboratories appeared to be a primary source of site-
specific features. Therefore, the images in development and test
datasets must originate not only from different subjects, but
should also from different clinical sites31,106,107.
As described in the Introduction section, a given AI solution

should only be evaluated once against a given test dataset17.
Datasets published in the context of challenges or studies (many
of which are based on TCGA4 and have regional biases108) should
generally not be used as test datasets: it cannot be ruled out that
they were taken into account in some form during development,
e.g., inadvertently or as part of pretraining. Ideally, test datasets
should not be published at all and the evaluation should
be conducted by an independent body with no conflicts of
interest30.
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Reporting
Adequate reporting of test datasets is essential to determine
whether a particular dataset is appropriate for a particular AI
solution. Detailed metadata on the coverage of various dimen-
sions of variability is required for detecting bias and identifying
relevant subsets. Data provenance must be tracked to ensure that
test data are sufficiently disjoint from development data28,29.
Requirements for the test data109 and acquisition protocols110

should also be reported so that further data can be collected later.
Accurate reporting of test datasets is important in order to submit
evaluation results traceable to the test data for regulatory
approval111.
Various guidelines for reporting clinical research and trials,

including diagnostic models, have been published112. Some of
these have been adapted specifically for machine learning
approaches113,114 or such adaptation is under development115–118.
However, only very few guidelines elaborate on data reporting119,
and there is not yet consensus on structured reporting of test
datasets, particularly for computational pathology.
Data acquisition protocols should comprehensively describe

how and where the test dataset was acquired, handled, processed,
and stored109,110. This documentation should include precise
details of the hardware and software versions used and also cover
the creation of reference annotations. Moreover, quality criteria for
rejecting data and procedures for handling missing data119 should
be reported, i.e., aspects of what is not in the dataset. To facilitate
data management and analysis, individual images should be
referenced via universally unique identifiers120 and image
metadata should be represented using standard data
models121,122. Protocols should be defined prior to data acquisi-
tion when prospectively collecting test data. Completeness and
clarity of the protocols should be verified during data acquisition.
Reported information should characterize the acquired dataset

in a useful way. For example, summary statistics allow an initial
assessment whether a given dataset is an adequate sample of the
target population (see section “Bias detection”). Relevant subsets
and biases identified in the dataset should be reported as well.
Generally, one should collect and report as much information as
feasible with the available resources, since retrospectively obtain-
ing missing metadata is hard or impossible. If there will be
multiple versions of a dataset, e.g., due to iterative data acquisition
or review of reference annotations, versioning is needed. Suitable
hashing can guarantee integrity of the entire dataset as well as its
individual samples, and identify datasets without disclosing
contents.

Regulatory requirements
AI solutions in pathology are in vitro diagnostic medical devices
(IVDMDs) because they evaluate tissue images for diagnostic
purposes outside the human body. Therefore, regulatory approval
is required for sale and use in a clinical setting123. The U.S. Food
and Drug Administration (FDA) and European Union (EU) impose
similar requirements to obtain regulatory approval. This includes
compliance with certain quality management and documentation
standards, a risk analysis, and a comprehensive performance
evaluation. The performance evaluation must demonstrate that
the method provides accurate and reliable results compared to a
gold standard (analytical performance) and that the method
provides real benefit in a clinical context (clinical performance).
Good test datasets are an essential prerequisite for a meaningful
evaluation of analytical performance.

EU + UK. In the EU and UK, IVDMDs are regulated by the In vitro
Diagnostic Device Regulation (IVDR, formally “Regulation 2017/
746”)124. After a transition period, compliance with the IVDR will
be mandatory for novel routine pathology diagnostics as of May
26, 2022. The IVDR does not impose specific requirements on test
datasets used in the analytical performance evaluation. However,

the EU has put forward a proposal for an EU-wide regulation on
harmonized rules for the assessment of AI125.
The EU proposal125 considers AI-based IVDMDs as “high-risk AI

systems” (preamble (30)). For test datasets used in the evaluation
of such systems, the proposal imposes certain quality criteria: test
datasets must be “relevant, representative, free of errors and
complete” and “have the appropriate statistical properties” (Article
10.3). Likewise, it requires test datasets to be subject to
“appropriate data governance and management practices” (pre-
amble (44)) with regard to design choices, suitability assessment,
data collection, and identification of shortcomings.

USA. In the US, IVDMDs are regulated in the Code of Federal
Regulations (CFR) Part 809126. Just like the IVDR, the CFR does not
impose specific requirements on test datasets used in the
analytical performance evaluation. However, the CFR states that
products should be accompanied by labeling stating specific
performance characteristics (e.g., accuracy, precision, specificity,
and sensitivity) related to normal and abnormal populations of
biological specimens.
In 2021, the FDA approved the first AI software for pathology127.

In this context, the FDA has established a definition and
requirements for approval of generic AI software for pathology,
formally referred to as “software algorithm devices to assist users
in digital pathology”128.
Test datasets used in analytical performance studies are

expected to contain an “appropriate” number of images. To be
“representative of the entire spectrum of challenging cases” (3.ii.A.
and B. of source128) that can occur when the product is used as
intended, test datasets should cover multiple operators, slide
scanners, and clinical sites and contain “clinical specimens with
defined, clinically relevant, and challenging characteristics.”(3.ii.B.
of source128) In particular, test datasets should be stratified into
relevant subsets (e.g., by medical characteristics, patient demo-
graphics, scanning equipment) to allow separate determination of
performance for each subset. Case cohorts considered in clinical
performance studies (e.g., evaluating unassisted and software-
assisted evaluation of pathology slides with intended users) are
expected to adhere to similar specifications.
Product labeling according to CFR 809 was also defined in more

detail. In addition to the general characteristics of the dataset (e.g.,
origin of images, annotation procedures, subsets, …), limitations
of the dataset (e.g., poor image quality or insufficient sampling of
certain subsets) that may cause the software to fail or operate
unexpectedly should be specified.
In summary, there are much more specific requirements for test

datasets in the US than in the EU. However, none of the
regulations clearly specify how the respective requirements can
be achieved or verified.

DISCUSSION
Our recommendations on compiling test datasets are summarized
in Fig. 4. They are intended to help AI developers demonstrate the
robustness and practicality of their solutions to regulatory
agencies and end users. Likewise, the advice can be used to
check whether test datasets used in the evaluation of AI solutions
were appropriate and reported performance measures are mean-
ingful. Much of the advice can also be transferred to image
analysis solutions without AI and to similar domains where
solutions are applied to medical images, such as radiology or
ophthalmology.
A key finding of the work is that it remains challenging to

compile test datasets and that there are still many unanswered
questions. The current regulatory requirements remain vague and
do not specify in detail important aspects such as the required
diversity or size of a test dataset. In principle, the methods
described in the “Bias detection” and “Sample size” sections can
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be used to assess whether a sample is sufficiently diverse or large,
respectively. These methods depend on a precise and compre-
hensive definition of the target population of images. However,
since this population usually cannot be formally specified but only
roughly described, it can be difficult to apply these methods in a
meaningful way in practice.
For regulatory approval, a plausible justification is needed why

the test dataset used was good enough. Besides following the
advice in this paper, it can also be helpful to refer to published
studies in which AI solutions have been comprehensively
evaluated. Additional guidance can be found in the summary
documents of approved AI solutions published by the FDA, which
include information on their evaluation106. It turns out that many
of the AI devices approved by the FDA were evaluated only at a
small number of sites106 with limited geographic diversity129. Test
sets used in current studies typically involved thousands of slides,
hundreds of patients, less than five sites, and less than five
scanner types50,52,130,131.
Today, AI solutions in pathology may not be used for primary

diagnosis, but only in conjunction with a standard evaluation by
the pathologist128. Therefore, compared to a fully automated
usage scenario, requirements for robustness are considerably
lower. This also applies to the expected confidence in the
performance measurement and the scope of the test dataset
used. In a supervised usage scenario, the accuracy of an AI
solution determines how often the user needs to intervene to
correct results, and thus its practical usefulness. End users are
interested in the most meaningful evaluation of the accuracy of AI
solutions to assess their practical utility. Therefore, a comprehen-
sive evaluation of the real-world performance of a product, taking
into account the advice given in this paper, can be an important
marketing tool.

Limitations and outlook
Some aspects of compiling test datasets were not considered in
this article. One aspect is how to collaborate with data donors, i.e.,

how to incentivize or compensate them for donating data. Other
aspects include the choice of software tools and data formats for
the compilation and storage of datasets or how the use of test
datasets should be regulated. These aspects must be clarified
individually for each use case and the AI solution to be tested.
Furthermore, we do not elaborate on legal aspects of collecting
test data, e.g., obtaining consent from patients, privacy regula-
tions, licensing, and liability. For more details on these topics, we
refer to other works132. The present paper focuses exclusively on
compiling test datasets. For advice on other issues related to
validating AI solutions in pathology, such as how to select an
appropriate performance metric, how to make algorithmic results
interpretable, or how to conduct a clinical performance evaluation
with end users, we also refer to other works30,31,33,34,133,134.
For AI solutions to operate with less user intervention and to

better support diagnostic workflows, real-world performance must
be assessed more accurately than is currently possible. The key to
accurate performance measures is the representativeness of the
test dataset. Therefore, future work should focus on better
characterizing the target population of images and how to collect
more representative samples. Empirical studies should be
conducted on how different levels of coverage of the variability
dimensions (e.g., laboratories, scanner types) affect the quality of
performance evaluation for common use cases in computational
pathology.
In addition, clear criteria should be developed to delineate the

target population from unsuitable data. Currently, the assessment
of the suitability of data is typically done by humans, which might
introduce subjective bias. Automated methods can help to make
the assessment of suitability more objective (see “Curation”) and
should therefore be further explored. However, such automated
methods must be validated on dedicated test datasets
themselves.
Another open challenge is how to deal with changes in the

target population of images. Since the intended use for a
particular product is fixed, in theory the requirements for the test

Fig. 4 Overview of recommendations on compiling test datasets. Prior to data acquisition, the acquisition process must be thoroughly
planned. In particular, the intended use of the AI solution must be precisely understood in order to derive the requirements for test datasets.
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datasets should also be fixed. However, the target distribution of
images is influenced by several factors that change over time.
These include technological advances in specimen and image
acquisition, distribution of scanner systems used, and shifting
patient populations133,135. As part of post-market surveillance, AI
solutions must be continuously monitored during their entire
lifecycle111. Clear processes are required for identifying changes in
the target population of images and adapting performance
estimates accordingly.

CONCLUSIONS
Appropriate test datasets are essential for meaningful evaluation
of the performance of AI solutions. The recommendations
provided in this article are intended to help demonstrate the
utility of AI solutions in pathology and to assess the validity of
performance studies. The key remaining challenge is the vast
variability of images in computational pathology. Further research
is needed on how to formalize criteria for sufficiently representa-
tive test datasets so that AI solutions can operate with less user
intervention and better support diagnostic workflows in the
future.
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