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Abstract

Multiple imputation techniques are commonly used when data are missing, however there are 

many options one can consider. Multivariate Imputation by Chained Equations (MICE) is a 

popular method for generating imputations but relies on specifying models when imputing missing 

values. In this work, we introduce Multiple Imputation by Super Learning (MISL), an update to 

the MICE method to generate imputations with ensemble learning. Ensemble methodologies have 

recently gained attention for use in inference and prediction as they optimally combine a variety of 

user-specified parametric and non-parametric models and perform well when estimating complex 

functions including interaction terms. Through two simulations we compare inferences made using 

the MISL approach to those made with other commonly used multiple imputation methods and 

demonstrate MISL as a superior option when considering characteristics such as bias, confidence 

interval coverage rate, and confidence interval width.

Keywords

Fully conditional specification; machine learning; missing data; multiple imputation; super 
learning

Introduction

Missing data are ubiquitous in most health research; this is to be expected given 

questionnaires and research within health sciences require individuals to disclose sensitive 

information, recall information from the past, complete lengthy surveys, and not become 

lost to follow-up. From a technical standpoint, missing data can also occur for reasons 

outside the control of the research participant (data can be mishandled, technology may 

fail, files may become lost or corrupted, and/or the researcher may not collect the required 

information). Though reasons explaining why data become missing may never be known, 

researchers still take particular interest in understanding mechanisms of missingness as their 

presence and inappropriate handling may detrimentally impact the findings of an analysis1,2.
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Rubin3 first proposed a set of processes by which we could model patterns of missingness: 

missing completely at random (MCAR), missing at random (MAR), and/or missing not 

at random (MNAR)4. Methods for addressing missing data can be confusing as some are 

only recommended in specific scenarios5. It is thus understandable why missing data are 

commonly mishandled6,7. While methods for handling missing data continue to emerge and 

shape the field (for example, under a causal inference framework8,9), we broadly categorize 

missing data approaches into one of three classes: deletion based, single imputation based, 

and multiple imputation (MI) based methods. Deletion based methods discard incomplete 

cases which may lead to bias and loss of precision4 as well as a potential decrease in 

statistical power resulting from the reduction in sample size5. Single imputation methods 

are simple to implement however offer no distinction between imputed and observed 

values which can lead to attenuated variance estimates, inflated degrees of freedom10, and 

artificially increased relationships amongst variables5.

Multiple Imputation (MI) is superior to both deletion and single imputation-based 

approaches for at least three reasons. First, the method incorporates both random error 

and knowledge about the missing data process into the imputation procedure to produce 

estimates of standard errors that are neither artificially small nor unacceptably large (when 

compared to single imputation approaches)11,12. Second, as opposed to deletion based 

methods, MI is efficient in that it utilizes the entirety of the data rather than discarding 

incomplete cases13. Finally, MI models the missingness within a particular dataset to obtain 

proper inference while acknowledging differences between observed and imputed values.

Multivariate Imputation by Chained Equations (MICE) (also known as fully conditional 

specification (FCS)) is a process for multiply imputing data on a variable by variable 

basis14. This procedure has been implemented into the R software15 and has risen in 

popularity since its release in 2011 (Figure 1). The MICE procedure is general and requires 

the user to specify a model for generating imputations. The default approaches in the 

mice package are defined by datatype and are predictive mean matching (PMM) (numeric 

and/or continuous data), logistic regression imputation (binary data), polytomous regression 

imputation (unordered categorical data greater than two levels), and proportional odds 

modeling (ordered categorical data greater than two levels). The mice package is constantly 

updating as the software is open source16; such improvements have helped modernize FCS 

by introducing more flexible non-parametric machine learning approaches like classification 

and regression trees (CART)17 and random forests (RF)18.

To further improve FCS, this paper introduces Multiple Imputation by Super Learning 

(MISL), a novel imputation approach for obtaining valid inference from data containing 

incomplete numeric and/or categorical data. MISL uses super learning19, an ensemble 

algorithm capable of mixing both parametric and non-parametric models, to generate more 

unbiased and efficient parameter estimates in the presence and absence of interaction effects 

when compared to leading imputation methods. The greatest advantage and distinction of 

MISL is the lack of explicit modeling assumptions regarding the underlying univariate 

conditional distributions of the data. This is because MISL combines a user supplied list 

of candidate algorithms with cross-validation (CV) to independently model relationships 

between variables. This ensemble approach gives more flexibility and control to the analyst 
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in how missing data are modeled while providing a platform to guarantee variability 

in imputations. This paper demonstrates through a series of simulations how MISL 

outperforms existing methodologies for generating multiple imputations under a variety of 

missing data scenarios while reducing the analyst’s burden in specifying strict conditional 

relationships amongst variables within an incomplete data set.

Multiple Imputation by Super Learning

Multiple Imputation, Fully Conditional Specification, and Methods for Imputation

MI refers to the procedure by which an incomplete dataset, Y, of dimension n × p, is 

made complete by generating m plausible values (imputations) for each missing observation, 

resulting in m distinct datasets, which are then analyzed independently and pooled for 

inference. This pooling occurs under the assumption the population parameter of interest 

is normally distributed or otherwise requires some transformation20 (further information 

on the topic can be found elsewhere21). These imputations can be generated by FCS in 

which variables are imputed sequentially by conditionally modeling the variable containing 

missing data and the remaining variables of the incomplete dataset14. This process iterates 

M times until convergence at which point the imputations are said to be stable22.

The ways to conditionally model the relationship between variables in a dataset are varied 

dependent on the data type. PMM23 remains one of the most popular methods for generating 

imputations for numeric data as it is easy to use and has been shown to produce reliably 

unbiased estimates of estimands, even in simulations where assumptions for its use have 

been violated24. PMM is a hot-deck approach where regression coefficients modeling the 

relationship between the variable requiring imputation and remaining variables in a dataset 

are first drawn from a posterior distribution to then generate a pool of observed candidate 

donors from which imputations are sampled. The PMM algorithm can be adjusted in a few 

ways including the use of bootstrapping (rather than sampling β coefficients from a posterior 

distribution), specifying one of four differing matching criteria, and altering the number of 

candidates from which to sample20. When data are not numeric one cannot use PMM and 

must rely on other methodologies for imputation (i.e., Bayesian imputation using logistic, 

multinomial, and/or ordered logistic regression, and decision trees).

Current FCS methods have some limitations. Regarding PMM, the method is not reliable 

where large amounts of data are missing and/or highly skewed24. Further, if the conditional 

density is incorrectly specified, the resulting inference will be biased25, especially in the 

presence of nonlinear relationships, namely cross-product and quadratic terms within a 

regression model (hereafter referred to as interaction effects)26. With categorical data, Van 

Buuren20 reports mixed results regarding generalized linear models (GLM) for imputation 

and recommends its use only when parameters can be reasonably well estimated. To capture 

more complex relationships between variables within an incomplete dataset, CART and RF 

have been suggested as a viable alternative to PMM and GLM. While these methods have 

been shown to perform favorably in instances where interaction effects are present27, these 

methods do not estimate linear main effects well26. Recent advances in statistical modeling 

present several advantageous methods to consider beyond parametric and semi-parametric 
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modeling; these advances can help update existing tools used for imputation to create a 

method that can be used both in the presence and absence of interaction effects.

Super Learning

The primary concern with the aforementioned methods is that any sort of conditional 

modeling may lead to poorly imputed values if the relationship amongst variables is 

misspecified. In fact, this relationship may be more complex than what any one single 

algorithm alone could ever capture. Ensemble methodologies, such as super learning19, 

directly address this limitation and serve as the foundation for the proposed imputation 

method.

Super learning is an ensemble technique in which multiple models (“learners”) are 

combined using cross-validation to generate predictions that are at least as “good” (with 

respect to the specified loss function) as those from any one of the individual candidate 

learners19. For example, if one was interested in predicting a binary outcome, one could 

choose among: logistic regression, CART, or LASSO regression28 models. While these 

algorithms each have their own advantages and disadvantages, it can be difficult to ascertain 

which would best model the true underlying relationship amongst predictors and outcome. 

Rather than selecting a single model, super learner will create a weighted combination of 

each individual learner chosen by minimizing the prediction error through cross-validation. 

The resultant super learner would then consist of an optimal ensemble fit determined by 

those weights (e.g., 27% logistic regression, 65% LASSO regression, and 8% CART). 

The super learner algorithm is gaining popularity in applied health research; examples 

can be seen with predicting acute hypotensive episodes during ICU hospitalization29 and 

classifying virological failure for HIV-positive patients on antiretroviral therapy30.

Two concerns with super learning and subsequently, MISL, are overfitting and 

computational efficiency. Overfitting is a common worry with many prediction algorithms31, 

however MISL alleviates this concern by ensuring variability in the process with random 

sampling (in that predictions are not directly substituted as imputations but merely used as 

intermediates for generating a pool of suitable matches, or “candidate donors”) and by cross-

validation within the super learner32. With regards to computational efficiency, there is some 

concern with including additional candidate learners in the super learner library. However, 

both super learner and MISL readily implement parallelization, dramatically cutting down 

program runtime. Overall, the main advantage of super learner is that a cross validated 

ensemble will determine the “best” model (as defined by a loss-function) for prediction 

across all individual learners. This insurance of selecting the best unbiased estimator helps 

alleviate the concern of incorrectly specified conditional relationships and is the hallmark of 

both super learning and the proposed MISL method.

Multiple Imputation by Super Learning

The proposed MI approach, MISL, is an update to the already existing PMM and 

Bayesian GLM imputation methods; rather than strictly relying on linear modeling to define 

the relationship between the missing variable and remaining variables, an ensemble of 

candidate algorithms is used. As such, many of the theory-guided decisions supporting the 
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construction of MISL are addressed in relation to other FCS methods (e.g. MICE) discussed 

elsewhere (e.g. the decision to implement bootstrapping as a means for calculating model 

weights for the super learner while simultaneously ensuring variability is captured within 

the process)20. The full procedure for using MISL on an incomplete dataset Y of size n × p 
(Figure 2) is as follows:

1. For each variable j in j = 1, … p, MISL uses random sampling from the observed 

data to create a completed version of the data,Ẏ . (Figure 2: 1)

2. Starting from a random j, MISL selects a bootstrap sample of observations from 

Ẏ  for which variable j was originally observed,Ẏ j
boot. (Figure 2: 2 and 3)

3. A super learner models the conditional density of variable j using Ẏ j
boot. This 

model is used to generate predicted values for all Ẏ j (both observed and 

missing). The predicted values for those missing observations in Yj are denoted 

Y j
mis, boot. (Figure 2: 4)

4. Depending on the datatype of variable j, the algorithm continues for each 

missing observation (i) as follows:

a. Numeric

i. A super learner (using the same learners from Step 4) models 

the conditional density of all observed values for variable j in 

Ẏ  and generates corresponding predictions (Y j
obs). (Figure 2: 4)

ii. A (hot-deck) match from the observed values is chosen for 

each missing value in Yj by randomly sampling 1 of the 5 

corresponding predictions generated using the bootstrapped 

data closest to the predicted values from the observed data 

(i.e., 1 of the 5 observations corresponding to the smallest 

|Y j, i
mis, boot − Y j

obs|). (Figure 2: 5 and 6)

b. Categorical (K categories, K ≥ 2)

i. Sample uk, k = 1, …, (K − 1) from a uniform distribution 

U(0,1).

ii. The imputed category is equal to ∑k = 1
K − 1 (uk ≤ Y j, i, k

mis,boot), 

where Y j, i, k
mis, boot is the predicted probability of the missing 

observation i from variable j being in category k.

5. Once the entire column for variable j is imputed algorithm completes Steps 2–4 

for each remaining variable. (Figure 2: 7)

6. This process iterates M − 1 more times until convergence.

7. The MISL algorithm begins anew (or completes in parallel), generating m − 1 

distinct imputed datasets. (Figure 2: 8)
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Simulated Data with Interaction Effects

Two distinct simulations were curated for the evaluation of MISL. First, to compare how 

MISL performs in instances with interaction effects, synthetic population level data were 

generated using a regression model as proposed by Burgette and Reiter27 (and further 

expanded on by Doove, Van Buuren, and Dusseldorp26):

yi = β0 + β1x1, i + β2x2, i + β3x3, i + β4x8, i + β5x9, i + β6x3, i
2 + β7x1, ix2, i + β8x8, ix9, i

yi = 0 + 0.5x1, i + 0.5x2, i + 0.5x3, i + 0.5x8, i + 0.5x9, i + 0.5x3, i
2 + x1, ix2, i

+ x8, ix9, i

(1)

Explanatory variables were drawn from a multivariate normal distribution: x1 through x4 

with a correlation of 0.5 and x5 through x10 with a correlation of 0.3 of size n = 1,000. 

For 1,000 simulations, univariate missingness was generated in Y via a MAR mechanism 

dependent on both x9 and x10. Specifically, we generated a distribution of probabilities for 

the missingness in Y for each observation (i) using a weighted sum score (wss) of the values 

from x9 and x10 (wssi = x9,i + x10,i) and induced missingness from either the tails, middle, 

right, or left of the generated joint distribution. Additional information on this procedure for 

generating missingness can be found elsewhere15,33. After inducing missingness, roughly 

50% of observations were completely observed. Population level data were drawn to remove 

sampling variability in evaluation of MISL.

For this simulation, four different imputation methods were compared. The first method 

used the novel MISL approach with the following learners specified: generalized linear 

modeling, multivariate adaptive regression splines, random forest, and support vector 

machines using the sl3 package in R34. The remaining three models were PMM (predictive 

mean matching), CART (classification and regression trees), and RF (random forest) 

and were implemented using the package mice15. For all four imputation approaches, 

five multiply imputed datasets were generated each with five iterations until assumed 

convergence (m, M = 5). After each completed imputation, a properly specified linear model 

regressing Y on the remaining variables was fit (in accordance with (1)).

Models were then combined (independently) across each of the imputed datasets using the 

pool function in the mice package and corresponding bias, coverage rates, and confidence 

interval widths were calculated for each regression coefficient. These metrics were selected 

as imputation methods where bias is minimal, and coverage is proper are said to be 

randomization-valid21. Further, the inclusion of three evaluation metrics better describe the 

performance of any given imputation approach when compared to any single metric alone. 

For example, the coverage rate for a particular method may consistently be 100% signifying 

a beneficial technique but the corresponding confidence interval width may be infinitely 

wide proving the method to be unusable.

Results

The results displaying confidence interval average width, coverage rate, and raw bias for 

model (1) can be seen in Table 1. For each regression coefficient, MISL has the highest (or, 

tied for highest) coverage rate and this coverage hovers around 95% for nearly all regression 
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coefficients. MISL further has the smallest average confidence interval width and raw bias 

closest to zero for each coefficient. PMM tends to have the widest confidence interval widths 

followed by RF and CART approaches. In no instance did PMM, CART, or RF outperform 

MISL for any of the evaluation metrics.

Simulated (Applied) Data without Interaction Effects

Following the advice of previous research20,35, a second simulation was created to both 

compare imputation methods in instances where interaction effects were not present and 

the relationship amongst variables was not known to gain insight into the imputation 

process. The dataset used for these simulations describe medical expenses for patients in 

the United States. Of importance, this dataset was simulated from the U.S. Census Bureau 

and were created for the book, Machine Learning with R36. This dataset was selected as 

it is complete, adequately sized, contains both numeric and categorical data (both two and 

three levels), and is readily available via the publisher’s Github page37. This data was not 

selected to gain meaningful inference about the cost of medical expenses in the United 

States but to serve as tool for evaluating the proposed imputation approach. The dataset 

contains 1,338 observations, six covariates: Age (numeric), BMI (numeric), Number of 

Children (numeric), Smoking Status (binary), Region (categorical), and Sex (binary), and 

one outcome: Expenses (numeric).

To remove the impact of model variability and to estimate population parameters from a 

known distribution, we replaced the observed outcome with predictions from a simple main 

effects linear model (with no interaction effects). This ensured our regression model fit the 

data and further allowed us to critically evaluate MISL without concern of the observed 

data being influenced by the sampling mechanism (only the missing data mechanism). 

This dataset with predicted outcomes served as our complete population level data for all 

subsequent simulations. Simulations were generated by selecting all permutations from a 

given organization of how data could be missing. This included specifying the relative 

proportion of cases with missing data values (0.10, 0.25, 0.50, 0.75), how the missingness 

was generated (MCAR, MAR), and where the missingness was present (covariates only, 

outcome only, both covariates and outcome- also known as “mixed”). A similar procedure to 

simulation one was used to induce missingness with a weighted sum score when data were 

MAR. This resulted in a total of 24 unique missing data scenarios. Under each missing data 

scenario, 1,000 unique datasets were generated.

As with the previous simulation, for each iteration a correctly identified linear model was 

specified and multiply imputed datasets were pooled for inference. MISL was compared to 

those methods in Table 2 and corresponding bias, coverage rates, and confidence interval 

widths were reported.

Results

Results for data where the covariates are MCAR can be seen in Figure 3. In all instances 

MISL has the narrowest (or, tied for most narrow) average 95% confidence interval width 

and this width remains relatively unchanged across the percentage of missingness. MISL has 

approximate 95% coverage foreach regression coefficient though this coverage decreases at 
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high proportions of missingness (0.75) for categorical variables with more than 2 levels. In 

all instances, MISL has a raw bias closest to zero. In instances of a tied bias, the competing 

approach has a wider average confidence interval width when compared to MISL. These 

results are further mimicked with MAR covariate data (see supplemental material).

Results for data that were MAR in the outcome of interest (only) can be seen in Figure 4. 

In all instances (across all percentages of missingness for all measurements), MISL performs 

identically to the default methods of the MICE package. Specifically, MISL and MICE 

(Default) have the narrowest 95% confidence interval width, highest coverage rate, and raw 

bias closest to zero. These results are further mimicked with MCAR outcome data (see 

supplemental material).

Results for scenarios with MAR data in both covariates and outcome can be seen in Figure 

5. In nearly all instances MISL has the narrowest average 95% confidence interval width 

though this is not true for large amounts of missing data (0.75). In these instances where 

MISL does not have the narrowest 95% confidence interval, MISL has a superior coverage 

rate and least biased estimate of the regression coefficient. MISL has approximate 95% 

coverage for each regression coefficient though this coverage (again) decreases at high 

proportions of missingness (0.75) for categorical variables with more than two levels. In 

nearly all instances, MISL has a raw bias closest to zero. When this was not the case, 

the lesser biased imputation approach has a wider average confidence interval width when 

compared to MISL. These results are further mimicked with MCAR in both covariates and 

outcome data (see supplemental material).

Discussion

With two different simulations we have shown MISL to be the preferred approach 

for imputation when compared to existing FCS methods as it can be used to reliably 

obtain less biased parameter estimates, both in the presence/absence of interaction effects, 

under a variety of missing data scenarios when compared to commonly used imputation 

approaches. MISL is a statistically appropriate and randomization-valid method for 

generating imputations; the only differences between MISL and existing accepted methods 

(like, PMM and CART) include how conditional relationships are modeled and how 

uncertainty is ensured within the procedure. For example, PMM relies on three methods 

for guaranteeing variability in imputations: generating initial random draws, Bayesian 

sampling parameter estimates, and sampling from a pool of candidate donors. In addition to 

generating initial random draws, relying on bootstrapping (rather than Bayesian sampling), 

and sampling from a pool of candidate donors, MISL adds an additional layer of uncertainty 

with cross-validation.

The first simulation demonstrates how MISL preserves interaction effects after imputation 

and generates unbiased and efficient estimates regardless of the underlying data structure 

for all regression coefficients. In instances where MISL does not achieve 95% coverage, 

we observe a bias closest to zero – a tradeoff from generating efficient confidence 

intervals. These results are in agreement with previous research26 showing PMM expectantly 

generates unbiased estimates for most main effects (β1,2,3,4,5) though not interaction terms 
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(β6,7,8). At first glance RF appears to reasonably compete with MISL, as demonstrated 

by comparable coverage, but at the cost of providing severely biased point estimates 

and unacceptably wide confidence intervals. CART neither achieves proper coverage nor 

unbiased point estimates and performs least favorably compared to all three methods. In 

instances where known interaction effects are present, MISL is the dominant imputation 

approach.

The second simulation first highlights how MISL prioritizes accuracy and efficiency to 

reliably obtain inference without large, uninterpretable confidence intervals. These results 

hold across most proportions of missingness and across different missingness scenarios. 

When the proportion of missingness is exceptionally high (0.75) and the variable of interest 

is a categorical variable with more than two levels, MISL’s coverage is less than 95% and 

subsequent point estimates exhibit slight bias; this may be a direct consequence of MISL 

both consistently generating precise point estimates, resulting in little uncertainty between 

datasets giving rise to narrower pooled confidence intervals, but also due to perfectly 

predicting categorical variables. While potential solutions have been proposed to address 

“perfect prediction”, it is unclear which method works best20. Techniques in the mice 

package use a data augmentation method38 whereas MISL uses a bootstrapping method; 

further research should investigate this phenomenon at such extreme levels of missing data 

and its impact on imputations generated by MISL.

This simulation further demonstrates the single most valuable aspect of MISL: when a 

correctly specified model exists among other “extraneous” learners in the candidate library, 

super learner may generate unbiased point estimates. This flexibility allows researchers to 

combine inference-based procedures (e.g. linear models) with prediction-based approaches 

(e.g. neural networks) as super learner generates imputations by choosing the combination 

of learners (or, single learner) that minimizes the cross-validated risk19. An example of this 

phenomenon can be seen in Figure 4 where we believe a simple linear model best describes 

the relationship among variables in the dataset, explaining why MISL performs identically 

to MICE (Default). The results from this simulation also show that while the coverage rate 

appears poor for the coefficients age, BMI, children, and smoker, the raw bias for both MISL 

and MICE (Default) is almost zero, signifying nearly precise point estimates. Regarding 

the coefficient smoker, we observe unbiased estimates, poor coverage and (relatively) 

wider confidence intervals for both MISL and MICE (Default); these results are explained 

by the generation of a skewed distribution of confidence interval widths in simulations 

when coverage was not obtained and further depict the importance of considering multiple 

evaluation metrics when assessing the quality of imputations.

To our knowledge one other competing multiple imputation method using super learning 

has been developed, SuperMICE39, however we believe the MISL procedure we present 

is preferable. First, SuperMICE generates imputations from random draws from a normal 

distribution as parameterized by predictions which does not safeguard against possibly 

nonsensical imputations (e.g. negative BMI). The hot-deck-based approach employed by 

MISL will prevent such nonsensical imputations. Likewise, SuperMICE has no explicit/

theoretical justification for the kernel function bandwidth, which remains an “area of active 

research.” Third, unlike MISL, the SuperMICE method cannot be used for categorical 
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variables (only continuous and binary). Fourth, there is no mention of parallelization or code 

optimization for the SuperMICE function – we believe this method to have a longer runtime 

than our MISL. Fifth, this SuperMICE code uses an older version40 of super learning 

and not the newer SL3 package34 used by MISL that allows for more customizations and 

extensions.

There are a few limitations to this study and the proposed MISL algorithm. First, we 

recognize it is not possible to simulate all possibilities of missingness in datasets of all 

sizes. We did not vary the number of observations in each of our datasets nor did we 

exhaust the amount of missingness present in our simulations; these choices were made 

given the similarity to PMM and prior research reporting both accurate inference when the 

number of observations vary in size41 and also possibility of convergence in imputations 

even in the presence of extreme (> 99%) missingness20. Likewise, we did not vary the 

number of covariates in simulations. This decision was made as we expect individuals to 

always use all possible covariates when specifying conditional relationships; a future study 

should examine the impact of screening algorithms (algorithms within the super learner 

designed to carry out feature selection) on coverage rate, bias, and efficiency. Second, 

like any hot-deck approach, MISL cannot impute either beyond the range of observed 

data nor in-between sparse data; we expect this to likely not be a concern with MISL. 

Further, we did not evaluate MISL with different candidate learners. This decision was 

made as there is no risk in adding more learners to the super learner library as the method 

will always choose an estimator which produces the smallest cross-validated risk, even 

among misspecified models32. We recommend adding both parametric and non-parametric 

models to the candidate library, allowing the super learner to model the conditional 

relationships amongst variables. As previously mentioned, there is some concern with the 

runtime of MISL however, parallelization has shown to dramatically reduce the method’s 

average time for computation (from 32 to 6 minutes). We hope to focus future work on 

making this algorithm more computationally efficient, as seen with the MICE algorithm (6 

seconds). Finally, we may only recommend MISL in situations when data are MAR (and 

optionally MCAR) as further research and simulations are needed to develop adaptations 

to appropriately generate imputations when data are MNAR. Likewise, given the growing 

interest in generating imputations created under a causal inference framework8,9, and its 

potential for longitudinal missingness, future studies should include investigations with a 

focus on time-varying covariates and potential outcomes42.

Despite these limitations, MISL is preferred over existing methods for imputing numeric, 

binary, and categorical data as it is flexible, easy to use, and allows the user to specify 

any conditional relationship they otherwise would with existing methods under the FCS 

framework. For ease of use and dissemination, we will either incorporate the MISL 

algorithm into the existing mice package or distribute it as its own R package. Our results 

demonstrate that MISL is more efficient and less biased when compared to more commonly 

used methods, and can provide proper estimation in a variety of missing data scenarios 

both in the presence and absence of interaction effects. MISL provides the groundwork for 

generating more desirable imputations; as modeling advances so too will our capacity to 

recover population level estimates in the presence of missing data.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Number of citations for the package MICE in R since release in 2011. Source: 

www.webofknowledge.com, assessed March 2, 2021
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Figure 2: 
Diagram of the proposed MISL algorithm for a numeric variable. MISL first isolates a 

random column with missing data and further draws random samples as placeholders for 

each subsequent incomplete column (1). The algorithm then isolates rows for which data 

is observed for this column (2) and generates (3) a bootstrap sample from this subset 

data frame (top) while retaining the “partially complete” data with respect to that column 

(bottom). Super learner then generates an ensemble (4) predicting the column of interest 

conditionally using the remaining columns available in the data for both the bootstrap 

sample (top) and partially complete data (bottom). MISL then generates a distance metric 

among each of the super learner predictions (the missing values are predicted with the 

bootstrap super learner (left) and observed values are predicted with the partially complete 

data (right)) (5). For each MISL prediction, a set of corresponding candidates from the 

observed data are identified based on a distance metric (6). For each missing value, MISL 

randomly samples one of the candidate donors and imputes this value (7). The algorithm 

then continues with the next column containing incomplete data and begins imputation using 

the newly imputed MISL hot-deck imputations (2–7). Once all columns have been imputed, 
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the algorithm iterates M times until convergence is reached in imputations. What results is 

a single completed dataset; the algorithm then continues m-1 more times (8) until m distinct 

(full) datasets are complete.
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Figure 3: 
Simulation results including average 95% confidence interval width (AW), coverage rate 

(CR), and raw bias (RB) for regression coefficients based on 1,000 simulations of MCAR 

missingness present in covariates (only) across different proportions of missing data (0.10, 

0.25, 0.50, 0.75). Methods include MISL, the default methods in MICE (MICE (Default)), 

classification and regression trees (CART), and a combination of the default imputation 

methods in MICE along with classification and regression trees (Mixed).
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Figure 4: 
Simulation results including average 95% confidence interval width (AW), coverage rate 

(CR), and raw bias (RB) for regression coefficients based on 1,000 simulations of MAR 

missingness present in the outcome (only) across different proportions of missing data (0.10, 

0.25, 0.50, 0.75). Methods include MISL, the default methods in MICE (MICE (Default)), 

classification and regression trees (CART), and a combination of the default imputation 

methods in MICE along with classification and regression trees (Mixed).
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Figure 5: 
Simulation results including average 95% confidence interval width (AW), coverage rate 

(CR), and raw bias (RB) for regression coefficients based on 1,000 simulations of MAR 

missingness present in both the covariates and outcome across different proportions of 

missing data (0.10, 0.25, 0.50, 0.75). Methods include MISL, the default methods in MICE 

(MICE (Default)), classification and regression trees (CART), and a combination of the 

default imputation methods in MICE along with classification and regression trees (Mixed).
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Table 1

Summary of results for simulation 1 for each of the four imputation methods. The imputation methods are 

described as multiple imputation by super learning (MISL), predictive mean matching (PMM), classification 

and regression trees (CART), and random forest (RF). Measurements are defined as coverage rate (CR), 

average confidence interval width (A W), and raw bias (RB).

β Method CR AW RB

β0 MISL 0.67 0.08 0.03

PMM 0.11 0.41 0.37

CART 0.03 0.21 0.23

RF 0.03 0.32 0.32

β1 MISL 0.99 0.08 −0.01

PMM 0.94 0.39 0.01

CART 0.74 0.21 −0.02

RF 0.96 0.34 −0.06

β2 MISL 0.98 0.09 −0.01

PMM 0.83 0.39 −0.04

CART 0.69 0.22 −0.05

RF 0.93 0.35 −0.06

β3 MISL 0.99 0.07 0.00

PMM 0.87 0.37 −0.05

CART 0.81 0.21 −0.01

RF 0.99 0.33 −0.01

β4 MISL 0.97 0.07 −0.01

PMM 0.57 0.33 −0.09

CART 0.46 0.18 −0.10

RF 0.58 0.28 −0.12

β5 MISL 0.99 0.07 −0.01

PMM 0.88 0.36 −0.05

CART 0.61 0.18 −0.07

RF 0.71 0.29 −0.10

β6 MISL 0.79 0.06 −0.02

PMM 0.41 0.23 −0.13

CART 0.56 0.14 −0.05

RF 0.67 0.23 −0.09

β7 MISL 0.82 0.08 −0.02

PMM 0.10 0.30 −0.27

CART 0.06 0.18 −0.22

RF 0.04 0.29 −0.26
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β Method CR AW RB

β8 MISL 0.91 0.10 −0.02

PMM 0.01 0.26 −0.38

CART 0.01 0.16 −0.29

RF 0.00 0.26 −0.36
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Table 2

Description of each of the four imputation methods with associated models. Acronyms are as follows: 

Generalized Linear Model (GLM), Multivariate Adaptive Regression Splines (MARS), Random Forest 

(RF), Support-vector Machines (SVM), IBR (Independent Binomial Regression), Predictive Mean Matching 

(PMM), and Recursive Partitioning and Regression Tree (RPART). Implementation of each of the MISL and 

MICE models are used directly with the SL334 and MICE15 packages in R.

Method Numeric Binary Categorical

MISL GLM, MARS, RF, SVM GLM, MARS, RF IBR, RF, SVM

MICE (Default) PMM GLM GLM

CART RPART RPART RPART

Mixed PMM GLM RPART
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