Skip to main content
. 2022 Nov 30;81:104445. doi: 10.1016/j.bspc.2022.104445
a. Parameter: [train, test, valid] = split(Dataset), a = argmax, m1 = model, t = train, v = valid, tt = test, b = batch, w = weights, em = ensemble-model, si = ith sample input of CXI dataset, X = class.
b. Input: Dataset D = sum d=0n(td,vd,ttd)
c. Output: ensemble meta-classifier, c(si): predicted class index for ith image with PulDi-COVID.
Model Training, Validation, testing:
1.  Action 1: Base model classification
2.   for c = [VGG16, ResNet50, VGG19, DenseNet201, MobileNetV2, NASNetMobile, ResNet152V2,
3.   DenseNet169]
4.    for j = 1:150 // epoch range from 1 to 150
5.     [t(j), v(j)] = partition(t, v)
6.     for k=(t/b, v/b) // sample/batch
7.      model(m1, c, j) = train(c(m1), a, t(j), v(j)) // training
8.      valid(m1, c, j) = valid((c(m1), a, j), v(j)) // validation
9.     end
10.    end
11.    tt(c(m1), a) = predict(max(test(c(m1), a, tt))) // prediction on test
12.    c(si) = tt(c(m1), a) // predicted class label with index
13.   end
14.   acquireWeights = model(w) //wi,j=max(m=1Maccm,j)
15.  Action 2: Create SSE ensemble-classifier(meta-model) and load feature vectors.
16.   for i = 1:8
17.    em = model(a). append(c(i))// input as base model structure to create meta-ensemble-learner
18.   em(w) = loadWeights(acquireWeights(c[1…8]))
19.  Action 3: Test ensemble classifier
20.   tt(em, a) = predict(max(test(em, a, tt))) // estimate the class probability
21.   pxsi = tt(em, a)
22.   c(si) = pxsi// predicted specific class label with index
23. end;