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A B S T R A C T   

Background and Objective: In the current COVID-19 outbreak, efficient testing of COVID-19 individuals has proven 
vital to limiting and arresting the disease’s accelerated spread globally. It has been observed that the severity and 
mortality ratio of COVID-19 affected patients is at greater risk because of chronic pulmonary diseases. This study 
looks at radiographic examinations exploiting chest X-ray images (CXI), which have become one of the utmost 
feasible assessment approaches for pulmonary disorders, including COVID-19. Deep Learning(DL) remains an 
excellent image classification method and framework; research has been conducted to predict pulmonary dis
eases with COVID-19 instances by developing DL classifiers with nine class CXI. However, a few claim to have 
strong prediction results; because of noisy and small data, their recommended DL strategies may suffer from 
significant deviation and generality failures. 
Methods: Therefore, a unique CNN model(PulDi-COVID) for detecting nine diseases (atelectasis, bacterial- 
pneumonia, cardiomegaly, covid19, effusion, infiltration, no-finding, pneumothorax, viral-Pneumonia) using 
CXI has been proposed using the SSE algorithm. Several transfer-learning models: VGG16, ResNet50, VGG19, 
DenseNet201, MobileNetV2, NASNetMobile, ResNet152V2, DenseNet169 are trained on CXI of chronic lung 
diseases and COVID-19 instances. Given that the proposed thirteen SSE ensemble models solved DL’s constraints 
by making predictions with different classifiers rather than a single, we present PulDi-COVID, an ensemble DL 
model that combines DL with ensemble learning. The PulDi-COVID framework is created by incorporating 
various snapshots of DL models, which have spearheaded chronic lung diseases with COVID-19 cases identifi
cation process with a deep neural network produced CXI by applying a suggested SSE method. That is familiar 
with the idea of various DL perceptions on different classes. 
Results: PulDi-COVID findings were compared to thirteen existing studies for nine-class classification using 
COVID-19. Test results reveal that PulDi-COVID offers impressive outcomes for chronic diseases with COVID-19 
identification with a 99.70% accuracy, 98.68% precision, 98.67% recall, 98.67% F1 score, lowest 12 CXIs zero- 
one loss, 99.24% AUC-ROC score, and lowest 1.33% error rate. Overall test results are superior to the existing 
Convolutional Neural Network(CNN). To the best of our knowledge, the observed results for nine-class classi
fication are significantly superior to the state-of-the-art approaches employed for COVID-19 detection. 
Furthermore, the CXI that we used to assess our algorithm is one of the larger datasets for COVID detection with 
pulmonary diseases. 
Conclusion: The empirical findings of our suggested approach PulDi-COVID show that it outperforms previously 
developed methods. The suggested SSE method with PulDi-COVID can effectively fulfill the COVID-19 speedy 
detection needs with different lung diseases for physicians to minimize patient severity and mortality.   

1. Introduction 

An unexpected death and debilitating infection worldwide, are 

caused by SARS-CoV-2, which patients have detected with COVID-19. 
One-to-one COVID-19 transmission occurs quickly among two persons 
in intimate exposure via plumes or minute droplets produced by talk, 
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coughing, and sneezing. After becoming infectious, patients commonly 
experience these signs: flu, coughing, shortness of breath, smell, and 
taste [1]. As of 07 January 2022, there are still more than 298,915,721 
infected cases, 5,469,303 people have died, and 9,118,223,397 vaccine 
doses have been administered worldwide [5]. 

In general, the RT-PCR test is utilized to diagnose COVID-19. It can 
detect infectious RNA in a nasopharyngeal swab [15]. It necessitates 
specialized materials and kits that are not readily available. It requires at 
least 8–12 h, which is inconvenient because COVID-19 + Ve patients 
should be detected and followed as soon as feasible. Some investigations 
discovered that RT-PCR findings from many tests performed on the same 
individuals at different stages throughout the illness were varied, 
resulting in a significant FNR [16]. As a result, it may misclassify COVID- 
19 patients as uninfected. The Author proposed combining the RT-PCR 
test with additional clinical procedures such as radiography imaging 
[50]. 

In parallel to RT-PCR, medical imaging assessment is a powerful 
clinical method for identifying COVID-19 quickly. Clinicians study and 
evaluate CXI and CT scans to assess whether or not a suspectable subject 
has been infected with SARS-CoV-2 [26,27]. Subsequent investigations 
have shown atypical abnormalities in radiographic imaging of COVID- 
19 patients, and it was frequently employed during the early stages of 
the global pandemic [11,14,24]. 

Although CXI is extremely efficient, it contains a professional radi
ologist to physically judge for COVID19 case detection, which is not a 
time-saving method that loads medical professional skills. However, the 
proportion of radiologists is far smaller than that of individuals under
going monitoring. An AI-aided diagnosing tool is required to help the 
radiologist in detecting COVID19 occurrences in a much quicker, more 
immediate, and accurate manner. Otherwise, infected persons may not 
be recognized and isolated as fast as practicable and may not undergo 
appropriate treatments [25,26]. 

Agreeing to American Lung Association [34], Lancet report [35], and 

Geng et al. [24], the severity and mortality rates are increased due to 
chronic pulmonary diseases in COVID-19-confirmed patients[23]. So, 
we consider this as a challenge and opportunity for further research. 
Moreover, the studies [36,39,41–43] reported higher performance, 
whereas their used COVID-19 samples size are small. So, to urge this 
need and minimize the mortality rates because of pulmonary diseases 
with COVID-19 in this work, we expanded DL-based automatic detection 
of pulmonary disease with COVID-19 (PulDi-COVID) using CXI for nine 
class classifications. Moreover, we also investigate how to use eight CNN 
for identifying pulmonary disease with COVID-19 cases with thirteen 
probable selective snapshots stacked ensemble (SSE) models. Our out
comes highlight the need to utilize proper computing tools to analyze 
COVID-19 concerns and assist associated decision-making. The 
following precise research questions (RQ) motivated our study: 

RQ1) How important chronic pulmonary diseases can affect the 
COVID-19 diagnosis? Are mortality rates increasing due to the ex
istence of chronic pulmonary disorders along with COVID-19 
diagnosis? 

RQ2) How can we obtain the highest performance with nine-class 
classification using CNN? 

RQ3) What is the comparative performance of various DL algorithms 
for pulmonary disease classification with COVID-19 cases detection, 
and which classification algorithm performs better? 
RQ4) Is there any common automated tool for detecting maximum 
diseases with the assistance of clinicians and radiologists? 

We focused on searching chronic pulmonary diseases with COVID- 
19–related datasets to address the above questions to achieve multi-class 
classification from online public repositories. Specifically, we used 
pulmonary diseases with COVID-19-related datasets from NIH, Kaggle, 
GitHub, and DL-based networks to model various issues related to 
COVID-19 from the radiographic domain. This paper’s primary contri
butions are as follows:  

1) We used the eight most popular transfer learning CNN models based 
on state-of-the-art DL architectures.  

2) Applied nine-class classification using chronic lung diseases with 
COVID-19 cases detection.  

3) Proposed an SSE strategy with the awareness of varied class-level 
accuracies for different DL models. SSE models achieve superior 
performance by minimizing the variance of prediction errors to the 
competing base learners. 

4) Evaluated individual DL models and proposed PulDi-COVID experi
mentally, showing the promising results of PulDi-COVID. The main 
aim of SSE is to reduce the error rate and enhance accuracy.  

5) To evaluate the performance of this framework, three publicly 
available datasets of CXI have been used, which are both more 
widely available tests to perform, and more sensitive to COVID-19. 
The obtained results outperform the existing methods by a signifi
cant margin. 

6) This research will be helpful for clinicians and radiologists to mini
mize the workload, severity, and deaths of COVID-19 patients 
because the mortality rate may increase as chronic lung diseases 
present in COVID-19 affected individuals. 

Our experiment results highlight the necessity of detecting chronic 
pulmonary disorders with COVID-19 as well as appropriate simulation 
tools for understanding COVID-19 concerns and guiding associated 
decision-making. The following is the general layout of the article. First, 
we’ll give a quick overview of online healthcare forums. Section 2 dis
cusses COVID-19-related concerns as well as some comparative studies. 
Section 3 describes the preprocessing data methods used in our research, 
and the DL approaches for detecting chronic pulmonary illness with 
COVID-19. Section 4 then describes the results. Lastly, sections 5 and 6 
explore future studies and draw conclusions based on DL techniques for 

Table 1 
List of abbreviations.  

Sr. No. Abbreviation Full Form 

1. AI Artificial Intelligence. 
2. AUC Area under the ROC Curve. 
3. BM Base-Model. 
4. CAD Computer-Aided Diagnostic. 
5. CNN Convolution Neural Network. 
7. CXI Chest-X-ray Images. 
8. CL Convolution Layer. 
9. CT Computed Tomography. 
10. DL Deep Learning. 
11. COVID-19 Coronavirus-Disease-2019. 
12. FC Fully Connected Layer. 
13. FN False Negative. 
14. FNR False Negative Rate. 
15. FP False Positive. 
16. FPR False-Positive-Rate. 
17. HPC High-Performance-Computing. 
18. ML Machine Learning. 
19. MM Meta-Model. 
20. MSE Mean Squared Error. 
21. PulDi-COVID Pulmonary Diseases with COVID-19. 
22. SSE Selective-snapshots Stacked Ensemble. 
23. TL Transfer Learning. 
24. ResNet residual neural network. 
25. ReLU Rectified Linear Unit. 
26. RT-PCR Reverse Transcription–Polymerase Chain Reaction. 
26. RNN Recurrent Neural Networks. 
27. ROC Receiver Operating Characteristic. 
28. ROC Receiver Operating Characteristic. 
29. VGG Visual Geometry Group. 
30. TN True Negative. 
31. TP True Positive. 
32. TPR True-Positive-Rate. 
33. VGG Visual Geometry Group.  
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evaluating the COVID-19 radiology society. The set of acronyms used is 
shown in Table 1. 

2. Background and related work 

For a clearer insight into the PulDi-COVID model, we describe the 
ensemble DL and CNN for pulmonary illnesses with COVID-19 instance 
identification. 

Fig. 1. Flow chart of proposed PulDi-Covid framework.  
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2.1. Ensemble Deep learning 

Being a robust ML approach, DL is extensively used in various dis
ciplines, including computer vision, voice translation, healthcare image 
assessment, pharmaceutical research, and so on [7,8]. This includes a 
multi-layer neural network capable of extracting top-level characteris
tics from primary input, including images, and producing predictive 
outcomes depending on those characteristics. A DL modeling algorithm 
is divided into two steps: training and inference. Training is a random 
and repeated calculation that generates a model depending on training 
inputs. Different parameters must be initialized during the training 
process, particularly learning rate, epoch number, and batch size, with 
alternative setups resulting in models with varying accuracies. Inference 
involves the procedure of making predictions using the learned DL 
model. Other prominent DL approaches are accessible, including CNN 
and RNN. In contrast, CNN is widely used, and it is helpful for image 
identification, classification, and healthcare image analysis [6]. 

However, because of outliers in the dataset and unpredictability in 
the DL method, it is prone to high variation and generalization error 
[10]. Despite specific strategies, like data augmentation and regular
isation [9], the difficulties with DL models are still not effectively 
tackled. 

Ensemble learning is a viable strategy for overcoming these issues for 
multiple ML models [11]. This offers a hybrid learning framework 
capable of producing highly accurate and resilient predicting outcomes 
than a single model by intelligently merging several ML models. There 
are other ensemble algorithms available, such as averaging[11], random 
forest[12], boosting[13], and stacking[14]. To render the ensemble 
victorious, we should ensure that the simulations included in the com
bination are varied. We investigate ensemble DL for pulmonary illnesses 
using COVID-19 case identification in the suggested project by inte
grating different DL models using an ensemble technique. 

2.2. CNN-Related work 

The radiography imaging community makes significant contribu
tions to medical data processing and studies, which eventually aids in 
advancing health technologies. Various AI-aided diagnosis techniques 
relying on DL have already been suggested to minimize the load of 
diagnosis from CT and CXI for radiologists [26,28–32]. CXI has become 
a prominent and widely used source of information for COVID-19 early 
diagnosis because of various advantages of CXI, particularly mobility, 
affordability, ease of access, and quick screening compared to CT. 

It has been found that the majority of authors implemented binary 
[38,39,42,45] and three [36,37,41,43,44,48] and multi [40,46] class 
classification with COVID instances. Wang et al. [41] combined ResNet- 
101 and ResNet-152 models to classify COVID-19 from pneumonia and 
normal CXI. Developed fusion system attained 96.1 % accuracy. How
ever, used COVID-19 samples are small (i.e., 128). Narin et al. [42] 
compared CNN variants trained on CXI (ResNet50, Inception V3, and 
Inception-ResNetV2) for COVID-19 identification, finding that ResNet- 
50 leads the other two approaches with 98 % accuracy. Chowdhury 
et al. [12] conducted a comparison of various DL networks(AlexNet, 
ResNet18, DenseNet201, SqueezeNet) to binary classification (COVID- 
19, normal) for CXI, indicating that SqueezeNet outpaces with 98.3 % 
accuracy. Rahimzadeh et al. [37] made a chain of Xception +

ResNet50V2 to classify 80 CXI of COVID-19, 6054 CXI of pneumonia, 
and 8851 CXI of normal instances and were able to achieve a 91.4 % 
accuracy. Alqudah et al.[38] developed AOCT-NET for binary classifi
cation (Covid19, normal) with a 95.2 % accuracy. Hemdan et al.[39] 
proposed COVIDX-Net(DenseNet201, Inceptionv3, VGG19, Mobile
Netv2, Xception, InceptionResNetv2 and ResNetv2) using 25 cases/class 
for COVID-19, no infections, attained F1-score of 0.89 % for normal and 
91 % for COVID-19. Mishra et al. [45] developed binary classification of 
DL model (CovAI-Net) using CNN variants (Inception, DenseNet, Xcep
tion). CoviAI-Net attained 100 % precision and specificity for ‘COVID +

Ve’ class. 
Asnaoui et al. [40] experimented comparative study of DL variants 

(IncpetionResNetV2, VGG16/19, DenseNet201, InceptionResNetV2, 
InceptionV3, Resnet50, MobileNetV2) using CXI of 2780 for bacterial, 
1493 for viral, 231 of Covid19, and 1583 normal instances. Incpe
tionResNetV2 outperformed with 92.18 % accuracy, 96.06 % specificity, 
92.38 % precision, and 92.07 % F1-score. Another study by Ucar and 
Korkmaz [43] implemented SqueezeNet-Bayes for Covid19(76), normal 
(1583), and pneumonia(4290) classification with an accuracy of 98.30 
%. DarkCovidNet is CNN based DL model created by Ozturk et al. [44] 
for Covid19(125), normal(500), and pneumonia(500) classification 
with an accuracy of 87.02 %. Tang et al. [47] developed an ensemble DL- 
based(EDL-COVID) model for the classification of COVID(573) in
stances from pneumonia(6053) and normal(8851) from CXI. EDL- 
COVID attained 95 % accuracy and 96 % sensitivity. Zhou et al. [48] 
developed an ensemble DL-based model (EDL_COVID) to classify 
Covid19, lung tumors, and normal cases from CT scans. EDL_COVID 
utilized 2500 samples per class for experimentation. They achieved 
99.05 % accuracy, 99.6 % specificity, and 98.59 % F1-score. 

3. Materials and methods 

This section discusses the datasets, preprocessing, and the proposed 
PulDi-COVID, an SSE algorithm depending on eight cutting-edge DL 
architectures. The entire flowchart for PulDi-COVID, as shown in Fig. 1, 
comprises two stages: snapshot DL models and ensembling. The train
ing step of DL models is responsible for creating several snapshots, 
which are subsequently integrated for a meta-learner prediction in the 
SSE algorithm of the ensemble step (Section 3.3). The PulDi-COVID 
application source code is described in Appendix A. 

3.1. Dataset 

Until related pulmonary disorders are involved, measuring the effi
ciency of any classification method in identifying COVID-19 infection is 
critical. As a result, the entire dataset includes a subset of CXI associated 
with various lung illnesses with COVID-19 and healthy cases. The online 
public repository of NIH ChestX-ray8 [2] dataset initially contains 
fourteen class labels of 112,120 CXI from 30,805 unique patients with 
chronic lung diseases. Viral and bacterial pneumonia samples are 
collected from the Kaggle dataset [26]. At the same time, COVID-19 
instances are collected from the Kaggle COVID-19 detection challenge 
[27]. Furthermore, the collected dataset was undergone data pre
processing, which is discussed in the next section. 

3.2. Pre-processing 

For experimentation purposes, we choose six disorders from fourteen 
ChestX-ray8 [2] labels: atelectasis, cardiomegaly, effusion, infiltration, 
no-finding/healthy, and pneumothorax. The composed Kaggle dataset 
contains viral and bacterial pneumonia samples [3]. Simultaneously, 
COVID-19 cases from the COVID-19 detection challenge [4] are 
collected. The assembled dataset of CXI from three repositories contains 
noisy samples, which further need to preprocess. The noisy and blurry 
CXI has been discarded manually from the collected datasets. To avoid 
data imbalance, each class is retained with an equal number of samples. 
The assembled dataset has been partitioned to the 76 %:12 %:12 % ra
tios for train, val, and test sets. For nine-class detection, we used 10,800 
observations from three repositories integrations. For each labeled 
class in training, 1000 CXIs are evaluated, 100 CXIs for each validation 
class, and 100 CXIs for each test set class. The pixel data of the given 
samples were normalized within 0 and 1 for normalization. The CXI used 
in the sets of data under examination were gray, and the rescale is done 
by converting 1./255 to adjacent pixels. The train set is augmented 
online with ’imagedatagenerator,’ which increases the collection and 
adds robustness to the neural model, minimizing the likelihood of 
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overfitting concerns. Shear-range to 0.2, zoom-range to 0.2 are 
augmentation approaches utilized for cardiomegaly and bacterial 
pneumonia. Equal sample sizes are allocated for each class after 
augmentation to avoid data imbalance. This contributes to the creation 
of the network and improves test imaging performance. Table 2 shows 
the label data distribution for each class. The major issue was with the 
database itself. We have programmatically selected those samples whose 
image id contains a single label instead of multi-labels. Our preferred 
database faced class imbalance issues, especially for certain categories 
such as ‘cardiomegaly’. There were no other large diverse databases 
suitable for real-time CAD implementable framework development. 

The creators of certain openly available data sets increase the dataset 
by augmenting it. Several photos in these databases may be duplicated. 
If we split those photographs in train, val, and test sets, the pictures in 
the tests and val-sets likely replicate. Assume a photograph is addi
tionally augmented into 5 photos, three of them remain inside the train 
pool whereas the remaining percentage is divided among val and test 
sets. Performance may be misleading. Although it already previously 
recognizes the significant pictures in the training phase, the classifier 
can readily identify items. During this case, however, the simulation 
might collapse if evaluated using real-world photos. To deal with such a 
problem & verify that there is zero information leaks throughout 
network train and assessment, we employed a sourced dataset [2,26,27] 
in which verified there are no redundant CXR images. Furthermore, the 
dataset has been meticulously separated into train, val, and final testing/ 
model assessment data. To prevent database leaks, we initially divided 

the dataset and augmented just the train set. To check the duplicate we 
used images translation to numeric data and compare each numeric 
value. Another technique using MSE, where sum of the squared differ
ence between the two images should be lower to check similar images. 

3.3. Proposed methodology 

Our framework includes a 2-phase transfer learning (TL): a training 
approach and an ensemble technique. We employed eight TL-CNNs for 
feature extraction in the first phase: VGG16[39], ResNet50[26], VGG19 
[39], DenseNet201[12], MobileNetV2, NASNetMobile, ResNet152V2 
[41], and DenseNet169 [51]. Custom build layers replace the classifier 
and fully connected layers. TL is the process of adopting the weights of a 
pretrained network and applying recently learned characteristics to 
decide on a unique class name. In TL, a model that has been pretrained 
on the ’imagenet’ is employed, and this model has learned to detect top- 
level image features in the early layers [53]. A dense layer was appended 
to the CNN structure for TL. The model then determines which feature 
groupings will aid in identifying features in new data gathering. In this 
kind of case, the usage of pretrained networks based on the notion of TL 
might be beneficial. In TL, information obtained by a network trained on 
a massive dataset is utilized to tackle a similar problem using a lesser 
dataset. It assists in eliminating the requirement for an enormous dataset 
and a considerably more extended period, which are needed by DL al
gorithms that are learned from scratch [22–24]. Fig. 1 depicts the rec
ommended architecture’s block diagram. 

Table 2 
Multisource dataset used after preprocessing.   

Source ChestX-ray8[2] Kaggle Pneumonia[3] Covid19[4] 

Labels Criteria Atelectasis Cardiomegaly Effusion Infiltration Healthy Pneumothorax Viral Bacterial Covid-19 

Sample Size Actual 4215 1093 3955 9547 60,361 2194 2780 1493 6054 
Eliminated 774 351 557 1346 4731 832 586 434 1893 
Remaining 3441 742 3398 8201 55,630 1362 2194 1059 4161 

Balanced class Real 1100 742 1100 1100 1100 1100 1100 1059 1100 
Augmented 0 358 0 0 0 0 0 41 0  

Fig. 2. Proposed PulDi-Covid SSE ensemble.  
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VGG16 or VGG19 consisting of 16 and 19 convolutional layers. It’s a 
standard CNN [52] architecture with multiple channels. The numbers 
“16′′ and ”19′′ represent the networks weight levels(i.e. CL). VGG19 thus 
has “3′′ extra convolutional layers over VGG16. The image size of 
224x224x3 set to first input layer. ReLU is employed in all of the VGG 
channel’s hidden tiers. First CL set to 224x224 with kernel size 64. 
Followed by 128x128 with kernel size of 3. The remaining layers from 
VGG16/19 are set to trainable = false. A dense layer attained with a size 
of 25088-neurons. ResNet50 and ResNet152V2 designed to solve the 
problem of the disappearing gradient. Residual block networks accepts 
the input size with 224x224 and 299x299 pixels. The skip connection 
between 7x7x64 and 3x3x64 allow the network to fit undermapping. If 
any layer hurt the performance of architecture then it will be skipped by 
regularization. The filter size set to 64 and kernel set to 3 for the second 
layer. The remaining layers froze and global pooling and dense and 
softmax(9) for last layer. Form Fig. 2 MobileNet uses depthwise(DW) +
pairwise(PW) separable-CL. In comparison to the structure with ordi
nary convolutions to the equal depths inside the networks, it greatly 
decreases the range of parameters. As a consequence, DNNs are 
compact. Filter parameters for DW and PW are 32 and PW 64 with a 
stride of 3. After that, we use a 1x1 filter to cover the depth and point 
dimension. The last flatten + dense contains 62,720 neurons for 9-class 
classification. DenseNet performs channelwise concatenations instead of 
passing individual layer results to next layer. It uses concatenated den
seBlock + transitionBlock for each layer is receiving a “collective 
knowledge” from all earlier layers. The default input size of 224x224x3 
set to first CL. First and second CLs are of size (112x112x64) and 
(56x56x64) followed by maxpooling. For both DenseNet169/201 initial 
2 blocks are trained while remaining set to false for training. The last 
layer of flatten + dense deals with 94080-neurons for 9-disease classi
fications. The default input accepted by NasNetMobile with a size of 
224x224x3. In CL(111x111x32) return a feature map of the same 
dimension. Whereas, reduction block(56x56x32) returns a feature map 
where the feature map height and width are reduced by a factor of two. 
The last flatten + dense contains 51,744 neurons for 9 class- 
classification. 

The following are the drawbacks of utilizing a single model and the 
benefits of adopting multi-modal fusion in disease categorization. 
However a mono-shape permutation operation can decrease the number 
of dimensions and increase the model’s operating acceleration, but this 
couldn’t assure adequate mining of features, particularly in complicated 
environments, where crucial data is easily lost as well as the feature 
impact of the final disease detection is reduced. The aforesaid challenges 
can be efficiently solved using multi-scale information retrieved by 
different classifiers of convolutional units. However, the previous 
transmission of every convolutional network could simply verify that 
the features are transmitted to the outer filter and can’t be fused with the 
model’s shallower information. As a consequence, the illness-detection 
CXIs have inadequate explanations. Our multi-branch merger achieves 
pattern extraction using several parallel convolutional filters and em
phasizes meaningful data using a feature fusing that achieves feature 
interactions without expanding the model’s complexities. In comparison 
to serial fusing, parallel fusing across convolutions can take advantage of 
differing convolution kernel sizes, ensuring the complete retrieval of 
both higher and lower frequencies features and making the integration 
layered feature include additional important data. Fusion block contains 
8 layers(individual feature-vectors), construction of stacked layers, and 
final fusion. To create a fusion layer in phase 2, we have collected all the 
8 models features(8*[9-lables*64]) individually to make stacking 
ensemble; finally, all feature-vectors are embedded in stacked con
structed layer(Fig. 2). This requires additional improvement in the 
extraction of desirable feature’s as well as the correlation of various 
aspects from BMs to MMs. 

We used the SSE technique with thirteen probable ensembles(i.e., 
base models-BM are preferred based on minimum error rate) for 
experimentation in the second phase. The possibility of generating en

sembles from eight BMs is not only chosen thirteen but also 2n-1 possible 
ensembles. So, we try ensemble best BMs without skipping. After pro
ducing several DL networks & their weights from the main step, now we 
proceed to the proposed assembly step for developing PulDi-COVID by 
stacking various models, as shown in Fig. 1. Several ensembling ways 
exist for model ensemble, as detailed in section 2.1. Stacking is a 
prominent ensembling approach for snapshot ensemble learning [20]. It 
finds the maximum class probabilities from all models for each class for 
an input image. Let M denote the total classifiers (eight DL models). Let 
pm, x(si) is the class likelihood of xth class output by mth classifier con
cerning the source image si. Then the greatest predicated class predicted 
is = (max

⋃M
m=1pm,x(si)) for × ∈ [1, X] of the source image si, with X 

indicating the total classes. The conventional ensembling technique 
(stacking, bagging, boosting, and averaging) implies that almost all 
classifiers have equal weights. Furthermore, three introductory remarks 
are made.  

1) Overall testing accuracy rates for individual classes in a DL model are 
often varied.  

2) Several DL models have varying levels of accuracy for every 
classification.  

3) It shows that we cannot treat every model equivalently throughout 
the model assembly process. 

We developed an SSE technique for TL ensemble related to the above 
three findings, as shown in Algorithm-1. Let acci,j is the test accuracy of 
ith model for jth class for test CXI. The measured weights of ith model for 
jth class are represented as wi,j = max(

⋃M
m=1accm,j). For each source 

image si, we begin by obtaining the results of each classification prob
abilities pm,x(si) from mth model for ∀m ∈ M. The classification proba
bilities may then be assessed as px(si) of PulDi-COVID by a maximum of 
the stacked class likelihood of all M for ∀x ∈ X. Furthermore, we obtain 
the classification results by reporting the class number with the highest- 
class probabilities for every input image. Overview of the proposed 
PulDi-COVID model is presented in algorithm 1. 

Algorithm 1. Proposed DL-based SSE Algorithm for PulDi-COVID.  

a. Parameter: [train, test, valid] = split(Dataset), a = argmax, m1 = model, t =
train, v = valid, tt = test, b = batch, w = weights, em = ensemble-model, si =

ith sample input of CXI dataset, X = class. 
b. Input: Dataset D = sum 

∑n
d=0(td,vd, ttd)

c. Output: ensemble meta-classifier, c(si): predicted class index for ith image with 
PulDi-COVID. 
Model Training, Validation, testing: 

1. Action 1: Base model classification 
2. for c = [VGG16, ResNet50, VGG19, DenseNet201, MobileNetV2, 

NASNetMobile, ResNet152V2, 
3. DenseNet169]  

4. for j = 1:150 // epoch range from 1 to 150 
5. [t(j), v(j)] = partition(t, v) 
6. for k=(t/b, v/b) // sample/batch 
7. model(m1, c, j) = train(c(m1), a, t(j), v(j)) // training 
8. valid(m1, c, j) = valid((c(m1), a, j), v(j)) // validation 
9. end 
10. end 
11. tt(c(m1), a) = predict(max(test(c(m1), a, tt))) // prediction on test 
12. c(si) = tt(c(m1), a) // predicted class label with index 
13. end 
14. acquireWeights = model(w) //wi,j = max(

⋃M
m=1accm,j)

15. Action 2: Create SSE ensemble-classifier(meta-model) and load feature 
vectors. 

16. for i = 1:8 
17. em = model(a). append(c(i))// input as base model structure to create 

meta-ensemble-learner 
18. em(w) = loadWeights(acquireWeights(c[1…8])) 
19. Action 3: Test ensemble classifier 
20. tt(em, a) = predict(max(test(em, a, tt))) // estimate the class probability 
21. px(si) = tt(em, a) 
22. c(si) = px(si)// predicted specific class label with index 
23. end; 
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3.4. Stacking ensemble 

A set of features considered a group instead of individually is an 
ensemble. An ensemble technique generates various models and then 
merges them to address a problem. Ensemble approaches to aid in 
improving the model’s strength. Some of the ensemble techniques are 
averaging [11], max voting, GBM, XGBM, adaboost[33], stacking[14], 
blending[17], bagging[18], and boosting[13]. A stacked ensemble is an 
ML algorithm that practices a MM/classifier to merge several base- 
classifiers(BMs). Stacking learns the optimum way to aggregate pre
dictions from several high-performing models. The BMs are trained on 
the whole dataset, followed by the MM, which is trained upon features 
returned (as output) by the BM. In stacking, the BMs are often distinct. 
The MM aids in the extraction of features from BM to attain the highest 
level of accuracy. The advantage of stacking is that it may combine the 
expertise of several high-performing models on a classification/regres
sion job to create recommendations that outperform any one model in 
the ensemble [17]. It employs a meta-learning strategy to find the op
timum way to aggregate predictions from two or more underlying ML 
techniques. In contrast to boosting, multiple models are utilized in 
stacking to learn how to merge the predicted results from the partici
pating models. A stacking model’s framework consists of two or more 
BM, also known as 0th step models, and a MM that integrates the pre
dictions of the BM, known as a 1st step model. 

Step-0 Models (Base-Models): Models fit the training data and 
collected predictions. 
Step-1 Model (meta-Model): Model that learns how to best combine 
the predictions of the base models. 

The MM is trained on the predictions made by BM on out-of-sample 
data. Data that was not utilized for training the BM is given to them; 
predictions are formed; these predictions, along with the expected out
comes, constitute the input and output sets of the training dataset 
required to fit the MM. In the case of regression, the results of the 

BM given as input to the MM may be actual values, and in the case of 
classification, they may be probability values and class names. 

4. Experiments & results 

PulDi-COVID uses CNN to retrieve features from CXI and COVID-19 
to classify chronic pulmonary illnesses using an ensemble of eight 
distinct DL classifiers(based on the identical input size, i.e., 224x224). 
The TL models were trained for a total of 150 epochs. The stacking 
approach was used to modify the hyperparameters of the DL classifiers. 
Individual models and the proposed SSE classifier’s performance for 
each class label were evaluated using the confusion matrix, ROC curve, 
precision, recall, F1-score, accuracy, error-rate, AUC-ROC-score, and 
zero-one loss and test time per input image. 

4.1. Simulation Requirements. 

The experiment was run-on HPC. The platform cast for the simula
tion experiment was an Intel-XeonE5-2630v3@2.40 GHz, 64.0 GB RAM, 
and a 48 TB hard disk with 16 child nodes and one central node. Cen
tOS6, Python3.8, Tensorflow, Keras, Jupyter-notebook, matplotlib, 
numpy, and pandas are employed for conducting tests. It provides an 
optimized runtime for DL research and high-end computation access to a 
dependable GPU. 

4.2. Experimental setup 

Experiments have been carried out in two-phase TL training and an 
SSE scheme. In the first stage, the individual DL models were tested 
using CXI datasets from the CXR-lung-disease [2], viral and bacterial 
pneumonia dataset [3], and COVID-19 dataset [4]. The input CXI were 
first set to 224 × 224 utilizing VGG16, ResNet50, VGG19, DenseNet201, 
MobileNetV2, NASNetMobile, ResNet152V2, and DenseNet169. From 
Table 3, training for each network with target epochs is set to 150. Based 
on early-stoppage and callback to escape overfitting and constant per
formance [52] (if there is no improvement at the training and validation 
phase). The parameters applied to early stopping and callback are pro
vided in Table 3. Initial ‘l_r’ assigned as ‘0.0001′. The epoch/iteration 
size will be decided automatically. Training operation of every DCNNs 
will be stopped robotically based on Table 3 criteria. The ’adam’ opti
mizer was applied for training, and the ‘l_r’ was well-ordered internally. 
Whereas 64 batch size for train and val set and 32 for the test set. Lastly, 
9-class expectation outcomes for each DL-BMs from the ’softmax’ layer 
(Table 4). With the help of early stopping. Eventually, individual DL 
models experimental performance accumulated. 

In the second phase, we have composed the proposed stacking 
ensemble model (i.e., PulDi-COVID) to evaluate nine-class classification. 
The possible thirteen SSE models are prepared using received weights 
from the base learners. Ensemble models benefit from aggregating 
relevant data from multiple classification techniques to create a highly 
reliable model. Variance and bias are also minimized, resulting in a 
more minor anticipated error. Furthermore, a feature vector block that 

Table 3 
Early-stopping & callback hyperparamters.  

Sr. No. Parameters Value 

1 Input Size 224x224 
2 Target epoch 150 
3 Patience. 10 
4 Mindelta 0.0001 
5 Verbose 1 
6 Learning rate 0.0001 
7 Mode “auto” 
8 Monitor “val_loss” 
9 Baseline “none” 
10 min_lr 0.000001 
11 Restoreweights “true” 
12 Batch_size 64 
13 Optimizer ‘adam’ 
14 Dynamic_l_r ‘auto’  

Table 4 
Obtained architectural details and results of individual BM-CNNs.  

Model Trainable 
parameters 

Training Time 
(Hrs) 

Macro avg. 
Precision 

Macro avg. 
Recall 

Macro avg. F1- 
Score 

Macro avg. 
Accuracy 

Zero-one Loss (Out of 900 
test samples) 

Error Rate 
(%) 

VGG16 225,801  18.54  77.10  77.11  76.71  94.91 206 22.88 
ResNet50 903,177  26.10  44.72  44.44  41.31  87.65 500 55.55 
VGG19 225,801  19.27  66.98  66.78  66.10  92.61 299 33.22 
DenseNet201 846,729  31.42  88.11  86.44  85.92  96.98 122 13.55 
MobileNetV2 564,489  25.27  92.15  92.00  91.97  98.22 72 8 
NASNetMobile 465,705  23.36  65.92  57.33  52.89  90.51 384 42.66 
ResNet152V2 903,177  28.53  93.46  93.22  93.15  98.49 61 6.77 
DenseNet169 733,833  24.49  89.66  89.00  88.92  97.55 99 11 

Note: Bold values are optimal results. 
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was wrongly learned by classification can still be successfully catego
rized by leveraging the pattern acquired by other classifiers, which the 
ensemble model exploits. Because of these properties, ensemble models 
are an excellent choice for tackling difficult classification and regression 
tasks [21]. All received base-learners weights files are united based on 
two to eight individual TL models to create a selective stacked ensemble 
model. Then we estimated the class probability of PulDi-COVID by the 
maximum of the stacked class probabilities of all models. Next, we 

identified the class by providing the class id with the highest-class 
possibility for every input image. We have executed these networks 
using TensorFlow and Keras. 

4.3. Performance metrics 

The parameters employed in this article to evaluate the performance 
of PulDi-COVID were accuracy(Acc.), precision(Pre.), recall(Rec.), 

(a)VGG16+VGG19+DenseNet201 (b) VGG16+VGG19

(c) VGG16+DenseNet201 (d) VGG19+DenseNet201 

(e) VGG16+VGG19+ DenseNet201+ ResNet50 (f) VGG16+VGG19+ DenseNet201+ ResNet50+ MobileNetV2

(g) DenseNet201+ MobileNetV2 (h) VGG16+VGG19+ DenseNet201+ ResNet50+ MobileNetV2+ 
NASNetMobile

Fig. 3. Confusion matrix attained for all SSE models at the test time.  
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specificity(Spe.), F1score, zero-one loss(z), and error rate(e). Criteria for 
assessment were obtained from the confusion matrix concerning the 
CNNs’ classification task as follows: (a) Positive instances that were 
properly recognized (TP), (b) Negative cases that were wrongly cate
gorized (FN), (c) Negative cases that were correctly identified (TN), and 
(d) Positive cases that were misclassified (FP). 

Fig. 3 depicts the confusion matrix of all thirteen SSE ensembled 
models. The formulae used to calculate the values of these metrics are 
listed below:  

1. Acc. = (TP + TN)/(TP + FP + TN + FN)  
2. Pre. = TP/(TP + FP)  
3. Rec. = TP/(TP + FN)  
4. Spe. = TN/(FP + TN)  
5. F1-score = 2 × (Pre. × Rec.)/(Pre. + Rec.)  

6. e =
∑n

i=0
(predictedn∕=truen)∑n

i=o
all− clases(test− samplesn)

// sum (not-equal (pred, true)) / sum(all- 

classes(total-test-samples))  

7. z(i, j)=
∑n

c=1(zerosn − onesn)

{
0(zeros)i = j
1(ones)i ∕= j i, j∊class − label 

4.4. Results 

Tables 4, 5, and 6 summarize the comprehensive classification out
comes achieved across all models regarding various metrics. The 
assessment methods mentioned in Tables 4-6 were the more commonly 
used to measure classification efficiency. The performance for all indi
vidual DL networks has been shown in Table 4; we processed the PulDi- 
COVID performance for the separate classes in Table 5. The process is 
repeated for thirteen probable ensemble models. It can be observed that 
the ResNet152 attained the maximum performance followed by Mobi
leNetV2 from individual CNNs (Table 4). ResNet152V2 reached the 
highest accuracy of 98.49 %, the precision of 93.46 %, recall of 93.22 %, 
F1-score of 93.15 %, zero-one loss of 61, and the lowest error rate of 
6.77 % among 8 CNNs. From Table 5, chronic pulmonary diseases with 
nine-class classification the highest attained accuracy of 99.77 % for 
cardiomegaly, and pneumothorax class, 99.66 % for atelectasis and 
effusion class, 99.55 % for infiltration class by proposed ensemble 
model; for atelectasis, cardiomegaly, effusion, infiltration, and pneu
mothorax highest attained precision of 98.98 %, 98.03 %, 100 %, 100 % 
and 99 % respectively; and recall of 99 %, 100 %, 99 %, 97 %, and 100 % 
respectively; specificity of 99.87 %, 99.75 %, 100 %, 100 %, and 99.87 

(i) VGG16+VGG19+DenseNet201+ ResNet50+ MobileNetV2+ NASNetMobile+ 
ResNet152V2+ DenseNet169 (j) ResNet152V2+DenseNet169

(k) DenseNet201+ MobileNetV2+ ResNet152V2+ DenseNet169
(l) MobileNetV2+ ResNet152V2+ DenseNet169

(m) MobileNetV2+ResNet152V2
TF: In each confusion matrix plot X-axis designates true, Y-axis directs predicted label. Classes(0:'atelectasis', 1:'bacterial_pneumonia', 2:'cardiomegaly', 
3:'covid19', 4:'effusion', 5:'infiltration', 6:'No_Finding', 7:'Pneumothorax', 8:'Viral_pneumonia')

Fig. 3. (continued). 
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Table 5 
PulDi-COVID MM-classification performance assessment based on each class label.  

Ensemble Model Metrics Atelecta- 
sis 

Bacterial 
pneumonia 

Cardio- 
megaly 

Covid19 Effusion Infiltrat- 
ion 

No- 
Finding 

Pneumo- 
thorax 

Viral 
Pneumonia 

VGG16 + VGG19 + DenseNet201 Accuracy 
(%) 

95.66 97.66 95.22 98.55 96 94.44 99.33 97 97 

Precision 
(%) 

80.19 98.76 70.8 89.18 86.36 89.06 95.19 86.13 82.3 

Recall (%) 81 80 97 99 76 57 99 87 93 
Specificity 
(%) 

97.5 99.87 95 98.5 98.5 99.12 99.37 98.25 97.5 

F1-score 
(%) 

80.59 88.39 81.85 93.83 80.85 69.51 97.05 86.56 87.32 

AUC (%) 89.25 89.93 96 98.75 87.25 78.06 99.18 92.62 95.25 
VGG16 + VGG19 Accuracy 

(%) 
92.55 96.11 93.11 97.88 93.11 90.22 98.55 93.44 94.55 

Precision 
(%) 

69.87 90.12 64.39 85.84 70.21 56.38 89.18 73.56 74.28 

Recall (%) 58 73 85 97 66 53 99 64 78 
Specificity 
(%) 

96.87 99 94.12 98 96.5 94.87 98.5 97.12 96.62 

F1-score 
(%) 

63.38 80.66 73.27 91.08 68.04 54.63 93.83 68.44 76.09 

AUC (%) 77.43 86 89.56 97.5 81.25 73.93 98.75 80.56 87.31 
VGG16 + DenseNet201 Accuracy 

(%) 
96.22 98.66 95.66 98.77 96.55 94.77 99.66 97.44 98.44 

Precision 
(%) 

80 100 72.93 90.82 89.65 98.18 98.01 85.98 89.09 

Recall (%) 88 88 97 99 78 54 99 92 98 
Specificity 
(%) 

97.25 100 95.5 98.75 98.87 99.87 99.75 98.12 98.5 

F1-score 
(%) 

83.81 93.61 83.26 94.73 83.42 69.67 98.5 88.88 93.33 

AUC (%) 92.62 94 96.25 98.87 88.43 76.93 99.37 95.06 98.25 
VGG19 + DenseNet201 Accuracy 

(%) 
95.66 97.77 95.55 98.66 96.33 94.11 99.66 97.11 97.55 

Precision 
(%) 

77.47 100 72.05 90 90.36 92.72 98.01 84.9 83.05 

Recall (%) 86 80 98 99 75 51 99 90 98 
Specificity 
(%) 

96.87 100 95.25 98.62 99 99.5 99.75 98 97.5 

F1-score 
(%) 

81.51 88.88 83.05 94.28 81.96 65.8 98.5 87.37 89.9 

AUC (%) 91.43 90 96.62 98.81 87 75.25 99.37 94 97.75 
VGG16 + VGG19 + DenseNet201 +

ResNet50 
Accuracy 
(%) 

95.55 97.11 94.88 98.44 96.11 94.11 99.33 96.44 96.44 

Precision 
(%) 

77.77 96.25 69.28 88.39 90.12 87.3 95.19 84.69 79.82 

Recall (%) 84 77 97 99 73 55 99 83 91 
Specificity 
(%) 

97 99.62 94.62 98.37 99 99 99.37 98.12 97.12 

F1-score 
(%) 

80.76 85.55 80.83 93.39 80.66 67.48 97.05 83.83 85.04 

AUC (%) 90.5 88.31 95.81 98.68 86 77 99.18 90.56 94.06 
VGG16 + VGG19 + DenseNet201 +

ResNet50 + MobileNetV2 
Accuracy 
(%) 

97.77 97.88 97.44 99.22 97.88 96 99.66 98.44 97.66 

Precision 
(%) 

87.03 98.79 81.81 94.28 92.63 94.44 98.01 93 84.34 

Recall (%) 94 82 99 99 88 68 99 93 97 
Specificity 
(%) 

98.25 99.87 97.25 99.25 99.125 99.5 99.75 99.125 97.75 

F1-score 
(%) 

90.38 89.61 89.59 96.58 90.25 79.07 98.5 93 90.23 

AUC (%) 96.12 90.93 98.12 99.12 93.56 83.75 99.37 96.06 97.37 
DenseNet201 + MobileNetV2 Accuracy 

(%) 
98.33 99.11 98.66 99.33 98.66 97.66 99.77 99 99.22 

Precision 
(%) 

88.99 100 89.28 95.19 95.83 98.76 99 95.95 93.45 

Recall (%) 97 92 100 99 92 80 99 95 100 
Specificity 
(%) 

98.5 100 98.5 99.37 99.5 99.87 99.87 99.5 99.12 

F1-score 
(%) 

92.82 95.83 94.34 97.05 93.87 88.39 99 95.47 96.61 

AUC (%) 97.75 96 99.25 99.18 95.75 89.93 99.43 97.25 99.56 
VGG16 + VGG19 + DenseNet201 +

ResNet50 + MobileNetV2 +
NASNetMobile 

Accuracy 
(%) 

97.66 97.88 97.55 99.22 97.33 95.33 99.66 96.77 97.66 

89.89 98.79 82.5 94.28 93.18 95.31 98.01 78.4 84.34 

(continued on next page) 
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% respectively; F1-score of 98.49 %, 99.01 %, 98.47 %, 97.98 %, and 99 
% respectively; and AUC of 99.31 %, 99.87 %, 99.31 %, 98.43 %, and 
99.75 % respectively. However, for the comparison of pneumonia and 
COVID-19, the bacterial pneumonia class attained the uppermost 100 % 
performance for all metrics (this class may lead to overfit). However, the 
accuracy of 99.77 %, precision of 99 %, recall of 99 %, specificity of 
99.87 %, F1-score of 99 %, and AUC of 99.43 % were attained by 
Covid19 and no-finding classes. For viral pneumonia class, achieved an 
accuracy of 99.77 %, precision of 100 %, recall of 100 %, specificity of 
100 %, F1-score of 99 %, and AUC of 99.56 %. 

Table 6 shows the overall(average) outcomes found for thirteen 
ensembling possibilities, comprising zero-one loss (all nine-class classi
fication), AUCscore, e-rate, and testing time per CXI, etc. Among all 

thirteen ensembled, MobileNetV2 + ResNet152V2 + DenseNet169 
achieved the overall highest outcomes. Proposed PulDi-COVID (Mobi
leNetV2 + ResNet152V2 + DenseNet169) attained highest overall ac
curacy of 99.70 %, precision of 98.68 %, recall of 98.67 %, F1-score of 
98.67 %, minimum zero-one loss to 12, and lowest error rate of 1.33 % 
among thirteen SSE. Even after ensembling the worst performance tar
geted by VGG16 + VGG19 with 227 samples of misclassification for nine 
class classifications. However, 94.39 % accuracy was attained by the 
VGG16 + VGG19 model but attained the lowest precision of 74.87 %, 
recall of 74.78 %, F1-score of 74.39 %, and the error rate of 25.22 % 
(which is the highest and it’s not recommended). For testing individual 
images, 0.569 s were taken by VGG16 + VGG19 and 8.590 s taken by 
MobileNetV2 + ResNet152V2 + DenseNet169 models. 

Table 5 (continued ) 

Ensemble Model Metrics Atelecta- 
sis 

Bacterial 
pneumonia 

Cardio- 
megaly 

Covid19 Effusion Infiltrat- 
ion 

No- 
Finding 

Pneumo- 
thorax 

Viral 
Pneumonia 

Precision 
(%) 
Recall (%) 89 82 99 99 82 61 99 98 97 
Specificity 
(%) 

98.75 99.87 97.37 99.25 99.25 99.62 99.75 96.62 97.75 

F1-score 
(%) 

89.44 89.61 90 96.58 87.23 74.39 98.5 87.11 90.23 

AUC (%) 93.87 90.93 98.18 99.12 90.62 80.31 99.37 97.31 97.37 
VGG16 + VGG19 + DenseNet201 +

ResNet50 + MobileNetV2 +
NASNetMobile + ResNet152V2 +
DenseNet169 

Accuracy 
(%) 

98.88 99.44 98.88 99.44 98.88 98 99.55 98.66 99.11 

Precision 
(%) 

95.91 100 90.9 96.11 98.91 97.67 97.05 89.28 95.09 

Recall (%) 94 95 100 99 91 84 99 100 97 
Specificity 
(%) 

99.5 100 98.75 99.5 99.87 99.75 99.62 98.5 99.37 

F1-score 
(%) 

94.94 97.43 95.23 97.53 94.79 90.32 98.02 94.34 96.04 

AUC (%) 96.75 97.5 99.37 99.25 95.43 91.87 99.31 99.25 98.18 
ResNet152V2 + DenseNet169 Accuracy 

(%) 
99.11 99.66 99.44 99.77 99.66 99.33 99.22 99 99 

Precision 
(%) 

97.91 98.01 95.23 99 100 98.95 94.28 92.52 98.92 

Recall (%) 94 99 100 99 97 95 99 99 92 
Specificity 
(%) 

99.75 99.75 99.37 99.87 100 99.87 99.25 99 99.87 

F1-score 
(%) 

95.91 98.5 97.56 99 98.47 96.93 96.58 95.65 95.33 

AUC (%) 96.87 99.37 99.68 99.43 98.5 97.43 99.12 99 95.93 
DenseNet201 + MobileNetV2 +

ResNet152V2 + DenseNet169 
Accuracy 
(%) 

99.55 99.88 99.55 99.77 99.44 99.55 99.77 99.77 99.77 

Precision 
(%) 

97.05 100 96.15 99 98.96 98.97 99 99 99 

Recall (%) 99 99 100 99 96 97 99 99 99 
Specificity 
(%) 

99.62 100 99.5 99.87 99.87 99.87 99.87 99.87 99.87 

F1-score 
(%) 

98.02 99.49 98.03 99 97.46 97.98 99 99 99 

AUC (%) 99.31 99.5 99.75 99.43 97.93 98.43 99.43 99.43 99.43 
MobileNetV2 + ResNet152V2 +

DenseNet169 
Accuracy 
(%) 

99.66 100 99.77 99.77 99.55 99.55 99.66 99.55 99.77 

Precision 
(%) 

98.98 100 98.03 99 98.97 98.97 98.01 96.15 100 

Recall (%) 98 100 100 99 97 97 99 100 98 
Specificity 
(%) 

99.87 100 99.75 99.87 99.87 99.87 99.75 99.5 100 

F1-score 
(%) 

98.49 100 99.01 99 97.98 97.98 98.5 98.03 98.99 

AUC (%) 98.93 100 99.87 99.43 98.43 98.43 99.37 99.75 99 
MobileNetV2 + ResNet152V2 Accuracy 

(%) 
99.66 99.66 99.22 99.66 99.55 99.44 99.66 99.44 99.44 

Precision 
(%) 

98.98 98.01 93.45 98.98 97.05 100 98.01 97.97 98.96 

Recall (%) 98 99 100 98 99 95 99 97 96 
Specificity 
(%) 

99.87 99.75 99.12 99.87 99.62 100 99.75 99.75 99.87 

F1-score 
(%) 

98.49 98.5 96.61 98.49 98.02 97.43 98.5 97.48 97.46 

AUC (%) 98.93 99.37 99.56 98.93 99.31 97.5 99.37 98.37 97.93  
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Ensembling of (VGG16 + VGG19 + DenseNet201), (VGG16 +
VGG19), (VGG16 + DenseNet201), (VGG19 + DenseNet201), (VGG16 
+ VGG19 + DenseNet201 + ResNet50), (VGG16 + VGG19 + Dense
Net201 + ResNet50 + MobileNetV2) are used to forecast the significant 
misclassified instances, as shown in Fig. 3. The misconception was most 
likely caused by the comparable imaging findings of the disease cases. 

The ROC curves of all thirteen models are shown in Fig. 4. ROC is a 2- 
D chart that compares the TPR as opposed to the FPRThe ROC curve 
illustrates the sensitivity and specificity. TPR on the y-axis and FPR on 
the x-axis are used to plot the ROCs. Higher AUC scores are important in 
medical diagnoses. As a result, its simulations in medical analytics aid 
data analysts in their diagnostic investigation predicting analysis. From 
Fig. 4, the highest ROCAUCscore of 99.24 % for all lung diseases 
attained by MobileNetV2 + ResNet152V2 + DenseNet169, followed by 
99.18 % of DenseNet201 + MobileNetV2 + ResNet152V2 +

DenseNet169. 

4.5. Comparing PulDi-COVID with cutting-edge systems 

Table 7 compares the results of PulDi-COVID with several other 
current studies for the automated identification of COVID-19. The 
methods suggested in [37,39,40,44,46] obtained accuracy of 91.40 %, 
90 %, 92.18 %, 87.02 %, and 80.60 %, respectively. However, their 
utilized CXI is small[37,39,42,43,46] and applied for three-class clas
sification only. The systems shown in [36,41,43] have enhanced the 
accuracy to 99.4 %, 96.10 %, and 98.30 %, respectively. The methods 
suggested in [48] show a COVID-19 detection accuracy of 99.05 %. 
PulDi-COVID beat all of these classifiers in terms of accuracy. PulDi- 
COVID obtained 99.70 % accuracy, indicating that it could be a useful 
tool for early diagnosis and nine-class classification for lung disease 
detection using CXIs. However, due to the multiheaded ensembles, the 
MobileNetV2 + ResNet152V2 + DenseNet169 model takes 8.59 s to test 
individual CXI. 

5. Discussion 

Despite the availability of datasets on online public platforms, the 
research of CXI for the accurate assessment of COVID-19 infection has 
attracted a lot of interest. Following that, various efforts were made to 
create an exact diagnostic model employing DL approaches. The notion 
of TL has been widely applied in CNNs. However, most of the older 
approaches were assessed using minimal data. The studies 
[37,39,42,43,46] attained remarkable performance but used a very tiny 

sample size for the COVID-19 class. Furthermore, in certain circum
stances, the data is skewed. Grad-CAM graphical representations are 
also used to confirm the accuracy of the outcomes. Fig. 6 depicts the 
infographics that are equated to the predicted results/ class. The CAD’s 
recommendations were examined by analyzing the binding of thorax 
illnesses as depicted in obtained heatmaps (Fig. 5) depict several ex
amples of GradCAM mapping of image data from the set of data. A 
feature vector histogram is overlaid on the actual picture to show how 
the embedding design recognizes it and sheds more light on specific 
areas of the pixel. The framework pays more emphasis to the location 
outlined in orange-red (ROI), while the section featured in light-blue 
receives less recognition. This aesthetic depiction of focus engages 
end-users in identifying or confirming ROI where symptoms exist and 
can be confined. 

In the first phase, we systematically assessed the eight most popular 
DL models’ effectiveness: VGG16, ResNet50, VGG19, DenseNet201, 
MobileNetV2, NASNetMobile, ResNet152V2, DenseNet169 for the pre
diction of chronic pulmonary diseases with COVID-19 infections from 
CXI. Extensive tests were carried out on a rather big dataset, considering 
a variety of criteria to establish the best functioning model for automatic 
disease diagnosis. The CXI of the various lung disorders, COVID-19, 
pneumonia, and normals, were obtained from three different sources 
[2–4]. To address the issue of data imbalance, an equal size of samples 
was chosen for all classes. Experimented findings and extensive 
comparative analysis of all approaches revealed that the PulDi-COVID 
model outperformed eight models and state-of-the-art methods. 

This research aims to find the possible biomarkers from chronic lung 
disease with COVID-19 to minimize the mortality rates and provide 
assistance to healthcare staff. Also, reduce the error rate to enhance the 
accuracy. From the obtained experimented results of individual transfer 
learning, it has been observed that it attained the lowest error rate by 
ResNet152V2 of 6.77 %(61 misclassified CXI) and proposed PulDi- 
COVID(MobileNetV2 + ResNet152V2 + DenseNet169) by 1.33 %(12 
misclassified CXI) for nine class classification. This difference error rate 
of 5.44 %(49 misclassified CXI) shows that the proposed PulDi-COVID 
model is robust and efficient for chronic pulmonary diseases with 
COVID-19 cases detection in this pandemic era using a developed GUI 
application (Fig. 7). Limitation of ensemble model deals with model 
overfitting as seen for bacterial pneumonia class (shows 100 % perfor
mance for all metrics. Further research will look at radiography pictures 
to discover COVID-19 variations such as Beta, Delta, Omicron, and IHU 
[49]. 

Table 6 
Macro average(overall) results obtained on ensembling models.  

Ensemble Model Macro avg. 
Precision (%) 

Macro avg. 
Recall (%) 

Macro avg. 
F1-score (%) 

Macro avg. 
Accuracy (%) 

Zero-one Loss (Out 
of 900 test 
samples) 

AUC-ROC- 
Score (%) 

Error 
Rate (%) 

Test 
Time 

VGG16 + VGG19 + DenseNet201  86.45  85.44  85.11 96.76 131  91.81 14.55 4.130 s 
VGG16 + VGG19  74.87  74.78  74.39 94.39 227  85.81 25.22 0.569 s 
VGG16 + DenseNet201  89.41  88.11  87.69 97.35 107  93.31 11.88 3.518 s 
VGG19 + DenseNet201  87.62  86.22  85.70 96.93 124  92.24 13.77 3.458 s 
VGG16 + VGG19 + DenseNet201 + ResNet50  85.43  84.22  83.85 96.49 142  91.12 15.77 4.560 s 
VGG16 + VGG19 + DenseNet201 + ResNet50 
+ MobileNetV2  

91.60  91.00  90.81 98 81  94.93 9 11.203 s 

DenseNet201 + MobileNetV2  95.17  94.89  94.83 98.86 46  97.12 5.11 3.918 s 
VGG16 + VGG19 + DenseNet201 + ResNet50 
+ MobileNetV2 + NASNetMobile  

90.53  89.56  89.24 97.67 94  94.12 10.44 9.923 s 

VGG16 + VGG19 + DenseNet201 + ResNet50 
+ MobileNetV2 + NASNetMobile +
ResNet152V2 + DenseNet169  

95.66  95.44  95.41 98.98 41  97.43 4.55 18.254 s 

ResNet152V2 + DenseNet169  97.21  97.11  97.11 99.35 26  98.37 2.88 5.400 s 
DenseNet201 + MobileNetV2 + ResNet152V2 
+ DenseNet169  

98.57  98.56  98.56 99.67 13  99.18 1.44 11.087 s 

MobileNetV2 + ResNet152V2 + DenseNet169  98.68  98.67  98.67 99.70 12  99.24 1.33 8.590 s 
MobileNetV2 + ResNet152V2  97.94  97.89  97.89 99.53 19  98.81 2.11 3.515 s 
TF: Bold values are observed as optimal results.  
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Fig. 4. ROC curves obtained for all ensembling models at the testing phase.  
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6. Conclusion 

COVID-19 has substantially detrimental influences on our daily lives, 
extending from public healthcare services to the entire economic sys
tem. This study introduced a PulDi-COVID model that uses CXI to di
agnose chronic pulmonary disease with COVID-19. PulDi-COVID, the 
suggested model, effectively delivers accurate diagnoses for 9 class 
classifications (atelectasis, bacterial-pneumonia, cardiomegaly, 
covid19, effusion, infiltration, no-finding, pneumothorax, viral- 
pneumonia). The suggested framework has a classification accuracy of 
99.70 %, a precision of 98.68 %, recall of 98.67 %, F1-score of 98.67 %, a 
minimum zero-one loss of 12, and the lowest error rate of 1.33 %, which 
is the maximum attained accuracy on the datasets utilized in the ex
perimentations to the best of knowledge. Another addition to the study 
is the compilation of the largest dataset for the assessment of classifi
cation methods. In terms of accuracy and other metrics, the effectiveness 
of PulDi-COVID is proven to be superior to 14 current approaches. The 
result of our suggested technique demonstrates its improvement over 
previous methods. Our SSE model’s empirical explanation is offered. 
The model’s outcomes were described, and physicians may adopt it in 

the future. Our long-term objective is to combine COVID-19 cases with 
14 illness classifications from the NIH [19] dataset (Chest X-ray Dataset 
of 14 Common Thorax Diseases). We also utilized large datasets to train 
our proposed PulDi-COVID approach and evaluate its efficiency with a 
broader range of current techniques. We hope that the purpose of this 
proposed DL-based model can benefit healthcare workers in detecting 
pulmonary diseases with COVID-19 to minimize severity and deaths. 
Also, this research with the deployment of a web application will be 
helpful to radiology assistance in spotting COVID19 and pulmonary 
illnesses. Future studies will identify different COVID19 variants using 
multimodal radiography imaging. 
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Fig. 4. (continued). 
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Table 7 
Performance comparison of PulDi-COVID classifier based on an already developed system.  

Reference Model Class with sample size Performance Test Time/ 
Image(S) 

Zabirul [36] CNN-LSTM Covid19:613, Pneumonia:1252, Normal:1252. Accuracy:99.4 %, AUC:99.9 %, Specificity:99.2 %, 
Sensitivity:99.3 %, F1-score:98.9 %. 

113 s 

Rahimzadeh 
et al. [37] 

Xception +
ResNet50V2 

Covid19:80, Pneumonia:6054, Normal:8851. Accuracy:91.4 %. – 

Alqudah et al.  
[38] 

AOCT-NET Covid19, Normal. Accuracy:95.2 %. 6.3 s 

Hemdan et al.  
[39] 

COVIDX-Net Covid19:25, Normal:25. Accuracy: 90.0 %. 4.0 s 

Asnaoui et al.  
[40] 

IncpetionRes 
NetV2 

Bacterial: 2780, Virus:1493, Covid19:231, Normal:1583. Accuracy: 92.18 %, Sensitivity:92.11 %, Specificity: 96.06 
%, Precision:92.38 %, F1-score: 92.07 %. 

262 s 

Wang et al.  
[41] 

ResNet-101 +
ResNet-152 

Covid19:140, Pneumonia:8620, Normal:7966. Accuracy: 96.1 %. – 

Narin et al. [42] ResNet-50 Covid19:50, Normal:50. Accuracy:98.00 %. – 
Ucar and 

Korkmaz [43] 
SqueezeNet- 
Bayes 

Covid19:76, Normal:1583, Pneumonia: 4290. Accuracy: 98.30 %. – 

Ozturk et al.  
[44] 

DarkCovidNet Covid19:125, Normal:500, Pneumonia:500. Accuracy:87.02 %. – 

Mishra et al.  
[45] 

CovAI-Net Covid + Ve:369, Covid -Ve:309. Precision: 100 %, Sensitivity:96.74 %, Specificity:100 %. – 

Loey et al. [46] GoogleNet Covid19:69, Normal:79, Bacterial:79, virus:79. Accuracy:80.6 %. – 
Tang et al. [47] EDL-COVID Covid19:573, Pneumonia:6053, Normal:8851. Accuracy:95 %, Sensitivity:96 %, PPV:94.1 %. 450 s/100 

image Apx. 
Zhou et al. [48] EDL_COVID Covid19:2500, Lung tumors:2500, Normal:2500. Accuracy:99.05 %, Specificity:99.6 %, F1-score:98.59 %. 2251 s 
Ilhan et al. [54] Deep Feature 

Fusion 
Covid19:125, Pneumonia:500, Normal:500. Accuracy:90.84 %, Precision:100 %, Recall:97.6 %. – 

Proposed PulDi-COVID 
(SSE) 

Atelectasis, Bacterial Pneumonia, Covid19, Cardiomegaly, 
Effusion, Infiltration, No-Finding, Pneumothorax, Viral 
Pneumonia. (1200 cxi/class = 10800 images). 

Accuracy:99.70 %, Specificity:99.91 %, Precision:98.68 %, 
Recall:98.67 %, F1-score:98.67 %, AUC-ROC-score:99.24 
%, Error rate:1.33 %, Zero-one loss:12. 

8.59 s  

Fig. 5. Training-Validation accuracy and loss plots of each DCNNs.  
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Appendix A 

Data availability. 
No datasets were generated during the current study. The datasets 

analyzed during this work are made publicly available in this published 
article. 

Compliance with Ethical Standards.  

• No funding received for this work.  
• All methods in papers including individual subjects were carried out 

in line with the institutions and/or national scientific board’s ethical 
principles, as well as the 1964 Helsinki statement and its subsequent 
revisions or equivalent ethical criteria.  

• We also affirm that any component of the study reported in this 
publication that involves human subjects was carried out with the 
appropriate permission of all applicable entities, and that such 
authorization is acknowledged in the article. 

Fig. 6. Grad-CAM Visualisation of thoracic abnormalities with heatmaps (highlighting essential regions for the model prediction and its source CXRs.).  

Fig. 7. Deployed GUI Web-application for Pulmonary(Lung) disease detection and classification with COVID-19.  
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