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Abstract

Many drugs, or their antecedents, were discovered through observation of their effects on normal 

or disease physiology. For the past generation, this approach was largely supplanted by the 

powerful but reductionist approach of modulating specific molecular targets of interest. Modern 

phenotypic drug discovery (PDD) combines the original concept with modern tools and strategies, 

and has re-emerged over the past decade to systematically pursue drug discovery based on 

therapeutic effects in realistic disease models. Here, we discuss recent successes, as well as 

consider ongoing challenges and approaches to address them. We also explore how innovation in 

this area may fuel the next generation of successful projects.

Introduction

Historically, new medicines were discovered through observation of their therapeutic effect 

on disease phenotypes either directly in humans as part of traditional medicine or in 

models of disease. With the advent of the molecular biology revolution in the 1980s and 

the sequencing of the human genome in 2001, the focus shifted to specific molecular 

targets. Since 2011, however, Phenotypic Drug Discovery (PDD) has experienced a major 

resurgence following the surprising observation that a majority in first in class drugs were 

discovered empirically without a drug target hypothesis between 1999 and 2008.1 The 

modern version of this legacy strategy is defined by its focus on the modulation of a 

disease phenotype or biomarker rather than a pre-specified target to provide a therapeutic 

benefit.2 Ten years in, PDD is maturing as a field, serving as an accepted discovery modality 

in both academia and the pharmaceutical industry as opposed to a transient fad. This 
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continued interest is rooted in notable successes in the past decade, including ivacaftor and 

lumicaftor for cystic fibrosis, risdiplam and branaplam for spinal muscular atrophy (SMA), 

SEP-363856 for schizophrenia, KAF156 for malaria and crisaborole for atopic dermatitis.

This is not to say that PDD approaches are a magic bullet to address issues with 

pharmaceutical industry productivity; the pros/cons of phenotypic screening need to be 

carefully balanced against molecular approaches for validated targets.3 While PDD has been 

successful, many historical examples used highly complex disease systems (in vivo models 

and even humans) rather than cell-based screens and/or were the result of serendipitous 

discoveries (Figure 1),4 and complex models are only now regaining prominence. Drug 

repurposing provides a compelling example of this state of affairs, with on the one hand 

well known examples of repurposed drugs based on serendipitous clinical observations (e.g. 

sildenafil, minoxidil, thalidomide, amantadine) and on the other hand a lack of approved 

repurposed drugs stemming from pre-planned screens of clinical compound collections.5 

This raises the critical question of how best to prospectively approach the discovery of novel 

drugs using phenotypic screening.

In addition to a renewed appreciation for the complexities of physiology and pharmacology, 

PDD challenges our assumptions in terms of what is druggable with unusual targets 

and mechanisms of action (MoA), including polypharmacology, and what is a drug with 

unexpected compound properties. While important hurdles remain in terms of target 

identification, a helpful step for safety derisking and the mapping of a clinical path, exciting 

opportunities are emerging for the application of functional genomics, machine learning/

artificial intelligence and improved disease models.

Given the major differences between PDD and target-based drug discovery (TDD) and the 

new technologies that can now be brought to bear on phenotypic programs, the field is 

evolving at a rapid pace, with a need to establish and share best practices across industry 

and academia.3,18–21 Although technical and cultural hurdles remain, here, we discuss how 

the renewed utilization of PDD has started to change the manner in which we conceptualize 

drug discovery and has proven to be an important testing ground for technical innovations 

in the life sciences. This perspective highlights the authors’ collective thoughts on how 

PDD has influenced concepts related to drug discovery and ends with a discussion of the 

challenges ahead for maximizing the effectiveness of PDD.

Drug discovery concepts recently shaped by PDD

Expansion of “druggable” target space

The main driver for PDD stems from the disproportionate number of first-in-class medicines 

derived from this approach.1 In contrast to TDD, which is based on an established causal 

relationship between a molecular target and a disease state, PDD relies on chemical 

interrogation of a disease-relevant biological system in a molecular-target-agnostic fashion. 

This empirical, biology-first strategy provides tool molecules to link therapeutic biology 

to previously unknown signaling pathways, molecular mechanisms and drug targets, as 

highlighted in the following examples.
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• Hepatitis C is a liver disease caused by the hepatitis C virus (HCV), which 

infects 3% of the population and is estimated to cause 300,000 deaths worldwide 

each year.22 In the past decade, the treatment of HCV has been revolutionized 

by the development of combinations of orally available direct-acting antivirals 

(DAAs) that inhibit HCV replication, and clear the virus in >90% of infected 

patients. Modulators of the HCV protein NS5A such as daclatasvir are a key 

component of these DAA combinations. The importance of NS5A, which is 

essential for HCV replication but has no known enzymatic activity, as well as 

its small-molecule modulators, were initially discovered using a HCV replicon 

phenotypic screen.23

• Cystic fibrosis (CF) is a progressive and frequently fatal genetic disease caused 

by various mutations in the CF transmembrane conductance regulator (CFTR) 

gene that decrease CFTR function or interrupt CFTR intracellular folding and 

plasma membrane insertion.24 Target-agnostic compound screens using cell lines 

expressing wild-type or disease-associated CFTR variants identified compound 

classes that improved CFTR channel gating properties (potentiators such as 

ivacaftor), as well as compounds with an unexpected mechanism of action: 

enhancing the folding and plasma membrane insertion of CFTR (correctors 

such as tezacaftor and elexacaftor).6,7 Notably, a combination of elexacaftor, 

tezacaftor and ivacaftor was approved in 2019 which addresses 90% of the CF 

patient population.25

• Inspired by observations that thalidomide effectively treated leprosy, modulated 

multiple anti-inflammatory cytokines, inhibited angiogenesis and showed 

activity in multiple myeloma,26 the optimized analogue lenalidomide gained 

FDA approval for several blood cancer indications and has been highly 

successful (sales > $12 billion in 2020).27–29 Significantly, the unprecedented 

molecular target and MoA of lenalidomide were only elucidated several years 

post-approval. Lenalidomide binds to the E3 ubiquitin ligase Cereblon and 

redirects its substrate selectivity to promote the ubiquitination and subsequent 

degradation of target proteins including the transcription factors IKZF1 and 

IKZF3.30 Furthermore, this novel MoA is now being intensively explored in 

the development of further targeted protein degraders, dubbed ‘bifunctional 

molecular glues’.31

• Type 1 SMA is a rare neuromuscular disease with 95% mortality by 18 months 

of age. SMA is caused by loss-of-function mutations in the SMN1 gene, which 

encodes a protein known as survival of motor neuron (SMN) that is involved 

in the formation and maintenance of neuromuscular junctions. Humans also 

have a very closely related SMN2 gene, but a mutation that affects its splicing 

leads to exclusion of exon 7 and the production of an unstable shorter SMN 

variant. Phenotypic screens by two research groups independently identified 

small molecules that modulate SMN2 pre-mRNA splicing and increase levels of 

full-length SMN protein.32,33 Both compounds work by engaging two sites at the 

SMN2 exon 7 and stabilizing the U1 snRNP complex, 32,34,35 an unprecedented 
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drug target and MoA. One such compound, risdiplam, was approved by the FDA 

in 2020 as the first oral disease-modifying therapy for SMA.

Table 1 presents further recent examples of approved or clinical-stage compounds 

originating from phenotypic screens, including those where the affected cellular processes 

are well defined but the specific entity which binds the compound is a multi-component 

“cellular machine”, a poorly defined molecular target. Taken together, these examples 

demonstrate how phenotypic strategies have expanded the “druggable target space” 

to include unexpected cellular processes (pre-mRNA splicing, target protein folding, 

trafficking, translation, and degradation), novel MoAs for traditional target classes (pseudo-

kinase domain inhibition, allosteric kinase activation, masked covalent warhead), and 

revealed new classes of drug targets (e.g. bromodomains). They suggest that phenotypic 

strategies should be considered when no attractive target is known to modulate the pathway 

or disease phenotype of interest and/or the project goal is to obtain a first-in-class drug with 

a differentiated MoA.

Polypharmacology reexamined

With no restrictions in the available chemical and biological space other than those defined 

by the compound library and the disease model systems, phenotypic screening offers the 

opportunity to identify molecules engaging multiple targets in what is otherwise known 

as polypharmacology.51,52 In this scenario, the intended effect of a compound depends 

upon a combination of targets (on-targets); however, these are not necessarily its full target 

signature that may include targets not required for activity (off-targets).

In the quest for ever more selective drugs, polypharmacology has been traditionally 

associated with poorly optimized compounds prone to potential side effects due to the 

difficulty in tracking all the biological functions represented by off-targets. However at 

therapeutically relevant concentrations most, if not all, approved drugs are known to interact 

with multiple targets that often underlie side effects but can also contribute to clinical 

efficacy.53–55 In fact, the simultaneous low potency modulation of several targets to achieve 

efficacy “by synergy” has been suggested as a strategy to minimize side effects.56 One 

classic TDD example of unintended polypharmacology is imatinib, the first rationally 

designed kinase inhibitor approved by the FDA for the treatment of chronic myeloid 

leukemia’s (CML) and other cancers, and currently in clinical development for recent-onset 

type I diabetes.57 Initially regarded as an inhibitor of CML’s BCR-ABL fusion protein,58 

imatinib also exhibits activity towards c-KIT and PDGFR receptor tyrosine kinases, among 

other targets, which are believed to contribute to its activity in several types of cancer.59,60

Multi-target approaches based on drug combinations, i.e. post-hoc polypharmacology 

by design, are well-accepted strategies for antiviral and oncology indications for 

which resistance to treatment can develop when only a single target is engaged.61–64 

Polypharmacological drugs are also commonly used to treat central nervous system and 

heart diseases for which single-target-based approaches have shown limited success and 

classical in vivo phenotypic models have long been used for drug discovery.40,65,66 

Generally speaking, multi-target drugs may be a better match for complex, polygenic 
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diseases with multiple underlying mechanisms often involving interactions with immune 

or nervous system components.

Phenotypic approaches have provided a number of drugs and candidate molecules that 

revealed on-target polypharmacology upon MoA identification. Representative examples 

include imipramine, a tricyclic antidepressant discovered in the 1950s with a prominent 

polypharmacological signature modulating some key CNS monoamine transporters and 

receptors,67,68 topiramate, a neurostabilizer for epilepsy and migraine that engages a 

selection of neuronal receptors, ion channels and enzymes,69 pemetrexed, a folate 

antimetabolite approved for mesothelioma and NSCLC that inhibits a combination of 

enzymes involved in folate metabolism and nucleotide synthesis,70,71 molibresib, a first-

generation BET inhibitor tested in phase 1/2 clinical trials for several cancers,72,73 RG7834 

evaluated for HBV infection,74,75 SEP-363856, a clinical candidate for schizophrenia 

identified in an in vivo phenotypic screen43 and new investigational compounds for 

CNS pathologies,76 infectious diseases,77 cancer78 and metabolic disorders (Table 2).79 

Unsurprisingly, polypharmacology often occurs among proteins from the same family, 

sharing common structural domains or similar substrates or ligands (e.g. kinases, aminergic 

GPCRs, and BET domain proteins).

Drug combinations, engineered multi-targeted drugs and multi-specific antibodies represent 

simplified polypharmacology scenarios, typically combining two moieties with selectivity 

for each of the individual targets.80–82 Engineering more complex polypharmacology into a 

single entity while balancing all other properties required by a drug candidate is a complex 

process that remains a daunting challenge, in spite of recent advances in molecular docking, 

computational technologies and artificial intelligence (AI).76,82–84

Phenotypic screening offers the possibility to identify hits with novel, unbiased 

polypharmacology signatures only limited by the target landscape of the model system 

and the number of activities potentially contained in each of the scaffolds available in the 

compound library.85,86 An important practical consideration is the use of a gain-of-signal 

phenotype to help focus efforts on productive polypharmacology rather than cellular stress 

or cytotoxicity through targets unrelated to the biology of interest.21,76 A first snapshot 

of polypharmacology signatures can be obtained using conventional selectivity panels.87,88 

These signatures can serve as starting points for a reverse engineering SAR-based process 

aimed at identifying and optimizing their on /off-targets balance, mapping correlations 

between activity in the phenotypic assay and in each of the individual targets.76 An example 

of a systematic approach to map off-targets and increase selectivity for a phenotypic 

endpoint resulting from polypharmacology is provided by Tear et al, using hits from a 

phenotypic HTS screen to identify Trypanosoma brucei inhibitors.89 Phenotypic endpoints 

integrate the contributions of polypharmacoloy on-targets in a single read out, while 

reduction of the off-targets footprint can be explored with support from SAR and, when 

available, reference compounds selective for the targets identified.90

On-target(s) identification efforts may be more productive after some compound 

optimization is undertaken to reduce the off-targets signature of initial hit compounds 

and its potential confounding effects. Additional support from chemical and functional 
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genomics tools at more advanced stages may also be required. Even if on-targets cannot 

be unequivocally identified, insight into the MoA and potential safety risks of candidate 

molecules can be obtained from the powerful phenotypic and molecular profiling platforms 

currently available using reference drugs as benchmarks.91–94 Polypharmacology is unlikely 

to be limited to the proteome. In our experience, phenotypic screening using a chemical 

library containing highly selective legacy compounds from target-based drug discovery 

programs can provide hits (e.g. kinase inhibitors) whose phenotypic activity does not seem 

to rely in their bona fide targets alone.90 This could be due to subtle polypharmacology 

resulting from a combination of lower potency activities or even involve interactions with 

non-protein targets like RNAs,95 not detected in conventional protein-only selectivity panels 

but certainly potential targets of phenotypic screening hits.96

From a drug discovery perspective, phenotypic screening-derived polypharmacology can 

take advantage of increasingly robust phenotypic models combined with advanced profiling, 

omics and computational technologies to evolve from serendipity to a SAR-based reverse 

engineering approach that can minimize potential safety risks while preserving and 

eventually optimizing phenotypic activity to increase the chances of clinical success.

Drug “likeness” revisited: PDD successes with low molecular weight compounds

Modern phenotypic screening may also help expand the range of molecular properties 

displayed by new drugs. Specifically, the molecular weight of drugs has increased 

significantly over the past few decades in conjunction with the advent of TDD.103 

Historically, smaller molecules were discovered using phenotypic approaches, often using 

animal models (ibuprofen104 MW 206, minoxidil13 MW 209, memantine12 MW 179) 

(Figure 1). These molecules were well within the broadly accepted criteria for fragments, 

such as MW<300. Contemporary examples include the discoveries of lacosamide (MW 250) 

using a model of epilepsy11 and SEP-363856 (MW 183) for schizophrenia using a battery 

of CNS models,42,43,98 along with the repurposing of MLR-1023 (MW 202) towards type 

2 diabetes and NASH after testing in a diversified suite of in vivo models,48,105 and of 

dymethyl fumarate (MW 144) for multiple sclerosis (Figure 1).106

The above examples raise a critical question. Why would fragment-sized molecules that 

would nowadays be looked at as weak hits in need of a large amount of potency optimization 

in the context of TDD programs be active in in vivo disease models and lead to similarly 

sized drugs after optimization? We hypothesize that several reasons might account for this 

unexpected pattern. First, fragment-sized molecules are known to deliver a higher fraction of 

valid hits when screened against specific targets due to their small size and larger number of 

orientations able to fit within a binding site.107 As noted previously, polypharmacology is a 

frequent feature of PDD drugs and may also contribute here (e.g. SEP-363856 interacts with 

TAAR1 and 5-HT1A receptors).43,98 Finally, smaller molecules have documented advantages 

in terms of intestinal permeability, operating through paracellular spaces, while they present 

fewer options to metabolizing enzymes due to their smaller size.108 While drug dosages 

and the corresponding exposures for many of these fragment-sized drugs may be high by 

the standards of larger molecules, they may still display high ligand efficiencies for their 

target(s) which allow them to be dosed safely.109 In other words, the same high compound 
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concentration does not carry the same safety implications for molecules with MW of 200 vs 

500 in terms of exposure.

An opportunity therefore exists to purposefully exploit this ability of phenotypic screening 

to tap into a chemical and pharmacology space poorly covered by TDD programs.110 

The recent discoveries of SEP-363856, MLR-1023 and lacosamide suggest that phenotypic 

screening using in vivo animal models can still be successful. Such success will depend 

heavily on the clinical relevance of the model, a controversial topic but one still worthy 

of exploration as will be discussed later on. Looking forward, a second option to consider 

would be to adapt this concept of screening fewer and smaller molecules in complex, multi-

cellular organoid assays. Fragment libraries are known to cover a large pharmacophore space 

despite numbering only in the thousands.107 Testing libraries of fragments or molecules 

in between fragments and standard compounds may potentially allow the coverage of a 

significant pharmacology space even with low-throughput, complex 3D assays.110

A related concept is the use of covalent fragments - a subset of fragments containing 

reactive moieties which can establish chemical bonds with proteins - to identify both novel 

targets and reveal chemistry starting points. Used in cell-based phenotypic assays, they 

are garnering recognition for their ability to access a greater slice of biology through the 

discovery of binding sites which may not be available to reversible compounds. Importantly, 

covalent fragments benefit from the strengths of both covalent targeting (sustained target 

engagement) and fragment-based screening (wide coverage of ligandable pockets with a 

small library).111 For example, profiling of covalent fragments in primary human T cells 

revealed inhibitors of T cell activation operating by distinct mechanisms including the 

direct functional perturbation and/or degradation of proteins.112 Notably, modulated targets 

included both previously liganded or unliganded proteins.

Target identification and project progression – a maturing discussion

Target identification for an active compound series is broadly accepted as being desirable 

to help derisk the project from a safety and clinical translation perspective. Whether it is 

absolutely necessary for compounds prior to entering the clinic has been the source of 

contentious debate over the years.3 This discussion is now maturing. Target identification 

is usually viewed as leading to a simple binary outcome: either the target is identified 

or it is not (Figure 3A). Here, we wish to offer a different framework for discussing 

this important topic. First, it is important to keep in mind that target identification is 

only a means to an end, with that end being to obtain decision-making information for 

compound series on the path to and in the clinic. Target identification therefore represents 

only one option to meet this goal. Furthermore, identifying the molecular target does not 

equate to understanding the MoA of a compound series and may even be misleading in 

terms of program decisions. For example, the documentation of NS5A being the target 

of HCV drug daclatasvir did not rationalize its notable sub-nM cellular potency nor did 

it explain how efficacy can be obtained with a compound to protein stoichiometry lower 

than 1 to 1,000.8 Similarly, the rational response to the identification of the ribosome as 

the target of a PCSK9 secretion inhibitor should have been to terminate the program as it 

raised the specter of significant safety liabilities through broad protein synthesis inhibition. 

Vincent et al. Page 7

Nat Rev Drug Discov. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, further investigations including proteomics profiling revealed that its molecular 

MoA provided unexpectedly specific inhibition of the translation of the PCSK9 mRNA 

transcript due to the formation of a trimeric complex between the ribosome, the compound 

and the nascent PCSK9 polypeptide.49,50 Another class of examples includes compounds 

exhibiting a unique phenotypic effect in their class due to degradation of the target (e.g. 

fulvestrant with ER)113 or modification of its protein binding partners (e.g. DNMDP with 

PDE3A)114.

As an alternative to target identification, we suggest that much actionable knowledge about 

the MoA can be acquired empirically (Figure 3B). Practically, cellular and in vivo assays 

can provide unbiased compound assessment with readouts relevant to efficacy and safety 

while mechanistic studies, now often employing omics approaches, may reveal information 

related to the MoA such as the specific biological pathways impacted by the compound.115 

Rather than the binary switch of identifying – or not - the target, a continuum of information 

can be obtained about a compound series during the course of a project which may lead to 

its progression to the clinic based on the accumulated confidence in safety and translation.

Target identification and mechanism-of-action profiling strategies

While finding direct binders to a small-molecule screening hit has the promise of delivering 

“a/the” target, it is not the complete picture when trying to deconvolute a phenotypic 

screen.116–118 Affinity (or photo-affinity) enrichment combined with chemo-proteomics 

methods119–123 or, more recently, Cellular Thermal Shift Assay (CETSA)124 to identify the 

protein (or proteins) that bind to the small molecule hit are a way to understand mechanism 

of action (e.g. P2X4 as the target of autophagy inhibitor Indophagolin).125 But this may not 

be sufficient, and as mentioned above for PCSK9 could even be misleading.

Developments in RNAi, and CRISPR-Cas9, have opened the ability to screen whole 

genome libraries, allowing gain of function and loss of function studies to be performed 

with high specificity.126 Genetic perturbations, in combination with compound treatment, 

provide further mechanistic understanding of MoA and may lead to identification of the 

molecular target itself (e.g. NAMPT as the target of anti-leukemia agent STF-118804 and 

DHODH as the target of antiviral GSK983).127–130 One large-scale effort is the Cancer 

Dependency Map that aims to systematically identify genetic dependencies and small-

molecule sensitivities using massively-parallel compound screens in molecularly-barcoded 

cell lines using the PRISM method.131,132

More recently, molecular profiling methodologies that provide comprehensive information 

about biological changes resulting from a chemical perturbation have taken a prominent role 

in the follow up of phenotypic hits.21 Examples of such large-scale profiling efforts can be 

categorized into measurements of gene expression, cell morphology or biomarker activity. 

The Connectivity Map has gene expression profiles of test and annotated compounds that 

can be used for signature similarity mapping.133 An extension from that is the Library 

of Integrated Network-Based Cellular Signatures (LINCS),91,134 an NIH Common Fund 

program that catalogs changes in cell lines in response to chemical, genetic, and disease 

perturbations. Cell Painting uses morphological profiling: quantitative data are extracted 

from microscopy images of cells to identify biologically relevant similarities and differences 
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among samples.135–138 The BioMap panel profiles primary cell systems upon treatment 

(chemical or biological), reading out biomarker activities that are increased or decreased 

in comparison to vehicle control.92,139,140 A key advantage provided by these technologies 

is the growing feasibility of testing numerous compounds (e.g. a list of top hits) rather 

than having to focus on a strictly limited number of compounds as with legacy proteomics 

strategies. Much of the value of these platforms is derived from the comparison of a 

hit’s biological signature to a databank of signatures obtained with reference, annotated 

compounds. It may reveal a match or help construct hypotheses regarding its MoA. For 

example, Tapinaroff was matched to an AHR agonist using the BioMap panel, with its 

own AHR agonism validated in follow up studies.141 Practically, molecular profiling is now 

becoming integrated in screening funnels and used in determining which hits and series will 

see further investment and investigation.21

These large-scale profiling methodologies, while higher in throughput and focused on 

pathway-level information, rely heavily on known compounds with similar phenotypes in 

the reference databases. Given that the purpose behind phenotypic screening is to discover 

new mechanisms of action, it may take time to build the knowledge base for these methods 

to live up to the expectation of a look-up table. However, many phenotypic screens are 

now guided by specific mechanistic information (mechanism-informed PDD as coined by 

Moffat et al).142 This strategy provides a key biological framework to place into context the 

data generating hypotheses for the MoA of the phenotypic hits based on the tools described 

above.

Clinical development considerations for PDD-derived compounds

In the absence of target information, progressing a PDD-derived preclinical drug candidate 

into the clinic poses several challenges to development teams. Simply phrased, target 

identity provides valuable information both for derisking safety concerns and for predicting 

and monitoring efficacy. This section will present specific strategies and examples to address 

these hurdles.

A ‘chain of translatability’ — a molecular-level association between mechanisms which 

drive the original phenotypic assay, subsequent preclinical disease models, and is an inherent 

component of the human disease — is critical for a PDD program to succeed in the 

clinic.3 For example, the HBV antiviral agent RG7834 lowers the secretion of non-infectious 

membranous particles containing the tolerogenic viral S antigen in vitro and therefore 

captures an essential (and prognostic) component of the disease in humans.74,75,143,144 The 

programs for branaplam and risdiplam for spinal muscular atrophy (SMA) also provide 

a strong example of this concept. As noted above, SMA is caused by loss-of-function 

mutations in the SMN1 gene, and both efforts originated from high-throughput phenotypic 

screening programs aimed at producing functional SMN to compensate by modulating 

the splicing of the almost identical SMN2 gene to include exon 7 (this exon is normally 

absent, resulting in an unstable Δ7 protein).9,32,33,145 These programs screened for a disease 

surrogate biomarker (inclusion of exon 7 in SMN2 mRNA) of clear clinical relevance, 

as the subsequent clinical studies demonstrated. For instance, in a phase I healthy male 

volunteer single escalating dose study, treatment with risdiplam resulted in the intended 

Vincent et al. Page 9

Nat Rev Drug Discov. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shift in SMN2 splicing towards full-length SMN2 mRNA, which further translated into a 

medically meaningful benefit in SMA patients in the SUNFISH (NCT02908685) pivotal 

clinical trial.146 To summarize, clinical development may be feasible in the absence of 

an identified target but with a clear biomarker to monitor in humans based on a strong 

molecular MoA understanding.

On the safety front, target information, and the accompanying knowledge about its 

physiological expression pattern and role, is often used to focus attention on potential safety 

signals. These may be investigated early in the life of a TDD program to either derisk 

or terminate it rapidly. Regulatory guidelines do not require target information for safety 

evaluation though. Instead, they provide a list of required toxicology studies, to guide the 

choice of acceptable compound doses for human testing. Safety derisking was the topic of 

a workshop at the 2019 Keystone symposium on PDD with multiple themes and strategies 

emerging from these discussions.

First, safety considerations need to be incorporated as early as hit triage and validation 

in phenotypic programs. Effective methods include cytotoxicity counterscreens as well as 

molecular profiling to remove hits acting through frequent hitter and other undesirable 

MoAs.21 Once the hit list has been trimmed to a few hits of interest, the use of active–

inactive compound pairs has proven helpful to either increase or decrease confidence in 

a given compound series and its cognate target/MoA. These molecular tools can enable 

the identification of specific biomarkers and signatures of the MoA of interest while 

also allowing the assessment of adverse reactions that are not directly related to the 

compound mechanism of action (analogous to “off target” adverse effects in target-based 

drug discovery). This approach was followed to gain confidence in the MoA of the original 

PCSK9 secretion inhibition hit, R-IMPP.49 As often with screening hits, this hit was 

rather weak and promiscuous, raising concerns about further investment. The fact that its 

enantiomer, S-IMPP, was observed to be similarly promiscuous yet was inactive in the 

PCSK9 secretion assay suggested the R-IMPP series acted through a specific molecular 

target rather than through broad cell stress or injury (Figure 4A). Conversely, this strategy 

was used to justify the termination of a series of CFTR correctors being developed for cystic 

fibrosis.147 Here, following the observation of severe in vivo toxicity following chronic 

dosing of a lead molecule, a closely structurally related but inactive analogue was similarly 

tested in vivo. The inactive compound was well tolerated with similar exposure levels, 

suggesting that toxicity was more likely MoA-related rather than compound-related (Figure 

4B).

Additionally, researchers can access more complex phenotypic characterizations and map 

compound-specific profiles to reference collections in zebrafish149 or in human primary cell-

based disease systems such as Biomap, validated with fingerprints generated using clinically 

approved drugs.150,151 While these systems do not fully recapitulate the range of safety 

issues which may be observed in humans, they still provide an opportunity to detect some 

multiorgan liabilities while allowing the testing of significantly larger number of compounds 

or series. Finally, in vivo toxicology studies, which include testing of multiple compound 

doses in two separate animal species, constitute a key step and the subsequent determination 

of a no-observed-adverse-effect level (NOAEL) guides the choice of compound doses for 
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human testing. Here, ensuring that the two species chosen display modulation of a disease 

biomarker or biological signature associated with the series MoA is important to maximize 

the value of these studies prior to entering the clinic.

Drug candidates derived from PDD can and have transitioned to the clinic in the absence 

of knowledge of the molecular target.1 These include for example, 1) Lenalidomide (2005 

approval for multiple myeloma) with its MoA being elucidated in 2014,30 2) Lacosamide 

(2008 approval for epilepsy) with information with its likely complex MoA still under 

investigation,11,152,153 and 3) RG7834 which recently entered phase I clinical trials while 

target identification efforts had yet to succeed.74,75,154 Howeverin the absence of target 

information, it is necessary to identify surrogate disease biomarkers that translate effectively 

to human patients. Similarly, specific strategies can help evaluate safety risks for a given 

series and the associated MoA. An additional consideration is the unmet medical need and 

clinical landscape for a given indication as an absence of well validated targets may provide 

further impetus to progress a compound into the clinic in the absence of target information.3

Looking Forward

Surrogate Phenotypes for phenotypic screens

At times, phenotypic screening can present a conundrum. It is obviously valuable 

for diseases that do not have well validated therapeutic targets and which may be 

correspondingly less well understood or characterized. However, disease knowledge is 

essential to design a phenotypic assay with a relevant in vitro or in vivo biological system, 

stimulus and readout and establish the required Chain of Translation.3,18 In much the same 

way they are being used to define the MoA of a small molecule, high-dimensional profiles 

such as gene expression and cellular morphology could be used to define a surrogate disease 

phenotype as the readout of the phenotypic assay.155 Instead of a chemical compound, the 

perturbagen in this case is the disease itself with the screen aimed at reverting the system 

from diseased to healthy state.

Gene expression profiling has been used to define disease states, such as those caused by 

genomic alterations in cancer. For example, high-throughput mRNA profiles were used to 

cluster alleles found in lung adenocarcinoma based on their functional impact, a precursor 

to therapeutic strategy for variants of previously unknown significance.156 As indicated 

previously, the LINCS program is designed to create a network-based understanding of 

biology by cataloging changes in gene expression that occur in response to a perturbagen 

or disease state.134 A goal of the program is to develop a computational framework to 

discover therapies on the basis of restoring perturbed pathways and networks to their 

normal, healthy states. A recent study used high-throughput drug screening combined with 

in silico analyses of existing transcriptomic datasets to identify a compound capable of 

reversing pulmonary arterial hypertension (PAH) in vivo.157 The authors note that their 

studies could be further improved by generating LINCS gene expression signatures using 

vascular cells rather than cancer cells. The promise of these methods, however, is still 

in its infancy, as shown by elegant work done by Alvarez et al.158 Here, the authors 

combined gene expression profiling and several computational algorithms to define master 

regulator proteins, for gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and then 
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conducted transcriptome analysis of GEP-NET-derived cells, perturbed with a library of 

107 compounds. Conceptually the method showed that compounds capable of inverting the 

coordinated activity of tumor-checkpoint master regulators can effectively destabilize tumor 

cell state. However, validation of two drugs predicted to induce patient-specific master 

regulator collapse was inconclusive. The authors provide an in-depth discussion of the 

reasons why that could be.

As discussed previously, cell morphological phenotypes, including shape, size, intensity, and 

texture of cellular compartments have been shown to change in response to perturbation - be 

it a small molecule or disease associated alleles. Already, the LINCS portal has incorporated 

such data from Cell Painting136 and the Drug Repurposing Hub159 reporting Cell Painting 

data for 1,571 compounds (92% of them mapped to a human protein target or assigned a 

mechanism-of-action label).135 These data could be used to define phenotypes reversed by 

drugs of known MoA.

Additional methods to computationally compare and visualize drug and disease gene 

expression profiles are used to define reversal of disease phenotypes. A ranking system, the 

Reverse Gene Expression Score (RGES) provided a systematic way to connect disease gene 

expression with drug-induced expression profiles.160 Integrating data from TCGA (https://

tcga-data.nci.nih.gov/), LINCS,91,134 ChEMBL161 and CCLE162 allowed the researchers to 

show that drugs with efficacy in cancer cells had enhanced potency to reverse disease gene 

expression compared to ineffective drugs.160

Analogous to gene set enrichment analysis (GSEA), Nassiri et al developed a cell 

morphology enrichment analysis to assess the association between transcriptomic alterations 

and changes in cell morphology underscoring that the interdependence between transcription 

and cell morphology can be linked to disease state, in this case looking at cell morphological 

changes in a human bone osteosarcoma cell line.163

The repositories of high dimensional profiling datasets mentioned in this section already 

exist in the public domain. For drug discovery, the challenge of how to best use these data 

to define surrogate disease phenotypes that can be reversed as an indication of therapeutic 

efficacy remains as one of the next big hurdles for the field. Some pharmaceutical companies 

have started to use this approach as a screening platform. Starting in 2013, Recursion 

Pharmaceuticals may be the first industrial effort to use a surrogate disease signature via cell 

painting to screen for reversion of a surrogate disease signature. Their main focus is on drug 

repurposing aimed at rare monogenic disorders.164

Artificial intelligence and PDD

The application of artificial intelligence is well accepted in multiple domains of drug 

discovery and development (for a comprehensive review see 165) including drug design,166 

protein folding,167 chemistry,168 in silico toxicity prediction,169 and drug repurposing.170 

The exponential pace of application of this methodology relies on the ability of machine 

learning (ML) algorithms to identify patterns and learn from their association with certain 

parameters such as potency, selectivity, etc.
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A query of the published literature on PubMed using the keywords “deep learning”, 

“artificial intelligence” and “phenotypic” or “drug discovery” results into two rather 

different class of papers: 1) classifiers applied to a large collection of compounds or 

chemical structures and 2) classifiers applied to phenotypic assay derived features. The vast 

majority of the published works belong to the first category (graph-based or deep learning-

based with or without transfer learning from different training datasets) to a large collection 

of compounds or chemical structures with associated pharmacology data generated in 

previous screens. The classifier is not applied therefore to phenotype-derived features but 

to chemical structures in order to come up with potential novel scaffolds that in turn can 

become substrate for experimental validation. A prototypical example is the DeepMalaria 

study, where a graph-based model was trained on antiplasmodial hits from a GSK dataset to 

predict Plasmodium falciparum growth inhibition (and mammalian cell cytotoxicity) aiding 

in the rational selection of scaffolds as input for further investigation.171 To overcome the 

difficulty of low training data, transfer learning was used from an unrelated dataset. Those 

molecules were then subsequently validated in a phenotypic assay. Though the AI classifier 

is deployed on chemical structures prior to the phenotypic effort, that approach can still 

contribute to PDD as demonstrated by the identification of potent candidate antimalarial 

agents.171

Conversely, beyond the AI hype, efforts to deploy the classifier on the phenotype-derived 

features are still rare even though this is clearly a tantalizing application of this technology 

capable of revealing patterns hidden in what is apparently chaos to a casual observer. PDD 

relies by definition on phenotypic pattern changes to identify and optimize molecules with 

little or no knowledge of the biological target or MoA.172 Characterization of drug-induced 

perturbations at the cellular level (e.g., Cell Painting136) has shown that subcellular feature 

metrics can be used to cluster and classify compound and gene perturbations.138,173,174 ML 

is particularly useful in instances when the feature space is not well defined, and could 

therefore be remarkably enabling to PDD. Leveraging a large cell painting data set (126,779 

morphological profiles induced by 30,616 compounds) for instance,138 Hofmarcher et al 
demonstrated that convolutional neural networks operating on raw images are able to extract 

morphological changes of cells from images, outperforming a traditional image-processing 

pipeline based on segmenting cells and subsequent feature extraction.175 Interestingly, 

application of different dyes to cells may not be necessary as other authors have shown 

that even bright field images can be used to train an algorithm that can discriminate specific 

phenotypes.177

There are also other opportunities for the integration of ML with PDD. For example, 

phenotypic screening and ML can be combined to extract target information from 

promiscuous compound collections such as unselective kinase inhibitors. In this area, studies 

showed that, even while using promiscuous kinase inhibitors, it was possible to deconvolute 

the kinase dependencies of active molecules and identify the kinase combinations whose 

inhibition delivered the desired outcomes of increased neurite outgrowth or breast cancer 

cell death.76,178

Two studies highlight the transformative potential of the application of ML to PDD with 

bacterial phenotypic fingerprinting and the repurposing of high-throughput images.94,176 
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Though others have deployed deep learning to antibiotics discovery,179 Zoffmann et al 94 

using a combined high-content imaging and genomic approach in conjunction with a ML-

powered dataset analysis effectively narrowed down, compared and predicted compound 

MoAs. In that study, application of ML could therefore define, in the feature space, 

compound ‘archetypes’, enabling chemists to proceed in their compound optimization 

efforts while constantly monitoring how such modifications affected the MoA of analogues 

— a major difference with traditional PDD. Janssen researchers brought this concept to the 

next level, integrating the high-throughput imaging, normally used to read out a handful 

of morphological features documenting a single biological process, with ML to establish 

a proof of concept that images from a given cellular assay can support activity prediction 

across a spectrum of biological assays.176 Specifically, they were able to predict compound 

activity against two different targets using cellular morphology information extracted from 

an unrelated imaging screen, increasing hit rates by >50 fold.

Further development of physiological and disease-relevant assay systems

Whether a phenotypic drug discovery project succeeds or fails depends on the inherent 

strength of the “chain of translatability”, discussed above, that links the primary phenotypic 

assay at the outset to patient efficacy at the end, often with an animal disease model in 

between.3 An analysis of the biopharmaceutical industry by Scannell and Bosley suggests 

that the decline in R&D efficiency may be caused by the progressive exhaustion of the 

most predictive disease models, and that the rate of creation of new disease relevant models 

may be a major constraint on R&D productivity.180 Notably, the authors also conclude that 

small increases in the predictive validity or translatability of disease models can offset large 

differences (i.e. orders of magnitude) in assay throughput.180 Taken together, the continued 

development of realistic disease-relevant assays with validated clinical translatability is of 

critical importance to future PDD efforts.

Fortunately, advances in diverse disciplines such as stem cell biology, functional genomics, 

bioengineering/microfabrication, and instrumentation/data analytics have converged to 

provide an expansive experimental pallet to develop potential disease relevant assay 

systems. Technology advances include but are not limited to: platform approaches to 

model organisms,181 high capacity in vivo mammalian pharmacology,40,182 the use of 

high fidelity Cas-9 methods to modulate gene regulation/structure,183,184 access to novel 

cellular systems such as primary cells, patient derived cells and induced pluripotent stem 

cell (iPSC)-derived cells,18,185–187 the use of mono or co-culture188–190 systems in 2D or 3D 

cell formats,191,192 and integration of microfabrication/bioengineering advances to provide 

micropatterned cell culture surfaces193, 3D matrices/microfluidic systems187, and organ on a 

chip194–197 capabilities.

The complexity and number of experimental variables pertinent to the design of disease 

relevant biological models are significant.18,185,186,198,199 Unfortunately, recapitulating all 

aspects of the relevant patient biology in a model is at best an aspirational goal. More 

realistically, research usually focuses on reproducing specific disease features deemed to 

be essential for model value. Even so, these are usually complex systems, and therefore 

require significant development, optimization and validation efforts.18,185,186 As with 
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molecular target validation,200 disease models should be considered translational only after 

concordance is established between discovery and clinical phase data. This represents a high 

hurdle which is obtained only late in a project’s lifecycle.

Although relevant cell types and culture conditions are necessary to develop physiologically 

relevant models, their use alone is not sufficient to guarantee disease relevance.199 Critically, 

the chain of translatability of a cellular system should be benchmarked against multiple 

aspects of the human clinical condition such as morphology, multi-omics characterization, 

and pharmacological responses. The recent development of an in vitro model of non-

alcoholic fatty liver disease and non-alcoholic steatohepatitis (NASH) illustrates this key 

point.196,201 This model uses 3D co-culture of primary human hepatocytes, Kupffer cells, 

and hepatic stellate cells which display disease-relevant tissue morphology, biomarker 

expression/secretion, transcriptional profiles and responsiveness to obeticholic acid, an 

advanced clinical compound which improves the histological features of NASH but has 

yet to secure FDA approval.196,201 Similarly, oncology models utilizing 3D organoids can 

be frequently derived from patient biopsies. Patient-derived organoids (PDOs) retain aspects 

of the original patient tumor such as histopathology, biomarker protein expression, and 

genomic features (copy number variations and mutational landscapes).202–205 Significantly, 

PDOs derived from gastrointestinal and pancreatic cancers show diverse ex vivo responses 

to standards of care but closely match the clinical chemotherapeutic responses of specific 

patients 203,204 and ex vivo responses of rectal cancer PDOs to chemoradiation treatment 

correlate with the clinical responses noted in individual patient tumors.202,205

In the era of big data, integration of real-world patient records from large populations (e.g. 

UK Biobank, FinnGen) and their omics data may also be used to help both build and 

validate model systems. Utilizing an in vitro phenotypic screen monitoring alpha-synuclein 

gene expression as a Parkinson’s disease (PD) model, Mittal et al identified βB2-adrenergic 

receptor modulators in a drug repurposing screen. Significantly, the in vitro model was 

subsequently validated by analysis of 4 million patient records which correlated the use 

of a β2AR agonist or antagonist with a reduced or increased risk of developing PD, 

respectively.206 Alternatively, the Tumor Profiler Study seeks to deliver patient specific 

treatment recommendations by integration of a patient’s real world clinical data with high-

resolution multi-omics profiles and ex vivo drug response of the patient tumor within a 

clinically relevant turnaround time.207

Animal models of human disease are an important component of preclinical drug discovery. 

While nowadays they are used mostly to validate modulation of specific molecular targets, 

models utilizing mammals were a mainstay as primary phenotypic assays in drug discovery 

until the late 20th century and led to the discovery of therapeutic agents for indications 

such as epilepsy, gastric ulcers, hypertension, inflammation and pain.11,13,69,104,105 With the 

advent of the 21st century, this approach to drug discovery was all but ruled out at larger 

pharmaceutical companies.105

As the need for phenotypic assays with high translational potential becomes ever clearer, 

perhaps it is time to reconsider the wholesale abandonment of in vivo models as first 

line phenotypic screening systems. While whole organism models may be necessary to 
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more fully recreate the disease state for certain complex or multi-organ indications poorly 

described by in vitro systems, even those including native cells and 3D architecture, the 

development of valid in vivo translational models is certainly not trivial however.180

Importantly, in vivo disease models have recognized issues with human disease translation 

due to factors including methodology, systematic data review, and critical disease specific 

disparities.208–210 Lack of species translation constitutes another significant hurdle as 

exemplified by the failure in clinical trials of flavonoid DMXAA despite promising efficacy 

in preclinical models. Following the identification of its target, the disconnect was traced 

to the selective activation of mouse STING over its human ortholog.211 Overall, ethical, 

cost, translatability and throughput considerations combine to place a high bar on the 

development and use of suitable in vivo models.

Efforts to enhance their translational value include the development of a “Mouse Hospital” 

and co-clinical trial concept, where in vivo preclinical mouse models and early clinical 

studies are closely aligned for in vivo testing of drugs in order to mitigate translational 

issues.212,213 Similarly, comparative expression profiles of genetic mouse models of 

Huntington’s disease (HD) correspond well with patient profiles, particularly for mRNAs 

that are decreased in HD striatum214 and thus increase the predictive validity of HD mouse 

models.

Advances in disease models may also encompass aspects of data acquisition and analysis 

rather than improvements in the model organism per se. SEP-363856 is a novel psychotropic 

agent with a mechanism of action which is independent of D2 and 5-HT2A modulation 

employed by legacy agents such as chlorpromazine. It was identified by SmartCube 

phenotypic screening — an automated system to capture digital video of various domains 

of mouse behavior followed by algorithmic data reduction to approximately 2,000 features 

and supervised learning to derive drug class signatures or behavioral barcodes based on 

mice treated with compounds validated for specific therapeutic indications and marketed 

drugs.40,41,215 The resulting drug class/behavioral signatures are high dimensional/high 

content and are likely to capture drug-induced aspects of behavior which may not be 

apparent in conventional manual, stand-alone mouse models.

While screening throughput is a significant hurdle in such in vivo systems, it is incorrectly 

thought to be an insurmountable barrier. Historical success stories document that hits 

could be identified as part of smaller, often hypothesis-based and pharmacophore-informed 

in vivo phenotypic screens.11,104 As discussed earlier, the success observed with very 

small molecules in legacy and recent screens may be rationalized by several key features 

collectively leading to increased odds of success.42,108 Finally, the in vivo profiling of 

1,000 analogs which led to the discovery and development of SEP-363856 indicates 

that a reasonable throughput may still be obtained.43,215 Alternatively, CRISPR sgRNA 

technology using Cas9 mice enables genetic screens to identify pathways and nodes 

modulating some disease phenotypes of interest, especially in the field of oncology.216,217 

Models based on lower order organisms such as Zebrafish also offer an opportunity for 

higher throughput but at the cost of being potentially further removed translationally.218
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The inherent multi-disciplinary nature of disease model enablement and the iterative process 

to optimize and correlate discovery and therapeutic endpoints for these assets presents a 

major hurdle to the biopharmaceutical research community. Notably, much of the expertise 

in these diverse disciplines resides in academia whereas the end users and experience to 

identify/prioritize disease indications for model development to address unmet medical 

needs reside largely in the biopharmaceutical sector. Additional barriers to the development 

of new disease model systems include uncertainty and time constraints imposed by grant 

support of academic research along with lower appetite for fundamental research with 

long- or uncertaintime horizons in the for-profit sector. The development of physiological 

and disease relevant models may thus benefit from a non-profit, pre-competitive research 

organization,185,186 similar to consortia developing probe compounds to pre-competitive 

molecular targets.219–222

Concluding remarks

PDD has demonstrated its potential by identifying drugs, targets and MoAs that in many 

cases would have been impossible to discover using target-based approaches.1 3,4,5 223 

This strategy offers a path to novel therapeutics when molecular information about disease 

pathophysiology is lacking, providing access to the untapped “dark biological matter” 

represented by the proteome and any other biomolecule and cellular process underlying 

disease.4,6 The choice of compound library and the clinical translatability of the phenotypic 

model are essential for the success of PDD. 5,7,8

Key aspects highlighted here include the discovery of new MoA only accessible to 

PDD, the need for phenotypic models that can better recapitulate the pathophysiology 

of complex diseases (for example, integrating immune or nervous system components), 

the opportunities offered by polypharmacology and the advantages of using libraries with 

smaller-than-conventional molecules. Increased uptake of bioactivity profiling and MoA 

characterization approaches applied to efficacy / safety assessment and the increasingly 

powerful computational technologies have become essential to extract the full potential of 

PDD.

The current challenge is how to rationally combine these key aspects to prospectively 

“industrialize” phenotypic drug discovery. Given the exponential growth in this area, we are 

confident that increased application of ML (and deep learning in particular) will contribute 

to the effective implementation of PDD (Figure 5). Our vision is that industrialization of 

phenotypic drug discovery coupled with the extensive experience accumulated after more 

than a decade of “modern” PDD practice will contribute to a more productive drug discovery 

process that seamlessly integrates target and phenotype-based approaches.223
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Figure 1: 
Modern PDD strikes a balance between planned discovery and serendipity. Approved drugs 

are listed based on the original phenotypic assay which first connected the compound 

series or the drug itself to the disease. Notably, while all discoveries from cellular screens 

represented the outcome of planned efforts, it was unexpected clinical side effects in patients 

which led to compound repurposing. References: ivacaftor,6,7 , daclatasvir,8 risdiplam,9 

trametinib,10 lacosamide,11 memantine,12 minoxidil,13,14 ezetimibe,15 amantadine,16 

sildenafil.17
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Figure 2. 
Low molecular weight clinical candidates and drugs derived from phenotypic approaches
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Figure 3. 
Target identification is sometimes perceived as necessary and having a simple binary 

outcome: the target is identified or it is not (Panel A, legacy thinking). We suggest instead 

that a continuum of information can be accessed which may address the true end goal of 

target identification, helping obtain sufficient confidence in safety and translation to support 

progression into the clinic (Panel B, emerging thinking). TI: Therapeutic index.
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Figure 4. 
Utility of active / inactive compound pairs to address safety questions for compound series 

with unknown target(s) or MoA(s). A) Profiles in the BioPrint pharmacology panel148 of 

PCSK9 secretion inhibitor (R)-IMPP and its inactive analogue (S)-IMPP. Figure adapted 

with permission from ref 49 B) In vivo toxicology results following multi day dosing of 

of cystic fibrosis lead Compound 1 (+) and its inactive analogue Compound 2 (−). Blue 

coloring indicates the compound was tolerated while red lettering indicates it was not. Cave: 

average in vivo concentration, Ceff: predicted in vivo effective concentration for Compound 

1.
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Figure 5. Schematic overview of an industrialized phenotypic drug discovery process.
A chemical library designed for phenotypic screening (e.g. with smaller MW compounds) 

and a disease-relevant in vitro or in vivo model system capable of providing sufficient 

throughput, are combined in a phenotypic screening campaign to identify hits whose 

optimization, characterization and progression to clinical phases can take advantage of 

the current plethora of omics, profiling and computational approaches (including machine 

learning). Target or MoA information is used to support the progress of clinical PDD 

candidates. One additional possibility, if targets are identified, is their potential use as 

starting points for new TDD programs. Chain of translatability is shown to represent the 

molecular association between the mechanisms driving the phenotypic assay, the preclinical 

disease models, and human disease. Counter screen refers to an assay aimed at verifying 

the selectivity of the hit molecules versus other unintended phenotypic endpoints. SAR: 

structure-activity relationship, MoA: mechanism of action.
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Table 1:

Phenotypic Origins of Approved Drugs and Clinical Phase Molecules
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Table 2.

Representative examples of polypharmacology among marketed drugs, clinical candidates and investigational 

compounds. Generic name, code name or identifier from the original reference is indicated for each 

compound. For investigational compounds representative examples have been selected from the corresponding 

referenced publications.
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