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Abstract 

Background:  Data shortage is a common challenge in developing computer-aided diagnosis systems. We devel-
oped a generative adversarial network (GAN) model to generate synthetic lung lesions mimicking ground glass 
nodules (GGNs).

Methods:  We used 216 computed tomography images with 340 GGNs from the Lung Image Database Consortium 
and Image Database Resource Initiative database. A GAN model retrieving information from the whole image and the 
GGN region was built. The generated samples were evaluated with visual Turing test performed by four experienced 
radiologists or pulmonologists. Radiomic features were compared between real and synthetic nodules. Performances 
were evaluated by area under the curve (AUC) at receiver operating characteristic analysis. In addition, we trained a 
classification model (ResNet) to investigate whether the synthetic GGNs can improve the performances algorithm and 
how performances changed as a function of labelled data used in training.

Results:  Of 51 synthetic GGNs, 19 (37%) were classified as real by clinicians. Of 93 radiomic features, 58 (62.4%) 
showed no significant difference between synthetic and real GGNs (p ≥ 0.052). The discrimination performances of 
physicians (AUC 0.68) and radiomics (AUC 0.66) were similar, with no-significantly different (p = 0.23), but clinicians 
achieved a better accuracy (AUC 0.74) than radiomics (AUC 0.62) (p < 0.001). The classification model trained on data-
sets with synthetic data performed better than models without the addition of synthetic data.

Conclusions:  GAN has promising potential for generating GGNs. Through similar AUC, clinicians achieved better ability 
to diagnose whether the data is synthetic than radiomics.

Keywords:  Deep learning, Tomography (x-ray computed), Lung, Neural networks (computer), Solitary pulmonary 
nodule
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Key points

•	 We propose a technique that can generate synthetic 
ground glass opacities.

•	 Some of the generated images were assessed as  
real by physicians and imaging quantitative method 
(radiomics).

•	 The synthetic data can improve the performance of 
deep learning classification models.
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Background
Artificial intelligence is a rapidly developing field includ-
ing many applications in computer vision, such as deep 
learning (DL) and machine learning methods for the 
segmentation [1] and the classification [2] of anatomical 
structures and abnormalities in standard of care diag-
nostic imaging. A strong effort is dedicated to the imple-
mentation of these methods as computer-aided diagnosis 
(CAD) tools to reduce the time burden of clinical tasks 
and improve radiologists’ detection accuracy. For lung 
cancer screening, the number of CAD systems to auto-
matically identify the presence of pulmonary nodules has 
exponentially increased in the last 10  years. DL meth-
ods have shown an increased detection accuracy for all 
the types of pulmonary nodules (solid, part solid, ground 
glass opacities) compared to traditional machine learning 
methods in low-dose screening computed tomography 
(CT) scans [3, 4].

The success of developing robust and widely applicable 
deep learning-based CAD systems relies on the avail-
ability of a large amount of curated and annotated data. 
However, annotating data consistently has a cost and is 
dependent on radiologists’ time and availability. Even 
when large amount of data is collected for training DL 
networks, the problem of class imbalance may exist. The 
class imbalance problem refers to some labels (classes) 
being more frequent than others. Due to this unbalance, 
the DL network will learn better how to classify the more 
frequent samples, with degraded performances for the 
minority class(es) [5]. In the specific case of pulmonary 
nodule detection, ground glass nodules (GGN), although 
accounting for only 2.7 to 4.4% of all nodules, are malig-
nant in 63% of the cases [6].

Next to classical statistical methods such as SMOTE 
(synthetic minority oversampling technique), research-
ers have investigated more advanced methods for gener-
ating synthetic samples of original data, to increase and 
balance the original sample size of the training data-
set. Recently, generative adversarial networks (GANs) 
have been proposed as a method to generate synthetic 
images to improve the existing oversampling techniques 
[7]. GANs, which are DL algorithms based on game the-
ory, have been applied to several computer vision tasks 
such as image denoising, reconstruction, and, as men-
tioned, synthetic data generation [8, 9]. Briefly, GANs 
consists of two competing actors: a generator and a dis-
criminator. They are used to generate synthetic images/
samples and “judge” the quality of the generated images, 
respectively. The equilibrium is reached when the syn-
thetic (i.e., fake) samples cannot be distinguished from 
the real distribution [10].

While many studies demonstrated the potential of 
GANs to generate synthetic images, the generated 

images/samples have not been evaluated by radiologists, 
and this limits the acceptance and use of GANs in a clini-
cal setting. In fact, generated images/samples should be 
representative of the “real” population. However, by only 
focusing on evaluating at the “human-level” appropriate-
ness of synthetic samples, it is not possible to draw any 
conclusion whether the introduction of synthetic samples 
in the training samples will improve the detection per-
formances of CAD systems. In principle, it is expected 
that adding as many synthetic samples as possible to the 
original data will lead to a CAD system with better detec-
tion performances. It is important to notice that gener-
ating synthetic samples via GAN is in itself a learning 
procedure, where the original data is used to train the 
networks to generate the synthetic samples. The ratio 
between original data available and the quality of gener-
ated samples is not clear yet.

In this study, we investigated the following research 
questions:

	 i.	 Is it possible to use a GAN model to generate syn-
thetic GGNs on low-dose screening CT scans that 
are undisguisable by clinicians from the real samples?

	 ii.	 How much labelled data is needed to generate syn-
thetic GGNs of sufficient quality to train a CAD for 
pulmonary nodule detection achieving the same level 
of performance of a large amount of labelled data?

To answer these questions, we developed an optimised 
GAN model with dual discriminators to generate GGNs.

Methods
Study population
A total of 216 subjects were selected from The Lung 
Image Database Consortium and Image Database 
Resource Initiative (LIDC-IDRI) database for this study 
[11]. In this database, the nodules were classified into 
five grades by four radiologists: 1 = ground glass opacity 
(GGO1); 2 = intermediate between 2 and 3; 3 = part solid; 
4 = intermediate between 4 and 5; 5 = solid. We chose 
340 GGN nodules of grades 1 or 2 that were annotated 
by at least two radiologists for our study. To ensure data 
quality, further confirmation was performed by a radiolo-
gist (author Z.Z.), with 5 years of experience in lung CT, 
to verify that all the nodules were GGNs.

Image preprocessing
In the preprocessing methods, first, the two-dimen-
sional slices with annotation as GGN from the CT 

1  GGO is defined as a type of GGNs showing a misty increase in lung attenua-
tion without obstructing the underlying vascular markings; GGOs can also be 
called as “pure GGNs,” i.e., GGNs showing solely a GGO component.
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volume were extracted. Second, in order to avoid 
interference from external tissues of the lung, we first 
cropped the lungs from the tissue and background with 
a seed-filling algorithm, which starts from an inner 
point of the polygon area and draws points with the 
given grey level from inside to outside until the bound-
ary is found. Third, the cropped images were padded 
by 0 in the background to keep every image having 
the same sizes (512 × 512) in the dataset. Fourth, we 
normalised the data to the range 0–1, as is the stand-
ard practice in computer vision. Fifth, we erased the 
nodules from the original position and saved them as 
region of interest (ROI) for the training set. In general, 
each training batch contained two images: the original 
image as the target image, which serves as the ground 
truth for the generator (as shown in Figs. 1 and 2), and 
another image is the input image, in which stripped the 
nodule area, i.e., the ROI region was processed as blank 
for the input image. As shown in Fig.  1, the network 
generates the nodule from the input image. In addition, 
after generation, there are two discriminators (whole 
image discriminator and ROI discriminator) to evaluate 
the quality of the whole image and the ROI where the 
nodule is.

Construction of the DL model
The super-resolution generative adversarial network 
(SRGAN) was used as the backbone of the generator 
[12]. SRGAN compares the features difference in the 

model between a pair of data and train the discrimina-
tors to improve the realism of the recovered images. 
Both the whole image discriminator and ROI discrimi-
nator are based on a ResNet [13] which is a widely used 
classical classification networks combined by residual 
blocks with different input sizes and depths of the net-
work. The structure of the network is shown in Fig. 2. 
For training the network, the loss function was as 
follows:

The Lssim can be used to compare the similarity 
between two images. In this loss function, the whole 
image is separated into two parts to calculate the loss 
function respective. G and D represent the generator 
and discriminator, x is the input of the generator. µx 
and µy represent the average of input x,y respectively. 
σx and σy represent the standard deviation of input x,y 
respectively. σxy is the covariance of x and y. C1 and 
C2 are constants to avoid system errors caused by the 
denominator being zero.

(1)
LD2SRGAN = (Lssim + Ladversarial)wholeimage

+ (Lssim + Ladversarial)ROIimage

(2)Ladversarial =

N

n=1

−logD(G(x))

(3)Lssim(x, y) = 1−
(2µxµy + C1)+ (σxy + C2)

(µx
2µy

2 + C1)(σx
2σy

2 + C2)

Fig. 1  The pipeline for training the model. First, the generator synthetises ground glass nodules from the background according to the input 
image. Second, the region of interest (ROI) discriminator (red line) and the whole image discriminator (blue line) extract features from the ROI and 
whole image to classify the synthetic image and the target whether the synthetic image is real
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All images were loaded with an unchanged original 
size of 512 × 512. The input size of the discriminator for 
the whole image and the ROI image were 512 × 512 and 
32 × 32, respectively. An Adam optimizer was used to train 
both the generator and the discriminator with a learning 
rate of 0.0001. This model was trained using an NVIDIA 
Tesla V100 SXM2 32 GB graphics processing unit.

Evaluation of model performance
We evaluated the model performance using both sub-
jective (visual Turing test, VTT) and objective (radi-
omics) approaches. VTT is an assessment method that 
evaluation the ability of a human or doctors to identify 
attributes and relationships from images [14]. Subjective 
evaluations were performed by two radiologists (authors 
R.M. and H.G.) and two pulmonologists (authors L.H. 
and J.S.), who all had more than 5  years of experience 
in lung CT imaging and on a daily basis evaluate chest 
CT scans. One hundred images (50 real and 50 synthetic 
GGNs) were divided into four batches and converted to a 
DICOM (Digital Imaging and COmmunications in Medi-
cine) file with 25 slices of images, and each physician was 
randomly assigned to one of these batches. The physi-
cians categorised the real and synthetic GGNs into four 
classes based on this categorical scale: confidently fake, 
leaning fake, leaning real, and confidently real.

To perform an objective evaluation, radiomic fea-
tures were calculated from the original and generated 
data. Radiomics refers to the extraction of quantitative 

information from medical images by computing the sta-
tistical, morphological, and texture features. The fol-
lowing feature categories were extracted using the open 
source Pyradiomics package (version 3.0.1) with default 
values: first order statistics (n = 18), grey level co-occur-
rence matrix (n = 24), grey level dependence matrix 
(n = 14), grey level run length matrix (n = 16), grey level 
size zone matrix (n = 16), and neighbouring grey tone 
difference matrix (n = 5) [15–17].

The Kolmogorov–Smirnov test was used for the analy-
sis of whether the distribution of radiomics features were 
similar between the real and synthetic GGNs. We consid-
ered significant p values lower than 0.05.

The results of the subjective and objective evaluations 
were analysed using the area under the curve (AUC) at 
receiver operating characteristic analysis. For the sub-
jective evaluation, we took into consideration the VTT 
results. For the objective evaluation, to compare the 
classification ability of radiomics and radiologist, a 
logistic regression model was build based on radiomic 
features to classify both real and synthetic GGNs. The 
same dataset was used for the physician evaluations and 
the radiomics logistic regression model, with a fourfold 
cross-validation.

In addition, we also investigated whether the synthetic 
GGNs can improve the performance of a CAD algorithm 
trained for recognising GGNs from all types of nodules in 
the LIDC-IDRI dataset and how the performance changed 
as a function of labelled data used in the training.

Fig. 2  The structure of the network. The generator creates the synthetic ground glass nodule at the position where the mask in the input. The 
generator is composed of convolutional layers with a kernel size of 3 × 3, the batch normalisation, and the “parametric rectified linear unit” (PReLU) 
activation function. The discriminator was composed of convolutional layers with a kernel size of 3 × 3, the batch normalisation, and the leaky 
PReLU activation function
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As a CAD, we used a basic ResNet as the DL classifi-
cation network with a cross-entropy loss function. First, 
we separated the dataset into 10 training subsets and an 
independent test set. We trained the classification net-
work on portions of the original data ranging from 10 to 
100% of the real data and we separately inferred on the 
test set. Then, we trained the classification network on 
the original data added systematic data generated by the 
GAN network trained in 10% to 100% of real data.

Results
Examples of synthetic GGNs generated in different parts 
of the lungs with different surrounding tissues are shown 
in Fig. 3. Nodules classified as fake (Fig. 3b) show more 
unnatural characteristics in terms of intensity and mor-
phology than nodules classified as “real” (Fig. 3a); specifi-
cally, “fake nodules” have very high fixed grey values and 
regular shapes such as rectangles.

VTT results
Figure  4 presents the combination of the classification 
results for the four clinicians: of 51 synthetic GGNs, 19 
(37%) were classified as real by clinicians, 8/51 (16%) 
were classified as confidently real, and 11/51 (22%) were 
classified as leaning real.

Radiomics
Of a total of 93 features, 58 (62.4%) showed no signifi-
cant difference (p ≥ 0.052) between synthetic and real 
GGNs, and the detailed results are provided in Table 1. 
Figure  5a shows the comparison of the distribution of 
radiomic features between real and synthetic GGNs, 
the histogram shows the counts of specific feature val-
ues, and the differences (p-values) in the extracted radi-
omic features between real and synthetic GGNs were 
calculated. The receiver operating characteristic curves 
constructed based on the results of VVT by clinicians 
and logistic regression model developed by radiomics 

Fig. 3  Examples of synthetic ground glass nodules (GGNs), the GGNs were categorised by physicians to four categories: confidently fake, leaning 
fake, leaning real, and confidently real. a Synthetic GGNs classified as “real” by clinicians. b Synthetic GGNs with less convincing generated lesions 
(classified as “leaning fake”). c A real GGNs in the original LIDC-IDRI dataset
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features are shown in Fig. 5b. We observed a similar clas-
sification performance of clinicians (0.68) and radiomics 
(0.66), with no-significantly different (p = 0.23). However, 
the clinicians achieve significant great performance accu-
racy around 0.74, better than the 0.62 radiomics accuracy 
(p < 0.001). The clinicians achieves better ability to diag-
nosis whether the data is synthetic than radiomics.

DL classification network
The results of the DL classification network trained using 
decreasing portions of the dataset are shown in Fig.  6. 
When the dataset is 90%, the precision (i.e., positive pre-
dictive value) was similar between the two groups. How-
ever, when the dataset decreased to 50%, the performance 
of the real data only group significantly decreased. On 
the other hand, synthetic GGNs can increase precision in 
training the DL network. When the sample decreased to 
10%, the real data has better performance than by add-
ing synthetic data. From Fig. 6b, the recall (i.e., sensitiv-
ity) of GGN was decreasing when decreasing the dataset 
both in real data only and real data with GAN groups. 
However, in most cases, models trained on datasets with 
synthetic data performed better than models without the 
addition of synthetic data.

Discussion
In the present study, we applied a GAN-based model with 
double discriminators to generate GGN in low-dose CT 
scans. We benchmarked the performance of the model 
using a qualitative (VTT with clinicians) and a quantita-
tive approach (radiomics).

To our knowledge, only one previous study proposed 
the use of GANs to generate lung lesions and performed 
a VTT [18], which showed that 67% and 100% of the 
fake nodules were marked as real by two radiologists, 
respectively. Differences exist between this study and our 

study: in the VVT of the cited study [16], the radiologists 
reviewed the generated lesions, but the surrounding tis-
sues or the entire lungs were not included in the field 
of view. Moreover, the surrounding tissues and the lung 
background that has relationship with nodules were not 
considered when training and generating the nodules. 
Conversely, we generated GGNs from the whole lung to 
use the anatomical dependence with the background tis-
sue [19]. However, the relatively small size of our study 
compared to the previous research [18] probably influ-
enced the results of the visual Turing test.

Based on our VTT evaluation, we have shown that 
GAN-generated lung lesions have the potential to be very 
consistent with real lesions. This gives us the opportunity 
to use GAN-generated data to solve real-world problems, 
such as using the generated data to train and test junior 
doctors, especially for hospitals that do not have large 
cohort datasets, long-time established picture archiving 
and communication systems, as privacy-preserving syn-
thetic open datasets for research purposes.

More than half of the radiomic features were not sta-
tistically different between DL-generated and real nod-
ules, proving that the generated GGNs are acquiring or 
learning detailed features from the real sample. Further-
more, these consistent radiomic features cover all classes, 
which could support the conclusion that the proposed 
approach mimics different aspects of real nodules. Con-
versely, one third of the features in this study showed 
significant differences in the distribution between the 
generated and real GGNs. Based on the radiomics results 
and the clinicians’ opinion, we think that the low com-
plexity of the generated GGNs is the main reason for the 
discrepancy between the generated and real GGNs. For 
example, the p-value of the radiomic features coarseness 
(which can measure the spatial change rate) and com-
plexity (which can measure the non-uniformity of local 
grey levels) between real and synthetic GGNs are close 

Fig. 4  Visual Turing test results. a, b Prediction distribution in synthetic and real ground glass nodules. c Confusion matrix for the prediction
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Table 1  Comparison between real and deep learning-generated radiomic features (p-values according to the Kolmogorov–Smirnov 
test)

Class Feature name p-value

Grey level co-occurrence matrix (GLCM) Inverse difference moment 0.984025

Grey level size zone matrix (GLSZM) Zone percentage 0.934856

Grey level dependence matrix (GLDM) Small dependence emphasis 0.932657

Grey level co-occurrence matrix (GLCM) Inverse difference 0.926064

First order Robust mean absolute deviation 0.903346

GLSZM Small area low grey level emphasis 0.860311

Grey level run length matrix (GLRLM) Run percentage 0.827381

GLRLM High grey level run emphasis 0.729491

GLSZM Grey level non-uniformity normalised 0.696774

GLRLM Long run emphasis 0.676057

GLCM Sum entropy 0.658063

GLRLM Long run high grey level emphasis 0.652292

GLRLM Run entropy 0.652292

First order Entropy 0.643479

GLCM Inverse variance 0.616719

GLRLM Short run high grey level emphasis 0.582172

GLDM High grey level emphasis 0.574195

GLCM Joint energy 0.570327

GLCM Joint entropy 0.570327

GLRLM Run length non-uniformity normalised 0.570327

GLRLM Short run emphasis 0.570327

First order 90 percentile 0.541180

GLDM Small dependence low grey level emphasis 0.512551

First order Interquartile range 0.498064

GLCM Inverse difference normalised 0.456086

GLDM Large dependence emphasis 0.450880

GLDM Dependence variance 0.445137

GLSZM Low grey level zone emphasis 0.445137

First order Mean absolute deviation 0.414534

GLCM Autocorrelation 0.407415

GLDM Dependence non-uniformity normalised 0.403944

First order Mean 0.389392

GLRLM Run variance 0.375333

GLRLM Grey level non-uniformity normalised 0.324190

GLCM Maximum probability 0.307686

Neighbouring grey tone difference matrix (NGTDM) Strength 0.272504

GLCM Cluster tendency 0.267111

GLCM Inverse difference moment normalised 0.264157

GLDM Dependence entropy 0.261878

GLRLM Short run low grey level emphasis 0.227646

First order Minimum 0.212067

GLSZM Large area high grey level emphasis 0.202291

First order Root mean squared 0.186989

GLSZM Large area emphasis 0.178996

GLDM Grey level variance 0.170028

GLCM Joint average 0.160908

GLCM Sum average 0.160908

First order Uniformity 0.133892
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to 0, supporting our hypothesis. We hypothesise the fol-
lowing explanations: (i) the data source is derived from 
public databases that have low resolution and lots of 

noise, and (ii) we did not optimise the training process 
by specifically including radiomics features in the loss 
function.

Table 1  (continued)

Class Feature name p-value

GLDM Small dependence high grey level emphasis 0.124894

GLSZM Zone variance 0.119210

First order Variance 0.108119

GLCM Sum squares 0.108119

GLSZM High grey level zone emphasis 0.105973

GLDM Large dependence low grey level emphasis 0.082337

GLSZM Size zone non-uniformity normalised 0.074667

GLSZM Small area emphasis 0.073186

GLSZM Large area low grey level emphasis 0.069577

GLRLM Grey level variance 0.066007

GLCM Informational measure of correlation 2 0.052283

GLRLM Low grey level run emphasis 0.045409

GLSZM Small area high grey level emphasis 0.044462

GLCM Cluster prominence 0.022046

GLSZM Grey level variance 0.021275

NGTDM Contrast 0.020502

First order 10th percentile 0.015568

GLDM Low grey level emphasis 0.014150

GLCM Difference entropy 0.011605

GLSZM Zone entropy 0.010051

GLRLM Long run low grey level emphasis 0.008825

GLCM Informational measure of correlation 1 0.006491

GLCM Difference average 0.005938

GLCM Maximal correlation coefficient 0.005586

GLDM Large dependence high grey level emphasis 0.003520

First order Maximum 0.002755

GLCM Cluster shade 0.002638

First order Range 0.001136

First order Median 0.000355

GLCM Contrast 0.000251

GLDM Dependence non-uniformity 0.000230

GLSZM Size zone non-uniformity 7.60E-05

NGTDM Busyness 6.60E-05

GLCM Correlation 2.40E-05

GLSZM Grey level non-uniformity 1.40E-05

NGTDM Complexity 1.40E-05

GLCM Difference variance 5.00E-06

NGTDM Coarseness 0.000000

First order Skewness 0.000000

First order Energy 0.000000

First order Total energy 0.000000

First order Kurtosis 0.000000

GLRLM Run length non-uniformity 0.000000

GLDM Grey level non-uniformity 0.000000

GLRLM Grey level non-uniformity 0.000000
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Based on the radiomics results, we built a “radiomics 
physician” to discriminate between real and generated 
GGNs, which interestingly is generally consistent with 
the discriminatory ability of real physicians. It is worth 
noting that the “radiomics physician” model was trained 
based on a sample of 100 cases, and the physicians have 
more than 5  years of experience. Overall, it is a chal-
lenging task to discriminate between real and generated 
GGNs for “radiomics physicians” and real physicians.

Finally, we wanted to test how data augmentation with 
GAN will affect the detection accuracy of a CAD sys-
tem. Figure  6 shows that adding synthetic GGNs to the 
original dataset improves the performance of our DL 
CAD system. However, there was no significant contribu-
tion when the size of the training dataset is under 10% 
and over 70% of the original sample size. We hypoth-
esise that when the training data is under 10%, there is 
an insufficient number of samples to train the GAN. A 

Fig. 5  a Examples for the comparison of radiomics features distribution between real and fake ground glass nodules (GGNs). The comparison of 
radiomics features distribution extracted from synthetic and real images with minimum three p-values shows in the upper row. The comparison 
of radiomics features distribution extracted from synthetic and real images with maximum three p-values shows in the lower row. b, c Receiver 
operating characteristic curve of the prediction of distinguishing real and fake GGNs. by radiologists (a) and by the logistic regression model (b)
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GAN trained on only a few samples cannot synthesise 
the rich diversity and complexity of real GGNs. Based on 
the results (Fig. 6), we conclude that the performance of 
the DL model increases with the sample size in certain 
ranges of real data samples. However, as shown in Fig. 6, 
the performance of the DL model cannot be improved 
after a threshold value larger than the sample size, which 
is the plateau of the model. Specifically, for effective 
dataset size to train a GAN, around 50% of training data 
which include around 100 samples of GGN has the big-
gest increase in accuracy of the classification model when 
synthetic GGN are added. Overall, from our experiment, 
we found that:

	 i.	 Synthetic data has the ability to increase the per-
formance of a DL model unless only a few training 
samples can be used;

	 ii.	 From the perspective of cost and effectiveness, 
around 100 samples are sufficient to develop a 
GAN model that can generate realistic GGNs to 
significant improve the performance of the detec-
tion GGN model.

This study has some limitations. First, we used a pub-
lic dataset for training the model, but we want to extend 

the work to other datasets. In future studies, we will 
add high-resolution data from our centre for model 
enhancement. Second, we only focused on GGNs, 
because of their lower incidence compared to other 
types of nodules. However, the dimension and density 
variation of the included GGNs is limited, which has the 
potential risk of obtaining optimistic radiomic assessment 
results. We will perform transfer learning to generate lung 
nodules and tumours in the future based on the model in 
this study. Furthermore, the diagnosis of malignant GGN 
is a challenging task for clinical practice. However, in this 
study, we did not generate benign or malignant GGN. To 
address this issue, we are collecting data from the real 
world with follow-up endpoints and trying to generate 
qualitative GGN, especially malignant GGN.

Third, we generated only two-dimensional samples. 
However, generating three-dimensional (3D) images is 
costly for model training, first, because 3D GANs have a 
larger number of parameters which need more training 
data and also have a significantly higher requirement in 
hardware when the input data has large scale such as CT 
images. In the future work, we will consider the model 
compression to decrease the requirement of hardware 
and the size of dataset for training the 3D GAN. We tried 
to perform our visual Turing tests by getting closer as 

Fig. 6  Comparison precision (i.e., positive predictive value) and recall (i.e., sensitivity) between real and added synthetic dataset in different 
percentages of the training set. The blue and the red lines present the performance of the deep learning classification model trained by real data 
and the real data plus synthetic data, respectively. The horizontal axis label is the percentage of training data in the dataset. The vertical axis label is 
the score of precision and the recall with the range from 0 to 1



Page 11 of 12Wang et al. European Radiology Experimental            (2022) 6:59 	

much as possible to a real clinical scenario. Nevertheless, 
it was out of the scope of this study to integrate our DL 
models within the clinical workstations available to our 
radiologists. As proof-of-concept, we proposed to our 
radiologists the generated and real pulmonary nodules 
as two-dimensional axial CT images in the standard lung 
window. Future work will include the production of the 
generated nodules in standard DICOM formats in all the 
3D projections. We are also investigating the possibility 
to invest in the development of a cloud-based platform to 
homogenise visual Turing tests for similar experiments. 
In addition, we did not evaluate the morphological fea-
tures between the generated and real GGNs.

Fourth, we have not discussed the trend of data require-
ment for different task, such as what happens when the 
quality of data is decreased, how many data points need to 
be added when the target size us increased, and whether 
different sources such as CT and magnetic resonance 
imaging influence the dataset requirements. In the future 
work, we will design experiments to figure out the con-
nection between the data requirement and different tasks.

Fifth, according to the results of the radiomics part, 
there are still considerable differences between the real 
and generated GGO, and more than one third of the radi-
omic feature values were different, which may be a reflec-
tion that the GAN method proposed in this study is not 
optimal. Based on this result, there is still much potential 
for improvement of our algorithm, with a particular focus 
on improving the level of complexity of the textures.

Sixth, we did not conduct interobserver and intraob-
server testing and the degree of disagreement between 
different readers was not assessed. On the other hand, in 
our experience, the differences between the readers (phy-
sicians) included in this study were limited to the same 
broad category, i.e., real or fake. For example, nodules 
labelled as “confidently real” by one physician have the 
possibility of being labelled as “leaning real” instead of 
“confidently/leaning fake” by other physicians.

Finally, despite the GANs are an elegant data generation 
mechanism gaining more and more popularity in the medi-
cal field, most of them still present a high level of complexity 
compared for example to traditional DL algorithms such 
as convolutional neural networks. For example, there is no 
consensus on the most appropriate metric to be used to 
stop the training at the best point (global minimum of the 
loss function). This will sometimes lead to a not satisfactory 
quality of the generated data. Especially when dealing with 
medical images, the risk of introducing novel, undesired 
artefacts, and blurry images is not negligible.

In conclusion, in this study, we used GANs to generate 
GGN and validated these by four physicians and radiom-
ics approaches, showing that GAN methods have great 
potential for augmentation of the original dataset.
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