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Lagrangian Fibrations

D. Huybrechts and M. Mauri

Abstract. We review the theory of Lagrangian fibrations of hyperkähler manifolds
as initiated by Matsushita. We also discuss more recent work of Shen–Yin and
Harder–Li–Shen–Yin. Occasionally, we give alternative arguments and comple-
ment the discussion by additional observations.

Assume f : X ��B is a Lagrangian fibration of a compact hyperkähler manifold
X of complex dimension 2n, and π : X ��Δ is a type III degeneration of compact
hyperkähler manifolds of complex dimension 2n. Then the cohomology algebra of
P

n appears naturally in (at least) four different guises:
(i) As the cohomology algebra of (0, p) resp. (p, 0)-forms (both independent of f):

H∗(Pn,C) � H∗(X, OX) and H∗(Pn,C) � H0(X, Ω∗
X).

(ii) As the cohomology of the base of the fibration:1

H∗(Pn,C) � H∗(B,C).

(iii) As the image of the restriction to the generic fiber Xt of f :

H∗(Pn,C) � Im (H∗(X,C) ��H∗(Xt,C)) .

(iv) As the cohomology of the dual complex D(X0) of the central fiber X0 of π:

H∗(Pn,C) � H∗(D(X0),C).

In this survey we discuss these four situations and explain how they are related.
We start by reviewing basic results on Lagrangian fibrations in Sect. 1, discuss the
topology of the base and the restriction to the fiber in Sect. 2, and then explain in
Sect. 3 how the various occurrences of Pn are related, by sketching the proof of a
key identity called P = W.

1Here and in (iii) and (iv), one expects isomorphisms of Q-algebras, but this seems not known.

This review was prepared in the context of the seminar organized by the ERC Synergy Grant
HyperK, Grant agreement ID 854361. The talk was delivered on June 4, 2021.
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Throughout, X denotes a compact hyperkähler manifold of complex dimension
2n. A fibration of X is a surjective morphism f : X �� ��B with connected fibers onto
a normal variety B with 0 < dim(B) < 2n. A submanifold T ⊂ X of dimension
n is Lagrangian if the restriction σ|T ∈ H0(T, Ω2

T ) of the holomorphic two-form
σ ∈ H0(X, Ω2

X) is zero.

1. Basics on Lagrangian Fibrations

We first discuss Lagrangian submanifolds and in particular Lagrangian tori. Then
we study the cohomology and the singularities of the base B. Next we show that
the fibers, smooth ones as well as singular ones, of any fibration are Lagrangian and
conclude that fibrations of hyperkähler manifolds over a smooth base are flat.

At the end, we mention further results and directions without proof: Mat-
shushita’s description of the higher direct image sheaves Rif∗OX , Beauville’s ques-
tion whether Lagrangian tori are always Lagrangian fibers, smoothness of the base,
etc.

1.1. Lagrangian Tori

We start with some general comments on Lagrangian manifolds and more specifically
on Lagrangian tori.

Proposition 1.1. (Voisin) Any Lagrangian submanifold T ⊂ X of a hyperkähler man-
ifold X is projective. In particular, any Lagrangian torus is an abelian variety.

Proof. We follow the proof as presented in [11]. Since the restriction of any Kähler
class on X to T is non-trivial, the restriction H2(X,R) ��H2(T,R) is a non-
trivial morphism of Hodge structures. On the other hand, as T is Lagrangian,
all classes in H2,0(X) ⊕ H0,2(X) have trivial restrictions. Hence, the image of
H2(X,R) ��H2(T,R) is contained in H1,1(T,R). More precisely, the images of
H2(X,R) ��H2(T,R) and of H1,1(X,R) ��H1,1(T,R) coincide. Therefore, for any
Kähler class ω ∈ H1,1(X,R) there exists a rational class α ∈ H2(X,Q) such that
the (1, 1)-class α|T comes arbitrarily close to the Kähler class ω|T . Thus, α|T is a
rational Kähler class and, hence, T is projective. �

Remark 1.2. The normal bundle of a Lagrangian submanifold T ⊂ X is isomor-
phic to the cotangent bundle of T , so NT/X � ΩT . Hence, the (1, 1)-part of
the restriction map H2(X,C) ��H2(T,C) can be identified with the natural map
H1(X, TX) ��H1(T, NT/X) that sends a first order deformation of X to the ob-
struction to deform T sideways with it, see [69]:

H1,1(X)

�
��

�� H1,1(T )

�
��

H1(X, TX) �� H1(T, NT/X).
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Clearly, as T is Lagrangian, the map (H2,0 ⊕ H0,2)(X) ��H2(T,C) is trivial, see
the proof above. Since the restriction of a Kähler class is again Kähler, H1,1(X) ��

H1,1(T ) is certainly not trivial. Thus, T ⊂ X deforms with X along a subset of
codimension at least one. For smooth fibers of a Lagrangian fibration, so eventually
Sect. 1.5.2 for all Lagrangian tori, the rank of the restriction map and hence the
codimension of the image Def(T ⊂ X) ��Def(X) is exactly one.2

Proposition 1.3. Assume T ⊂ X is a Lagrangian torus. Then the restrictions
ci(X)|T ∈ H2i(T,R) of the Chern classes ci(X) ∈ H2i(X,R) are trivial.

Proof. The normal bundle sequence allows one to compute the restriction of the total
Chern class of X to T . More precisely, c(TX)|T = c(TT ) · c(NT/X). To conclude, use
NT/X � ΩT and the fact that the tangent bundle of a torus is trivial. �

Remark 1.4. (i) In the case when T ⊂ X is the fiber of a Lagrangian fibration
f : X ��B, as it always is, see Sect. 1.5.2, the restriction of the Beauville–Bogomolov–
Fujiki form, thought of as a class q̃ ∈ H4(X,Q), is also trivial:

q̃|T = 0.

There does not seem to be a direct proof of this fact. However, using that the rank
of the restriction map H4(X,Q) ��H4(T,Q) is one, see Theorem 2.1, it can be
shown as follows. The classes q̃ and c2 in H4(X,Q) both have the distinguished
property that the homogenous forms

∫
X

q̃ · β2n−2 and
∫

c2(X) · β2n−2 defined on
H2(X,Z) are non-trivial scalar multiples of q(β)n−1 and, therefore, of each other.3

If [T ] ∈ H2n(X,Z) is the class of a fiber f−1(t), then up to scaling [T ] = f∗αn for
some α ∈ H2(B,Q). Hence, for a Kähler class ω on X we find (up to a non-trivial
scalar factor)

∫

T

q̃|T · ω|n−2
T =

∫

X

q̃ · f∗αn · ωn−2 =
∫

X

c2(X) · f∗αn · ωn−2

=
∫

T

c2(X)|T · ω|n−2
T = 0.

Since ω|T �= 0 and Im (H∗(X,R) ��H∗(T,R)) is generated by ω|T , this proves the
claim.

(ii) For other types of Lagrangian submanifolds, the restrictions of the Chern
classes of X are not trivial. For example, for a Lagrangian plane P

2 ⊂ X one easily
computes

∫
P2 c2(X)|P2 = 15.

As remarked before, the normal bundle of a Lagrangian torus is trivial. The
next observation can be seen as a converse, it applies in particular to the smooth
fibers of any fibration f : X ��B.

Lemma 1.5. Assume T ⊂ X is Lagrangian submanifold with trivial normal bundle.
Then T is a complex torus and, therefore, an abelian variety.

2Is there an a priori reason why this is the case for Lagrangian tori? It fails for general Lagrangian
submanifolds; see Sect. 4.
3The non-triviality of the scalar for c2(X) follows from the fact that

∫
X
c2(X) · ω2n−2 �= 0 for any

Kähler class ω.
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Proof. Since T is Lagrangian, the tangent bundle TT � N ∗
T/X is trivial. Using the

Albanese morphism, one easily proves that any compact Kähler manifold with trivial
tangent bundle is a complex torus. �
1.2. The Base of a Fibration

We pass on to (Lagrangian) fibrations.

Proposition 1.6. (Matsushita) Assume f : X �� ��B is a fibration with B smooth.
Then B is a simply connected, smooth projective variety of dimension n satisfying
Hp,0(B) = H0,p(B) = 0 for all p > 0 and H2(B,Q) � Q. In particular,

Pic(B) � H2(B,Z) � Z.

Proof. The smoothness of B implies that the pull-back f∗ : H∗(B,Q) ��H∗(X,Q)
is injective; see Remark 1.14. Next, as α2n = 0 for any class α ∈ H2(B,R), we
have (f∗α)2n = 0 and, therefore, q(f∗α) = 0. By [9,68], this implies (f∗α)n+1 = 0
and hence αn+1 = 0, which implies dim(B) ≤ n. On the other hand, again by
[9,68], (f∗α)n �= 0 for every nonzero class α ∈ H2(B,R) from which we deduce
n ≤ dim(B).

If α ∈ Hp,0(B), then f∗α is a non-trivial multiple of some power of σ. Hence,
α = 0 if p is odd. If p = 2, then f∗α = λ ·σ and, hence, f∗αn = λn ·σn. Since σn �= 0
and H2n,0(B) = 0, one finds λ = 0. A similar argument can be made to work for
all even p and an alternative argument is provided by Theorem 2.1.

Next we show H2(B,Q) � Q. Using [9,68], we have

Snf∗H2(B,Q) ⊂ SnH2(X,Q) ⊂ H2n(X,Q).

On the other hand, the image of Snf∗H2(B,Q) is contained in f∗H2n(B,Q) which
is just one-dimensional.4

Since X is Kähler, so is B, see [67]. Using H2,0(B) = H0,2(B) = 0, we can
conclude that there exists a rational Kähler class on B. Hence, B is projective.
According to [42, Prop. 2.10.2], the natural map π1(X) �� π1(B) is surjective and,
therefore, B is simply connected, as X is.5 Then, by the universal coefficient theo-
rem, H2(B,Z) is torsion-free, i.e. H2(B,Z) � Z. Since H1,0(B) = H2,0(B) = 0, the
exponential sequence gives Pic(B) ∼ ��H2(B,Z). �
Remark 1.7. In fact, as we shall see, Hp,q(B) = 0 for all p �= q and Hp,p(B) �
Hp,p(Pn), i.e. there is an isomorphism of rational Hodge structures

H∗(B,Q) � H∗(Pn,Q).

There are two proofs of this fact, both eventually relying on the isomorphism
H∗(X, OX) � H∗(Pn,C). It seems that unlike H2(B,Q) � Q, which was proved

4The traditional proof goes as follows: First one shows that for any non-trivial class α ∈ H2(B,R) =
H1,1(B,R) and any Kähler class ω on X one has

∫
X
(f∗α)∧ω2n−1 �= 0. Indeed, otherwise the Hodge

index theorem would imply q(f∗α) < 0 and, therefore, (f∗α)n+1 �= 0, which contradicts dim(B) = n.
As a consequence, observe that for any two non-trivial classes α1, α2 ∈ H2(B,R) there exists a linear
combination α:=λ1α1 + λ2α2 with

∫
X
(f∗α) ∧ ω2n−1 = 0, which then implies α = 0, i.e. any two

classes α1, α2 ∈ H2(B,R) are linearly dependent.
5By Lemma 1.8 below, B is a Fano manifold, which provides an alternative argument of the simply
connectedness of B.
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above by exploiting the structure of the subring of SH2(X,Q) ⊂ H∗(X,Q), the
proof of the identities Hk(B,Q) � Hk(Pn,Q) for k > 2 uses deeper information
about the hyperkähler structure.
(i) The first proof for B smooth and X projective was given by Matsushita [51], as

a consequence of the isomorphisms Rif∗OX � Ωi
B, see Sect. 1.5.1. Combining

this isomorphism with the splitting Rf∗OX �
⊕

Rif∗OX [−i], see [41], one
finds

Hk(X, OX) � Hk(B,Rf∗OX) �
⊕

Hk−i(B, Rif∗OX) �
⊕

Hk−i(B,Ωi
B),

which proves the claim.6

(ii) Another one, which also works for singular B and non-projective X, was given
in [66] and roughly relies on the fact that H∗(B,C) can be deformed into
H∗(X, OX), see Sect. 2.2.

Lemma 1.8. (Markushevich, Matsushita) Under the above assumptions, B is a Fano
variety, i.e. ω∗

B is ample.

Proof. Since B is dominated by X, we have kod(B) ≤ 0 by the known case of the
Iitaka conjecture; see [36, Cor. 1.2]. Hence, ωB � OB or ω∗

B is ample. However, the
first case is excluded by Hn,0(B) = 0.

In [32, Prop. 24.8] the assertion is deduced from the fact that X admits a
Kähler–Einstein metric. The case ωB � OB is excluded, because it would imply
Hn,0(B) �= 0, which was excluded above. �
Remark 1.9. It turns out that as soon as the base B is smooth, then B � P

n.
This result is due to Hwang [34] and its proof relies on the theory of minimal
rational tangents. The results by Matsushita and more recently by Shen and Yin, see
Remark 1.7 and Sect. 2, can be seen as strong evidence for the result. In dimension
two, the result is immediate: Any smooth projective surface B with ω∗

B ample and
H2(B,Q) � Q is isomorphic to P

2.
It is tempting to try to find a more direct argument in higher dimension, but

all attempts have failed so far. For example, according to Hirzebruch–Kodaira [29]
it suffices to show that H∗(B,Z) � H∗(Pn,Z) such that the first Chern class of
a line bundle L corresponding to a generator of H2(B,Z) satisfies h0(B, Lk) =
h0(Pn, O(k)), see [47] for a survey of further results in this direction.

Alternatively, by Kobayashi–Ochai [39], it is enough to show that ωB is divisible
by n + 1, i.e. the Fano manifold B has index n + 1. As a first step, one could try to
show that f∗ωB is divisible by n + 1.

1.3. Singularities of the Base

It is generally expected that the base manifold B is smooth, but at the moment
this is only known for n ≤ 2, see [7,35,61]. The expectation is corroborated by the
following computations of invariants of the singularities of B.

Denote by IH∗(B,Q) the intersection cohomology of the complex variety B
with middle perversity and rational coefficients. It is the hypercohomology of the
6By evoking results due to Saito [63], it should be possible to avoid the projectivity assumption in
[41].
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intersection cohomology complex ICB, i.e. IH∗(B,Q) = H
∗(B, ICB). In particular,

if B is smooth or has quotient singularities, see [24, Prop. 3], then IH∗(B,Q) =
H∗(B,Q).

Proposition 1.10. Assume f : X ��B is a fibration over the complex variety B.
(i) B is Q-factorial,7 both in the Zariski and in the analytic topology.
(ii) The intersection cohomology complex ICB of B is quasi-isomorphic to the con-

stant sheaf QB. In particular, IH∗(B,Q) = H∗(B,Q).
(iii) (Matsushita) B has log terminal singularities.

Proof. For (i) and (ii) one only needs that f : X ��B is a connected and equidi-
mensional morphism from a smooth variety X, while in the proof of (iii) one also
needs ωX trivial.

For any t ∈ B, choose a chart ϕ : Ux ⊂ X ��C2n, centered at x, and the
analytic subset S:=ϕ−1(Λ), where Λ ⊆ C

2n is an n-dimensional affine subspace
intersecting the fiber ϕ(f−1(t)) transversely. Since f is equidimensional, the restric-
tion f |S : S ��B is finite over an analytic neighbourhood U of t. Therefore, U is
Q-factorial by [38, Lem. 5.16].

Denote S◦:=S ∩ f−1(U). By the decomposition theorem [4].8 ICU is a direct
summand of R(f |S◦)∗QS◦ . Taking stalks at t, we have

H0(ICB)t � QB,t Hi(ICU )t ⊆ Hi(R(f |S◦)∗QS◦)t = 0,

because of the finiteness of f |S◦ . Thus, the natural map QB
�� ICB is a quasi-

isomorphism in the constructible derived category Db
c(B) with rational coefficients.

By the canonical bundle formula, there exists a Q-divisor Δ ⊂ B such that
the pair (B,Δ) is log terminal; see [43, Thm. 8.3.7.(4)] and [56, Thm. 2]. By the
Q-factoriality, B has log terminal singularities too. �
Remark 1.11. (Quotient singularities) The finiteness of the restriction f |S : S ��B
over b suggests that B should have at worst quotient singularities. This would follow
from the following conjecture.

Conjecture 1.12. [44, §2.24] Let f : X �� Y be a finite and dominant morphism from
a smooth variety X onto a normal variety Y . Then Y has quotient singularities.

This is known for n = 2 by [10, Lem. 2.6], but it is open in higher dimension.
One of the main issue is that f itself need not be a quotient map, not even locally.

Corollary 1.13. The pullback f∗ : H∗(B,Q) ��H∗(X,Q) is injective.

Proof. By Proposition 1.10 this follows from the inclusion IH∗(B,Q) �
� ��H∗(X,Q)

coming from the decomposition theorem. �
Remark 1.14. Let f : M ��N be a surjective holomorphic map between
compact complex manifolds, with M Kähler. By [70, Lem. 7.28], the pullback
f∗ : H∗(N,Q) ��H∗(M,Q) is injective. However, this may fail if N is singular,
e.g. if f is a normalization of a nodal cubic, even if N has Q-factorial log terminal
singularities, see for instance [52, Thm. 5.11].

7Are the singularities of B actually factorial?
8Alternatively, note that the trace map R(f |S◦)∗QS◦ �� ICU splits the natural morphism
ICU

��R(f |S◦)∗QS◦ .
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Remark 1.15. Assume that B is projective. By Corollary 1.13, the smoothness of B
can be dropped from the assumptions of Proposition 1.6 and Lemma 1.8, see also
[50].

1.4. The Fibers of a Fibration

Next we present Matsushita’s result that any fibration of a compact hyperkähler
manifold is a Lagrangian fibration.

Lemma 1.16. (Matsushita) Assume f : X ��B is a fibration. Then every smooth
fiber T :=Xt ⊂ X is a Lagrangian torus and in fact an abelian variety.

Proof. Comparing the coefficients of xn−2yn in the polynomial (in x and y) the
equation

q(σ + σ̄ + x · ω + y · f∗α)n = cX ·
∫

X

(σ + σ̄ + x · ω + y · f∗α)2n

shows
∫

X
(σ ∧ σ̄) ∧ ωn−2 ∧ f∗(αn) = 0 for all ω ∈ H2(X,R) and all α ∈ H2(B,R).

Since [T ] = f∗(αn) for some class α, this implies
∫

F
(σ ∧ σ̄)|T ∧ ωn−2|T = 0, which

for a Kähler class ω and using that σ ∧ σ̄ is semi-positive implies σ|T = 0. Then
conclude by Lemma 1.5. �

Lemma 1.17. (Matsushita) The symplectic form σ ∈ H2,0(X) is trivial when re-
stricted to any subvariety T ⊂ X contracted to a point t under f . In particular, all
fibers of f are of dimension n, i.e. f is equidimensional, and if B is smooth, f is
flat.

Proof. A theorem due to Kollár [40, Thm. 2.1] and Saito [63, Thm. 2.3, Rem. 2.9.]
says that R2f∗ωX is torsion free. Since in our case ωX � OX , this shows that
R2f∗OX is torsion free. Let σ̄ ∈ H2(X, OX) be the conjugate of the symplectic
form, and ρ be its image in H0(B,R2f∗OX). Since the general fiber is Lagrangian,
ρ must be torsion and hence zero. If T̃ �� T is a resolution of T , then the image of
σ̄ in H2(T̃ , OT̃ ) is contained in the image of

R2f∗OX ⊗ k(t) ��H2(T, OT ) ��H2(T̃ , OT̃ )

and hence trivial. This implies that the image of σ in H0(T̃ , Ω2
T̃
) is trivial, i.e.

σ|T = 0. By semi-continuity of the dimension of the fibers, dimT ≥ n, and so T is
Lagrangian.

The flatness follows from the smoothness of X and B, see [25, Exer. III.10.9].
�

Remark 1.18. Note that the conclusion that f is flat really needs the base to be
smooth. In fact, by miracle flatness, f is flat if and only if B is smooth.

1.5. Further Results

We summarize a few further results without proof.

1.5.1. Higher Direct Images. The first one is the main result of [51].
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Theorem 1.19. (Matsushita) Assume f : X ��B is a fibration of a projective9 hy-
perkähler manifold over a smooth base. Then

Rif∗OX � Ωi
B.

On the open subset B◦ ⊂ B over which f◦:=f |f−1(B◦) : X◦ ��B◦ is smooth,
the result can be obtained by dualising the isomorphism

f◦
∗ Ω1

X◦/B◦ � TB◦ ,

which holds because the smooth fibers of f are Lagrangian. A relative polarization
is used to show that R1f◦

∗ OX◦ and f◦
∗ Ω1

X◦/B◦ are dual to each other. To extend the
result from B◦ to the whole B, Theorem 1.19 uses a result of Kollár [40, Thm. 2.1]
saying that Rif∗ωX are torsion free, which for X hyperkähler translates into Rif∗OX

being torsion free.
As mentioned in Remark 1.7, the theorem implies H∗(B,Q) � H∗(Pn,Q).

1.5.2. Lagrangian Tori are Lagrangian Fibers. In [6] Beauville asked whether every
Lagrangian torus T ⊂ X is the fiber of a Lagrangian fibration X ��B. The question
has been answered affirmatively:
(i) Greb–Lehn–Rollenske in [20] first dealt with the case of non-projective X and

later showed in [21] the existence of an almost10 holomorphic Lagrangian fibra-
tion in dimension four.

(ii) A different approach to the existence of an almost holomorphic Lagrangian
fibration with T as a fiber was provided by Amerik–Campana [1]. The four-
dimensional case had been discussed before by Amerik [2].

(iii) Hwang–Weiss [33] deal with the projective case and proved the existence of
an almost Lagrangian fibration with fiber T . Combined with techniques of [20]
this resulted in a complete answer.

2. Cohomology of the Base and Cohomology of the Fiber

The aim of this section is to prove the following result.

Theorem 2.1. Assume X ��B is a fibration and let Xt be a smooth fiber. Then

H∗(Pn,Q) � H∗(B,Q) and H∗(Pn,Q) � Im (H∗(X,Q) ��H∗(Xt,Q)) .

The first isomorphism for X projective and B smooth is originally due to
Matsushita [51], see Remark 1.7. The proof we give here is a version of the one by
Shen and Yin [66] that works without assuming X projective. Note also that we do
not assume that the base B is smooth.

The second isomorphism in degree two is essentially due to Oguiso [60], relying
on results of Voisin [69]. The paper by Shen and Yin [66] contains two proofs of the
general result, one using the sl2-representation theory of the perverse filtration and
another one, due to Voisin, relying on classical Hodge theory.

9Again, the projectivity assumption can presumably be dropped by applying results of Saito.
10A meromorphic map f : X ��� B is almost holomorphic if there exists a Zariski-open subset
U ⊂ B such that f |f−1(U) : f−1(U) �� U is holomorphic and proper.



Vol. 90 (2022) Lagrangian Fibrations 467

The proof we shall give avoids the perverse filtration as well as the various
sl2 × sl2-actions central for the arguments in [66]. The discussion below also proves
the second result in [66, Thm. 0.2], namely the equality

phi,j(X) = hi,j(X)

between the classical and perverse Hodge numbers, see Sect. 2.3. How it fits into
the setting of P = W is explained in Sect. 3.

2.1. Algebraic Preparations

To stress the purely algebraic nature of what follows we shall use the shorthand
H∗:=H∗(X,C) and consider it as a graded C-algebra.

Consider a non-trivial, isotropic element β of degree two, i.e. 0 �= β ∈ H2 with
q(β) = 0. Then, according to Verbitsky and Bogomolov [9,68], one has

βn �= 0 and βn+1 = 0.

In particular, multiplication by β defines on H∗ the structure of a graded
C[x]/(xn+1)-algebra with x of degree two.

All that is needed in the geometric applications is then put into the following
statement.

Proposition 2.2. For every two non-zero, isotropic elements β, β′ ∈ H2, the induced
graded C[x]/(xn+1)-algebra structures on H∗ are isomorphic.

Proof. Consider the complex algebraic group of automorphisms Aut(H∗) of the
graded C-algebra H∗ and its image G under Aut(H∗) ��Gl(H2). Clearly, the as-
sertion holds if β, β′ ∈ H2 are contained in the same G-orbit. As any two non-zero
isotropic classes β, β′ are contained in the same orbit of the complex special orthog-
onal group SO(H2, q), it suffices to show that SO(H2, q) ⊂ G. This follows from [65,
Prop. 3.4], up to taking complex coefficients in loc. cit. �

Remark 2.3. The arguments can be adapted to prove the following statement: As-
sume β, β′ ∈ H2 satisfy q(β) = q(β′) �= 0. Then the induced graded C[x]/(x2n+1)-
algebra structures on H∗, given by letting x act by multiplication with β resp. β′,
are isomorphic.

For 0 �= β ∈ H2 with q(β) = 0 and d ≤ n we let

Hd
β-pr:=Ker

(
βn−d+1 : Hd �� H2n−d+2

)
,

which is called the space of β-primitive forms. Note, however, that β does not satisfy
the Hard Lefschetz theorem; otherwise we would have defined primitive classes in
Hd as elements in the kernel of β2n−d+1.

We will also need the two spaces

P0H
d:= Im

(⊕
d−2i≤n βi · Hd−2i

β-pr
�� Hd

)

and P̄0H
d:=Hd/ Ker

(
βn : Hd �� Hd+2n

)
. (2.1)

It turns out that the map in the definition of P0 is injective, but this is not needed
for the argument. Note that P0H

d ⊂ Ker(βn) ⊂ Hd for all d > 0.
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Corollary 2.4. The dimensions of the spaces P0H
d and P̄0H

d are independent of the
choice of the non-trivial, isotropic class β ∈ H2. �

2.2. Geometric Realizations

Let us begin by looking at the obvious choice for β provided by the symplectic form
σ ∈ H0(X, Ω2

X) ⊂ H2(X,C).

Lemma 2.5. For β = σ one has

P0H
d = H0(X, Ωd

X) ⊂ Hd(X,C) and P0H
∗ � H∗(Pn,C)

and

P̄0H
d � Hd(X, OX) and P̄0H

∗ � H∗(Pn,C).

Proof. Concerning the first equality, one inclusion is obvious: Since H0(X, OX) =
H0(X,C) = H0

σ-pr, we have H0(X, Ωd
X) = C·σd/2 ⊂ P0H

d for d even and H0(X, Ωd
X)

= 0 for d odd. For the other direction, use that σn−p : Ωp
X

∼ ��Ω2n−p
X , for p ≤ n, is

an isomorphism and that, therefore, for q > 0 the composition

Hp,q(X) σn−d+1
�� H2n−p−2q+2,q(X) σq−1

�� H2n−p,q(X) (2.2)

is injective. Hence, for d ≤ n, we have σn−d+1 is injective, i.e. Hp,q(X) ∩ Hd
σ-pr = 0

for q > 0, which is enough to conclude.
For the second part observe that Ker(σn) ∩

⊕
Hp,q(X) =

⊕
p>0 Hp,q(X). �

As an immediate consequence of Corollary 2.4 one then finds.

Corollary 2.6. For any non-trivial, isotropic class β ∈ H2 there exist isomorphisms

P0H
∗ � H∗(Pn,C) and P̄0H

∗ � H∗(Pn,C)

of graded vector spaces. �

Next let us consider a Lagrangian fibration f : X ��B. We consider the class
β:=f∗α, which is isotropic since αn+1 = 0 for dimension reasons.

Lemma 2.7. For β = f∗α there exists an inclusion

f∗H∗(B,C) ⊂ P0H
∗(X,C).

Proof. The assertion follows from the Lefschetz decomposition

Hd(B,C) = IHd(B,C) =
⊕

i

αi · IHd−2i(B,C)pr

on B, with respect to the unique ample class α ∈ H2(B,Q), see [13, Thm. 2.2.3.(c)],
and the observation that pull-back via f maps IHd−2i(B,C)pr into Hd−2i

β-pr . �

Corollary 2.4 then immediately implies

H∗(B,C) � P0H
∗ � H∗(Pn,C),

see Remark 1.7, which proves the first part of Theorem 2.1.
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We keep the isotropic class β = f∗α and observe that the natural inclusion

Ker
(
Hd(X,Q) �� Hd(Xt,Q)

)
⊂ Ker

(
[Xt] : Hd(X,Q) �� Hd+2n(X,Q)

)
.

(2.3)

is actually an isomorphism.

Lemma 2.8. (Voisin) Let β = f∗α be as before and let Xt ⊂ X be a smooth fiber of
f . Then

Ker(βn) ⊂ Ker
(
Hd(X,Q) �� Hd(Xt,Q)

)
.

Proof. The result is proved in [66, App. B]. The assertion is shown to be equivalent
to the statement that the intersection pairing on the fiber is non-degenerate on
the image of the restriction map, which in turn is deduced from Deligne’s global
invariant cycle theorem. �

From the result one obtains a surjection

π : P̄0H
∗ �� �� Im (H∗(X,C) ��H∗(Xt,C)) .

Since P̄0H
∗ � H∗(Pn,C) by Corollary 2.6, its image in H∗(Xt,C) is the subring gen-

erated by the restriction of a Kähler class. Hence, π is an isomorphism, which proves
the second isomorphism in Theorem 2.1. However, it is easier to argue directly, as
the equality holds in Lemma 2.8 by (2.3).

2.3. Perverse = Hodge

As in Sect. 2.1, we consider the abstract algebraic situation provided by H∗:=H∗

(X,C) and the additional structure induced by the choice of a non-zero isotropic
class β ∈ H2. The two spaces P0H

d and P̄0H
d defined there, both depending on β,

are part of a filtration

P0H
∗ ⊂ P1H

∗ ⊂ · · · ⊂ P2n−1H
∗ ⊂ P2nH∗ = H∗,

where P0H
d is as defined before and P̄0H

d = Hd/Pd−1H
d.

In general, one defines

PkHd:=
∑

i≥0

βi · Ker
(
βn−(d−2i)+k+1 : Hd−2i ��H2n−d+2i+2k+2

)
. (2.4)

If we want to stress the dependence of β, we write P β
k Hd. The graded objects of

this filtration

GrP
i H∗:=PiH

∗/Pi−1H
∗,

in particular GrdH
d = P̄0H

d, are used to define the Hodge numbers of the filtration
as

Phi,j := dim GrP
i Hi+j .

As a further consequence of Proposition 2.2, one has

Corollary 2.9. The Hodge numbers Phi,j of the filtration PiH
∗ are independent of

the choice of the isotropic class β ∈ H2. �
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Let us quickly apply this to two geometric examples.
(i) First, consider β = σ̄ ∈ H2(X, OX) � H0,2(X) ⊂ H2(X,C), the

anti-holomorphic symplectic form. Then the filtration gives back the Hodge
filtration, i.e.

P σ̄
k Hd =

⊕

p≤k

Hp,d−p(X).

To see this, one needs to use the Lefschetz decomposition with respect to σ̄:

Hq(X, Ωp
X) =

⊕

q−�≥(q−n)+

σ̄q−� · H2�−q(X, Ωp
X)σ̄-pr.

Note that from this example one can deduce that indeed for any choice of β

one has P β
k Hd = 0 for k < 0 and P β

k Hd = Hd for k ≥ d.
(ii) For the second example consider a Lagrangian fibration f : X ��B and let β be

the pull–back of an ample class α ∈ H2(B,Q). The induced filtration is called
the perverse filtration11 and the Hodge numbers are denoted by phi,j(X).
Then [66, Thm. 0.2] becomes the following immediate consequence of Proposi-

tion 2.2 or Corollary 2.9.

Corollary 2.10. (Shen–Yin) For any Lagrangian fibration f : X ��B the Hodge num-
bers of the perverse filtration equal the classical Hodge numbers:

phi,j(X) = hi,j(X).

3. P = W

P = W for compact hyperkähler manifolds asserts that the perverse filtration asso-
ciated with a Lagrangian fibration can be realised as the weight filtration of a limit
mixed Hodge structure of a degeneration of compact hyperkäher manifolds. It boils
down to the observation that the cup product by a semiample not big class and
a logarithmic monodromy operator define nilpotent endomorphisms in cohomology
which are not equal, but up to renumbering induce the same filtration.

Inspired by P = W, we provide some geometric explanation or conjecture con-
cerning the appearance of the cohomology of Pn in the introduction and in Theo-
rem 2.1.

3.1. The Weight Filtration of a Nilpotent Operator

Definition 3.1. Given a nilpotent endomorphism N of a finite dimensional vector
space H∗ of index l, i.e. N l �= 0 and N l+1 = 0, the weight filtration of N centered
at l is the unique increasing filtration

W0H
∗ ⊂ W1H

∗ ⊂ · · · ⊂ W2l−1H
∗ ⊂ W2lH

∗ = H∗,

with the property that (1) NWk ⊆ Wk−2, and denoting again by N the induced
endomorphism on graded pieces, (2) Nk : GrW

l+kH∗ � GrW
l−kH∗ for every k ≥ 0, see

[16, §1.6].

11The classical definition of the perverse filtration for the constructible complex Rf∗QX due to [4]
or [13, Def. 4.2.1] coincides with the present one; see [13, Prop. 5.2.4.(39)].
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The weight filtration of N on H∗ can be constructed inductively as follows:
first let W0:=ImN l, and W2l−1:= kerN l. We can replace H∗ with W2l−1/W0, on
which N is still well-defined and N l = 0. Then define

W1:=inverse image in W2l−1 of Im N l−1 in W2l−1/W0,

W2l−2:=inverse image in W2l−1 of KerN l−1 in W2l−1/W0.

Continuing inductively, we obtain the unique (!) filtration on H∗ satisfying (1) and
(2).

By the Jacobson–Morozov theorem, the nilpotent operator N can be extended
to an sl2-triple with Cartan subalgebra generated by an element HN which is unique
up to scaling. By the representation theory of sl2-triples, there exists a decomposi-
tion

H∗ =
l⊕

λ=−l

H∗
λ,

called the weight decomposition, with the property that HN (v) = λv for all v ∈ H∗
λ.

In particular, the decomposition splits the weight filtration of N

WkH∗ =
l⊕

λ=l−k

H∗
λ.

let us apply this to some geometric examples.
(i) Any cohomology class ω ∈ H2(X,C) defines a nilpotent operator Lω on

H∗:=H∗(X,C) by cup product. If ω is Kähler, then the Hard Lefschetz theorem
implies that the weight filtration of Lω on H∗ centered at 2n is12

Wω
k H∗ =

⊕

i≥4n−k

Hi(X,C).

(ii) Consider a Lagrangian fibration f : X ��B and let β be the pull–back of an
ample class α ∈ H2(B,Q). Up to renumbering, the weight filtration associated
with the class β on H∗ centered at n coincides with the perverse filtration, see
Sect. 2.3

W β
k Hd(X,Q) = Pd+k−2nHd(X,Q).

Indeed, the action of β gives the morphisms

β : PkHd(X,Q) ��PkHd+2(X,Q) βj : GrP
i Hn+i−j � GrP

i Hn+i+j .

The isomorphism is called the perverse Hard Lefschetz theorem [13, Prop. 5.2.3].
By Proposition 2.2, this corresponds to the isomorphism σ̄j : Hn−j(X, Ωi

X) �
Hn+j(X, Ωi

X).
(iii) Let π : X ��Δ be a projective degeneration of hyperkähler manifolds over

the unit disk which we assume to be semistable, i.e. the central fiber X0 is
reduced with simple normal crossings. For t ∈ Δ∗, let N denote the logarithmic
monodromy operator on H∗(Xt,Q). The weight filtration of N centered at d on

12The equality actually holds for any Kähler manifold, not necessary hyperkähler.
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Hd(Xt,Q), denoted by WkHd(Xt,Q), is the weight filtration of the limit mixed
Hodge structure associated to π, see [62, Thm. 11.40].
The degeneration π : X ��Δ is called of type III if N2 �= 0 and N3 = 0 on

H2(Xt,Q). In this case, the limit mixed Hodge structure is of Hodge–Tate type by
[64, Thm. 3.8], and in particular GrW

2i+1H
∗(Xt,Q) = 0. Then the even graded pieces

of the weight filtration are used to define the Hodge numbers
whi,j(X ):= dim GrW

2i Hi+j(Xt,Q).

The Hodge numbers wh0,j(X ) have a clear geometric description. The dual
complex of X0 =

∑
Δi, denoted by D(X0), is the CW complex whose k-cells are

in correspondence with the irreducible components of the intersection of (k + 1)
divisors Δi. The Clemens–Schmid exact sequence then gives

wh0,j(X ) = dim Hj(D(X0),Q), (3.1)

see for instance [54, §3, Cor. 1 & 2].
In order to show P = W, namely that the filtrations (ii) and (iii) can be

identified, we need the notion of hyperkähler triples with their associated so(5,C)-
action.

3.2. Hyperkähler Triples

A hyperkähler manifold is a Riemannian manifold (X, g) which is Kähler with re-
spect to three complex structures I, J , and K, satisfying the standard quaternion
relations I2 = J2 = K2 = IJK = −Id. The corresponding hyperkähler triple is the
triple of Kähler classes in H2(X,C) × H2(X,C) × H2(X,C) given by

(ωI , ωJ , ωK):=(g(I·, ·), g(J ·, ·), g(K·, ·)).
The set of all hyperkähler triples on X forms a Zariski-dense subset in

D◦ = {(x, y, z) | q(x) = q(y) = q(z) �= 0, q(x, y) = q(y, z) = q(z, x) = 0}.

In particular, all algebraic relations that can be formulated for triples in D◦ and
which hold for triples of the form (ωI , ωJ , ωK) hold in fact for all (x, y, z) ∈ D◦, see
[66, Prop. 2.3].

3.3. The so(5,C)-Action

Recall the scaling operator

H : Hi(X,C) ��Hi(X,C) H(v) = (i − 2n)v.

By the Jacobson–Morozov theorem, to any ω ∈ H2(X,C) of Lefschetz type we can
associate a sl2-triple (Lω, H, Λω). Let p = (x, y, z) ∈ D◦. The sl2-triples associated
to x, y and z generate the Lie subalgebra gp ⊂ End(H∗(X,C)), isomorphic to
so(5,C), with Cartan subalgebra

h = 〈H,H ′
p:=

√
−1[Ly, Λz]〉. (3.2)

There is an associated weight decomposition

H∗(X,C) =
⊕

i,j

Hi,j(p) (3.3)
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such that for all v ∈ Hi,j(p) we have

H(v) = (i + j − 2n)v H ′
p(v) = (j − i)v.

The following sl2-triples in gp

Ep:=
1
2
(Ly −

√
−1Lz) Fp:=

1
2
(Λy +

√
−1Λz) Hp:=

1
2
(H + H ′

p), (3.4)

E′
p:=[Ep, Λx] F ′

p:=[Lx, Fp] H ′
p (3.5)

induce the same weight decomposition, since for any v ∈ Hi,j(p) we have

Hp(v) = (j − n)v H ′
p(v) = (j − i)v.

Remark 3.2. The previous identities for hyperkähler triples are due to Verbitsky.
The result for a general triple p = (x, y, z) ∈ D◦ follows from the density of hy-
perkähler triples in D◦, and the fact that the sl2-representation H∗(X,C) associated
to x, y and z have the same weights, since x, y, and z are all of Lefschetz type, see
[66, §2.4].

3.4. P = W

The main result of [30] is the following.

Theorem 3.3. (P = W) For any Lagrangian fibration f : X ��B, there exists a type
III projective degeneration of hyperkähler manifolds π : X ��Δ with Xt deforma-
tion equivalent to X for all t ∈ Δ∗, together with a multiplicative isomorphism
H∗(X,Q) � H∗(Xt,Q), such that

PkH∗(X,Q) = W2kH∗(Xt,Q) = W2k+1H
∗(Xt,Q).

Proof. Let β = f∗α be the pullback of an ample class α ∈ H2(B,Q), and η ∈
H2(X,Q) with q(η) > 0. Since βn+1 = 0, we have q(β) = 0. Up to replacing η with
η + λβ for some λ ∈ Q, we can suppose that q(η) = 0. Set

y = β + η z = −
√

−1(η − β).

By scaling a nonzero vector x ∈ H2(X,C) perpendicular to y and z with respect to
q, we obtain p(f) = (x, y, z) ∈ D◦ with

β =
1
2
(y −

√
−1z).

Soldatenkov showed that the nilpotent operator E′
p(f) is the logarithmic mon-

odromy N of a projective type III degeneration π : X ��Δ of compact hyperkähler
manifolds deformation equivalent to X, see [64, Lem. 4.1, Thm. 4.6]. 13

The weight decomposition for the sl2-triple (3.4) splits the perverse filtration
associated to f , since Ep(f) acts in cohomology via the cup product by β. The
weight decomposition for the sl2-triple (3.5) splits the weight filtration of the limit

13One can use the Lie algebra structure of the LLV algebra to compare the present description of
E′

p(f) with that of [64, Lem. 4.1], see [46, Lem. 3.9]. Mind that Soldatenkov’s existence result is
not constructive: it relies on lattice theory and the geometry of the period domain, and does not
produce an explicit type III degeneration.
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mixed Hodge structure associated to π, because E′
p(f) = N . Hence, by Sect. 3.3,

this implies P = W. �

P = W also provides alternative proofs of Corollary 2.10 and Theorem 2.1.

Corollary 3.4. (Numerical P = W) phi,j(X) = whi,j(X ) = hi,j(X).

Proof. By Theorem 3.3 we obtain phi,j(X) = whi,j(X ). The equality phi,j(X) =
hi,j(X) is Corollary 2.10.

Alternatively, one can argue as follows. By [64, Thm. 3.8], the limit mixed
Hodge structure (H∗

lim(Xt,Q) � H∗(Xt,C),W∗, F∗) associated to π is of Hodge–
Tate type, and so whi,j(X ) = dimC GrF

i Hi+j
lim (Xt,C). By the classical result [62,

Cor. 11.25], we have dimC GrF
i Hi+j

lim (Xt,C) = hi,j(Xt). We conclude that phi,j(X) =
hi,j(Xt) = hi,j(X). �

Corollary 3.5. At the boundary of the Hodge diamond of X, P = W gives14

dim Hj(B,Q) = ph0,j(X) = h0,j(X) = dim Hj(Pn,Q),

dim Hj(D(X0),Q) = wh0,j(X ) = h0,j(X) = dim Hj(Pn,Q),

dim Im(Hi(X,Q) ��Hi(Xt,Q)) = phi,0(X) = hi,0(X) = dim Hi(Pn,Q).

In the following, we provide conjectural conceptual explanations for these iden-
tities.

3.5. A Conjectural Explanation I

Assume that X is Calabi–Yau. This can be always achieved via a MMP, at the cost
of making X0 mildly singular (precisely divisorial log terminal), see [18]. Under this
assumption the homeomorphism class of D(X0) is well-defined.

Then the SYZ conjecture predicts that Xt carries a special Lagrangian fibra-
tion f : Xt

��D(X0) with respect to a hyperkähler metric. By hyperkähler rotation
[28, §3], f should become a holomorphic Lagrangian fibration f : X ��B on a hy-
perkähler manifold X deformation equivalent to Xt. It is conjectured that the base
of a Lagrangian fibration on X is a projective space. So in brief, we should have the
homeomorphisms

D(X0) � P
n � B. (3.6)

The latter equality is known to hold if n ≤ 2 , see Sect. 1.3, or conditional to
the smoothness of the base [34]. The former equality is known for degenerations of
Hilbert schemes or generalised Kummer varieties [8]. In both case, the most delicate
problem is to assess the smoothness of D(X0) or B. From this viewpoint, the identity

dim Hj(D(X0),Q) = dimHj(Pn,Q) = dim IHj(B,Q) = dim Hj(B,Q).

is a weak cohomological evidence for the conjecture (3.6).

14The identity dimHj(D(X0),Q) = dimHj(Pn) was first proved in [37, Thm. 7.13].
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3.6. A Conjectural Explanation II

We conjecture that the equality phi,0(X ) = whi,0(X ) is the result of the identifica-
tion of two Lagrangian tori up to isotopy.

Definition 3.6. Let x be a zero-dimensional stratum of X0. Choose local coordinates
z0, . . . , z2n centered at x with π(z) = z0 · · · · · z2n. For fixed radii 0 < ri � 1 and
t =

∏2n
i=0 ri, a profound torus T ⊂ Xt is

T = {(r0e
iθ0 , . . . , r2neiθ2n) | θ0, . . . , θ2n ∈ [0, 2π), θ0 + · · · + θ2n − arg(t) ∈ Z}.

Remark 3.7. The ambient-isotopy type of T ⊂ Xt does not depend on the choice
of the coordinates: T is homotopic to Ux ∩ Xt, where Ux is a neighbourhood of
x in X . More remarkably, if X is Calabi–Yau, then the isotopy class of T in Xt

is independent of x. This follows at once from Kollár’s notion of P1-link (see [45,
Prop. 4.37] or [26, Lem. 3.10]), or equivalently because profound tori are fibers of
the same smooth fibration, by adapting [17, Prop. 6.12.]

Conjecture 3.8. (Geometric P = W) For any Lagrangian fibration f : X ��B with
general fiber T , there exists a projective minimal dlt type III degeneration of hy-
perkähler manifolds π : X ��Δ with Xt deformation equivalent to X for all t ∈ Δ∗,
such that T is isotopic to a profound torus T.

The conjecture is inspired by the geometric P = W conjecture for character
varieties, see the new version of [53] (to appear soon). Lemma 2.8 and (2.1) give

Pd−1H
d(X,Q) = Ker

(
Hd(X,Q) ��Hd(T,Q)

)
.

If X0 has simple normal crossings (or dlt singularities modulo adapting [26, Thm.
3.12]), one obtains that

W2d−1H
d(Xt,Q) = Ker

(
Hd(Xt,Q) ��Hd(T,Q)

)
.

Therefore, Conjecture 3.8 would give a geometric explanation of P = W at the
highest weight

Pd−1H
d(X,Q) = W2d−1H

d(Xt,Q).

It is not clear what a geometric formulation of P = W should be that could explain
the cohomological statement in all weights.

Recent advance in the SYZ conjecture due to Li [48] suggests that profound tori
can be made special Lagrangian, modulo a conjecture in non-archimedean geometry.
A few months ago, the existence of a single special Lagrangian torus on Xt was a
complete mystery, see [23, §5, p.152]. Note also that Li’s result is compatible with the
expectation in symplectic geometry [3, Conj. 7.3]. Profound tori appear as general
fibers of the SYZ fibration that Li constructed on an open set which contains an
arbitrary large portion of the mass of Xt with respect to a Calabi–Yau metric, still
modulo the non-archimedean conjecture. It is curious (but maybe not surprising)
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that also the previously quoted results [35] and [8] highly rely on non-archimedean
techniques.

3.7. Multiplicativity of the Perverse Filtration

P = W implies that the perverse filtration on H∗(X,Q) is compatible with cup
product.

Corollary 3.9. (Multiplicativity of the perverse filtration) Assume f : X ��B is
a fibration. Then the perverse filtration on H∗(X,Q) is multiplicative under cup
product, i.e.

∪ : PkHd(X,Q) × Pk′Hd′
(X,Q) ��Pk+k′Hd+d′

(X,Q).

Proof. By P=W, it is sufficient to show that the weight filtration is multiplicative.
To this end, endow the tensor product H∗(Xt,Q) ⊗ H∗(Xt,Q) with the nilpotent
endomorphism N⊗:=N ⊗1+1⊗N , and call W⊗ the weight filtration of N⊗. Since
the monodromy operator eN is an algebra homomorphism of H∗(Xt,Q), N is a
derivation, i.e.

N(x ∪ y) = Nx ∪ y + x ∪ Ny = ∪(N⊗(x ⊗ y)).

As a consequence, the construction of the weight filtration (see Sect. 3.1) gives

∪(W⊗
k (Hi(Xt,Q) ⊗ Hj(Xt,Q))) ⊆ WkHi+j(Xt,Q).

Together with [16, 1.6.9.(i)] which says that

W⊗
k (Hi(Xt,Q) ⊗ Hj(Xt,Q)) =

⊕

a+b=k

WaHi(Xt,Q) ⊗ WbH
j(Xt,Q),

we conclude that the weight filtration is multiplicative. Alternatively see [30, §5]. �

Remark 3.10. For an arbitrary morphism of projective varieties or Kähler manifolds,
the perverse filtration is not always multiplicative [71, Exa. 1.5], but it is so for
instance if it coincides with the Leray filtration, or if P = W holds. Indeed, the
Leray filtration and the weight filtration of the limit mixed Hodge structure are
multiplicative.

It is natural to ask whether the multiplicativity holds at a sheaf theoretic level,
for Rf∗QX , or over an affine base. The motivation for this comes from the celebrated
P = W conjecture for twisted character varieties [12], which has been proved to be
equivalent to the conjectural multiplicativity of the perverse filtration of the Hitchin
map that is a proper holomorphic Lagrangian fibration over an affine base, see [14,
Thm. 0.6]. From this viewpoint, it is remarkable that Shen and Yin give a proof
of the multiplicativity in the compact case [66, Thm. A.1] which uses only the
representation theory of sl(2)-triples, with no reference to the weight filtration.
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3.8. Nagai’s Conjecture for Type III Degenerations

Let π : X ��Δ be a projective degeneration of hyperkähler manifolds with unipotent
monodromy Td on Hd(Xt,Q). The index of nilpotence of Nd:= log Td is

nilp(Nd) = max{i | N i
d �= 0},

and nilp(Nd) ≤ d by [22, Ch. IV]. It is known that H2(Xt,Q) determines the Hodge
structure of Hd(Xt,Q) by means of the LLV representation, see [65]. Nagai’s conjec-
ture investigates to what extent nilp(N2) determines nilp(Nd). The ring structure
of the subalgebra generated by H2 implies the inequality nilp(N2k) ≥ k · nilp(N2),
see [55, Lem. 2.4], but equality is expected.

Conjecture 3.11. (Nagai) nilp(N2k) = k · nilp(N2) for k ≤ 2n.

The previous inequalities imply Nagai’s conjecture for type III degenerations,
i.e. nilp(N2) = 2. Remarkably, P = W explains Nagai’s conjecture in terms of the
level of the Hodge structure Hd(Xt,Q), and determines nilp(Nd) even for d odd.
Recall that the level of a Hodge structure H = ⊕Hp,q, denoted by level(H), is the
largest difference |p− q| for which Hp,q �= 0, or equivalently the length of the Hodge
filtration on H.

Proposition 3.12. Let π : X ��Δ be a type III projective degeneration of hyperkähler
manifolds with unipotent monodromy. Then

nilp(Nd) = level(Hd(Xt,C)).

For k ≤ 2n, the following identities hold:
(i) nilp(N2k) = 2k = k · nilp(N2),
(ii) nilp(N2k+1) = 2k − 1, if H3(Xt,C) �= 0.

Remark 3.13. The Statement (ii) is proved in [64, Prop. 3.15]. Here we present an
alternative simple proof of (ii) which avoids the LLV representation.

Nagai’s conjecture is known to hold for degenerations of type I and III, i.e. for
nilp(N2) = 0 and 2, see [37, Thm. 6.5]. In order to establish Nagai’s conjecture in
full, only the case of type II degenerations remains open, i.e. when nilp(N2) = 1.
For type II there are partial results: k ≤ nilp(N2k) ≤ 2k − 2 for 2 ≤ k ≤ n − 1,
see [37, Thm. 6.5], and nilp(N2n) = n, see [31, Thm. 1.2]. The full conjecture holds
for all the known deformation types of hyperkähler manifolds by [19, Thm. 1.13].
Further comments on Nagai’s conjecture for type II can be found in [19,27,31].

Proof. Let ld be half of the length of the weight filtration of Nd, i.e. ld:= min{i : W2i

Hd(Xt,Q) = Hd(Xt,Q)}. By Definition 3.1, we have nilp(Nd) = ld.
For any type III degeneration of Hodge structures of hyperkähler type with

unipotent monodromy, we know by the proof of Theorem 3.3 that the logarithmic
monodromy N∗ is of the form E′

p = [β,Λx] for some β and x in H2(X,Q) with q(β) =
0. Here, we use the assumption b2(Xt) ≥ 5, see [64, §4.1]. Then, by Corollaries 2.9
and 3.4, we have ld = level(Hd(Xt,C)). Hence, nilp(Nd) = level(Hd(Xt,C)).

Finally, statements (i) and (ii) are equivalent to (i) H2k,0(Xt) = Cσ �= 0, and
(ii) H2k,1(Xt) �= 0 if H2,1(Xt) �= 0, which follows from (2.2). �
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4. Examples and Counterexamples

Example 4.1. In [57, Ex. 1.7.(iv)] Namikawa exhibits an example of a submanifold
T of a hyperkähler manifold X which is isomorphic to a complex torus, but is not
Lagrangian (actually it is symplectic). Let E, F be elliptic curves defined by the
cubic equations f and g respectively, and let Y ⊆ P

5 be the cubic fourfold given by
the equation h:=f(x0, x1, x2)+ g(y0, y1, y2) = 0. The cyclic group G:=Z/3Z acts on
Y by

φζ : [x0 : x1 : x2 : y0 : y1 : y2]
� �� [x0 : x1 : x2 : ζy0 : ζy1 : ζy2],

where ζ is a primitive third root of unity. The induced action on the Fano variety
of lines X is symplectic, i.e. φ∗

ζσ = σ for σ ∈ H0(X, Ω2
X). Indeed, by [5] there is

a G-equivariant isomorphism H0(X, Ω2
X) � H1(Y,Ω3

Y ). Denoting by Ω the canon-
ical section of H0(P5,KP5(6)), H1(Y,Ω3

Y ) is generated by the G-invariant residue
ResY (Ω/h2), and so the action is symplectic. In particular, the fixed locus T of the
G-action on X is a symplectic submanifold. One defines T as the set of lines which
join two points on Y ∩ {y0 = y1 = y2 = 0} � E and Y ∩ {x0 = x1 = x2 = 0} � F
respectively. Hence, T � E×F . We conclude that T is a symplectic torus embedded
in the hyperkähler manifold X.

Example 4.2. There exists a Lagrangian submanifold L of a hyperkähler manifold
X with

Im(H2(X,Q) ��H2(L,Q)) �� Q.

Proof. Let f : S ��P1 be an elliptic K3 surface with smooth fiber E. Define L ⊆
X:=S[2] to be the locus of non-reduced length-two subschemes of S supported on
E, which is isomorphic to the P

1-bundle P(Ω1
S |E) over E. Then, L is an irreducible

component of the fiber of the Lagrangian fibration f [2] : S[2] ��S(2) ��P2, thus L is
Lagrangian. The exceptional divisor Exc of the Hilbert–Chow morphism S[2] ��S(2)

restricts to a multiple of the tautological line bundle OP(Ω1
S|E)(−1) on L. Therefore,

the second cohomology group H2(L) is generated by the restriction of Exc and the
pullback of an ample line bundle of S(2). �

Example 4.3. There exists a Lagrangian submanifold L of a hyperkähler manifold
X with

Im(H2(X,Q) ��H2(L,Q)) � Q and Im(H∗(X,Q) ��H∗(L,Q)) �� H∗(Pn,Q).

Proof. Let C be a smooth curve of genus two in an abelian surface A. Consider the
moduli space Modd(A) of stable 1-dimensional sheaves on A supported on the curve
class

2[C] ∈ H2(A,Z)

and Euler characteristic −1. The fiber of the Albanese morphism Modd(A) ��A ×
Â is a compact hyperkähler manifold X deformation equivalent to a generalised
Kummer variety of dimension six. Taking Fitting supports defines a Lagrangian
fibration

X ��P3 = |2C|.
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The fiber over the curve 2C contains the locus L of stable sheaves F on A such that
the composition OS

��O2C
�� EndS(F) factors via the natural map O2C

��OC .
As OC-module, F is a rank-two vector bundle, and L can be identified with the
moduli space of rank-two vector bundles on C of degree one, which is isomorphic to
the intersection of two quadrics in P

5, see [15,59]. The cohomology H∗(X) is gener-
ated by so-called tautological classes, and H∗(L) is generated by their restrictions,
see [49] and [58, Thm. 1]. Therefore, we have

H∗(X,Q) �� ��H∗(L,Q) � H∗(P3,Q) ⊕ Q
4[−3] �� H∗(P3,Q).

�
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