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ABSTRACT
We seek to transform how new and emergent variants of pandemic-
causing viruses, specifically SARS-CoV-2, are identified and classi-
fied. By adapting large language models (LLMs) for genomic data,
we build genome-scale language models (GenSLMs) which can
learn the evolutionary landscape of SARS-CoV-2 genomes. By pre-
training on over 110 million prokaryotic gene sequences and fine-
tuning a SARS-CoV-2-specific model on 1.5 million genomes, we
show that GenSLMs can accurately and rapidly identify variants of
concern. Thus, to our knowledge, GenSLMs represents one of the
first whole genome scale foundation models which can generalize
to other prediction tasks. We demonstrate scaling of GenSLMs on
GPU-based supercomputers and AI-hardware accelerators utilizing
1.63 Zettaflops in training runs with a sustained performance of 121
PFLOPS in mixed precision and peak of 850 PFLOPS. We present
initial scientific insights from examining GenSLMs in tracking evo-
lutionary dynamics of SARS-CoV-2, paving the path to realizing
this on large biological data.
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1 JUSTIFICATION
We demonstrate using >1.63 Zettaflops, sustained performance of
121 PFLOPS (mixed precision) and 850 PFLOPS peak, in training
one of the largest foundation models on whole genome sequences
to characterize SARS-CoV-2 variants of concern. Our models will
inform timely public health intervention strategies and downstream
vaccine development for emerging variants.

2 PERFORMANCE ATTRIBUTES
Performance Attribute Our Submission
Category of achievement Scalability; time-to-solution
Type of method used Explicit; deep learning
Results reported on basis of Whole application including I/O
Precision reported Mixed Precision
System scale Measured on full system
Measurement mechanism Hardware performance

counters; application timers;
performance modeling

3 OVERVIEW OF THE PROBLEM
Tracking of novel and emergent variants for viruses such as se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
been enabled by rapid sequencing and sharing of whole genome
sequence data (Otto et al., 2021). As of September 2022, >13 million
SARS-CoV-2 genomes have been deposited in the GISAID reposi-
tory1. SARS-CoV-2 represents one of the most deeply sequenced
viral genomes and is therefore a rich source of information for un-
derstanding various factors that drive its evolution. Despite its slow
1https://www.gisaid.org
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mutation rate, over the past three years SARS-CoV-2 has evolved
several variant strains containing unique mutation patterns, many
of which lead to novel viral phenotypes including higher antigenic-
ity, transmissibility, and fitness (Cosar et al., 2022).

This has prompted the US Centers for Disease Control and Pre-
vention (CDC) to identify four SARS-CoV-2 variant categories,
including: variants being monitored (VBM), variants of interest
(VOI), variants of concern (VOC), and variants of high consequence
(VOHC). Classification stems from SARS-CoV-2 growth dynam-
ics and threat to pre-existing immunity (Cosar et al., 2022, Otto
et al., 2021). Today, SARS-CoV-2 VOCs include B.1.1.7 (Alpha),
B.1.617.2 (Delta), and B.1.1.529/BA.1-BA.5 (Omicron). Although
deep sequencing of viral genomes across patient populations has
enabled substantial progress, identifying variants is still tedious and
resource-intensive, requiring costly laboratory tests and diagnostics.
Together, these factors contribute to significant time expenditure
to recognize and subsequently make informed decisions for public
health intervention strategies (Baker et al., 2021).

Artificial intelligence (AI) andmachine learning (ML) approaches
promise to transform real-time pandemic monitoring (Syrowatka
et al., 2021). Instead of reacting after the emergence of variants to
identify VOCs over potentially several weeks (see Sec. 4.1), AI/ML
techniques can leverage deep sequencing data to proactively iden-
tify mutations in viral proteins and characterize evolutionary pat-
terns that can assist in predicting and describing future VOCs (Be-
guir et al., 2022, Hie et al., 2021). However, obtaining high-quality,
global-scale genome datasets can be challenging, as diverse se-
quencing technologies can result in variable quality and coverage
of sequenced genomes. Sequence-based feature extraction tech-
niques followed by traditional ML approaches have demonstrated
promise in the early identification of VOCs (Beguir et al., 2022,
Maher et al., 2022, Wallace et al., 2022); however, they remain lim-
ited to sequence signatures of regions of interest in the genome.
This unmet challenge presents an opportunity for effective whole
genome-scale surveillance of global pandemics and early identifica-
tion of VOCs, with the goal of enabling the development of robust
public health intervention strategies prior to surges in case numbers
and improving vaccine-design strategies on emerging variants.

We posit that by leveraging the recent success of large-language
models (LLMs) in natural language processing (NLP) tasks (Wei
et al., 2022), we can develop global-scale, whole genome surveillance
tools. In this paper, we use LLMs to characterize SARS-CoV-2 evolu-
tionary dynamics and reconstruct SARS-CoV-2 variant emergence.
We adapt LLMs developed for understanding human languages to
genomic sequences, called genome-scale language models (GenSLM),
and validate this approach in modeling VOC assignments for SARS-
CoV-2 using historical data. Our contributions include:

• We develop the largest biological LLMs with codon tokeniza-
tion (with 2.5 and 25 billion trainable parameters) to date,
trained across a diverse set of 110 million prokaryotic gene
sequences. These are the first foundation models trained
on raw nucleotide sequences to demonstrate substantial im-
provement in predictive performance in identifying VOCs.
We make these models and weights openly available to the
scientific community 2.

2https://github.com/ramanathanlab/genslm

• We design and validate a novel hierarchical transformer-
based model that uses both Generative Pre-trained Trans-
formers (GPT) (on individual gene sequences) and stable
diffusion to capture the correct context and longer-range
interactions in genome-scale datasets. This model enables us
to prospectively model SARS-CoV-2 evolution by leveraging
its generative capabilities.

• We showcase training foundation models on both conven-
tional (GPU-based) systems (Polaris at ALCF and Selene at
NVIDIA) and on emerging AI-accelerator hardware (inter-
connected Cerebras CS-2 systems), and demonstrate highwa-
termarks for time-to-solution (model performance described
by its perplexity or accuracy). In addition, we present scal-
ing benchmarks, which demonstrate that training GenSLMs
can be intensive—performing over 1.63 × 1021 floating point
operations (a mix of FP16 and FP32; 1.63 Zettaflops) with a
sustained performance of 121 PFLOPS (mixed precision) and
850 PFLOPS peak, over the course of training runs.

Together, these capabilities go beyond state-of-the-art techniques
for global-scale whole genome surveillance of pandemic-causing
viruses and address a critical infrastructure need for global public
health organizations.

4 CURRENT STATE OF THE ART
Current approaches for tracking viral evolution rely on infectious
disease specialists who examine variations, identify epitopes of
interest (i.e., portions of the virus that elicit immune response),
classify variants, and eventually flag them for further laboratory
testing and analysis (Brouwer et al., 2020, Greaney et al., 2021, Ju
et al., 2020, Zost et al., 2020). This process is widely used for tracking
viral infections, including seasonal influenza (Doud et al., 2018).
Identifying strains of interest helps prioritize downstream vaccine
development workflows. However, this process is time-consuming
and laborious. While data sharing in the community has enabled
unprecedented progress in developing vaccines for pandemics such
as COVID-19, there still exists an unmet challenge in accelerating
the detection and prediction of viral VOCs via computational and
experimental toolkits.

4.1 Early warning systems for viral evolution
Several early warning systems for tracking COVID-19 have been
developed; however, they utilize case counts, internet search pa-
rameters, and other allied data focused on monitoring case counts
in a local geographic area (Ramchandani et al., 2020). The Bacte-
rial and Viral Bioinformatics Resource Center (BV-BRC)3 provides
the SARS-CoV-2 Emerging Variant Tracking and Early Warning
System, which enables users to browse current and past variant
lineages and track their prevalence by isolation date, geographic
location, and other metadata fields. A heuristic is used to compute
month-over-month growth rates and highlight rapidly growing
variants that may cause future infection surges. Mutations from
each variant are mapped to known epitope sites and regions of the
genome known to be involved in antibody escape to enable further
assessment of mutation impact. Recently, Hie et al. (Hie et al., 2021)
used protein language models (PLMs) and adapted concepts from
3https://www.bv-brc.org
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NLP to model escape variants across three different viruses, includ-
ing SARS-CoV-2. In each virus, they identified a certain protein
(e.g., SARS-CoV-2 Spike/S protein) and modeled its evolutionary
history using transformers to describe differences between ordi-
nary variants and VOCs. Similarly, Beguir et al. (Beguir et al., 2022)
leveraged a PLM to accurately classify VOCs; using experimental
assays, they also validated these VOCs and demonstrated the ability
to flag them in advance of World Health Organisation designation.
However, viral evolution is not isolated to one protein but occurs
at the genome scale. We propose a system that learns to model
whole-genome evolution patterns using LLMs based on observed data.

4.2 Large language models (LLMs)
The introduction of transformers (Vaswani et al., 2017) — and sub-
sequent LLMs such as Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018) and generative pre-trained
transformers (GPT) (Radford et al., 2018) — has revolutionized nat-
ural language understanding. These models have been used to
generate text, speech (Gulati et al., 2020), and images (Han et al.,
2022). They have also been employed to understand the language
of nucleic acids (DNA/RNA) and proteins. Protein language models
(PLMs), using amino acid alphabets, are the most heavily investi-
gated biological LLMs (Elnaggar et al., 2022, Rives et al., 2021), with
demonstrated success in downstream tasks such as protein function
prediction (Unsal et al., 2022) and engineering (Ferruz et al., 2022).
Nucleotide LLMs, using DNA/RNA alphabets, are still understud-
ied (Avsec et al., 2021). Compared to the rich alphabet and short
length of information-dense protein sequences that traditional at-
tention models from NLP can successfully learn, nucleotide LLMs
rely on much simpler alphabets and extremely long-range signal
(e.g., across open reading frames or co-evolutionary patterns) and
require significant domain adaptation to yield good results. When
applied on the scale of entire genomes, GenSLMs also operate on
much larger sequence lengths than are traditionally seen in NLP
applications—the max sequence length for SARS CoV2 tasks was
10,240 tokens in comparison to the standard 1,024 or 2,048. Fur-
ther, viral genomes often undergo frameshift mutations leading
to differential translation, introducing ambiguity not present at
the protein scale. Our work addresses these challenges by lever-
aging a hierarchical LLM: a generative pre-trained transformer to
capture shorter/local (codon-level) interactions, and a diffusion-
based model to capture longer-range interactions to describe the
biological complexity of viral evolution (Sec. 5.2).

4.3 Workflow infrastructure
Scientific applications for HPC are increasingly written as a com-
position of many interconnected components. Application compo-
nents may have different hardware or software requirements, run
durations and execution frequencies, or dependencies with other
components. Workflow systems such as Swift, Parsl, Balsam, and
RADICAL Cybertools support the design of applications as directed
graphs of tasks and manage their execution on available resources.

There is significant diversity in workflow implementation; e.g.,
Swift/T expresses workflows in bespoke programming languages
that are compiled into an MPI program (Wozniak et al., 2013). Parsl,
in contrast, is built on Python’s native concurrency library and

dynamically constructs a task graph as a Python program is inter-
preted (Babuji et al., 2019). Balsam (Salim et al., 2019) and RADICAL
CyberTools (Balasubramanian et al., 2019) rely on a central task
database from which the launcher, running on compute resources,
pulls and executes tasks. A centralized database enables state per-
sistence across runs, and task dependencies can be defined as a
DAG. Most workflow systems support interfacing with HPC job
schedulers or cloud providers to acquire resources and transmit
files between remote resources–key features for our use case.

Dynamic workflows, where new tasks are continually added in
response to new results, are emerging as an extension of work-
flow managers. Many dynamic workflow systems, such as DeepHy-
per (Balaprakash et al., 2018) and RocketSled (Dunn et al., 2019), are
purpose-built to solve optimization problems. LibEnsemble (Hud-
son et al., 2022) provides a more general interface where users
decouple a dynamic ensemble into a “generator,” which spawns
new tasks based on results from a “simulator.” Toolkits such as
Ray (Moritz et al., 2018) and Colmena (Ward et al., 2021) provide
more flexible approaches where a number of “agents” can coopera-
tively coordinate tasks. These libraries handle where and how tasks
are executed and provide useful abstractions so users can focus on
component/task logic (i.e., what and when).

5 INNOVATIONS REALIZED
Given the limitations of current approaches in identifying VOCs,
there is a need to develop an integrated system that can automati-
cally ‘learn’ features within the SARS-CoV-2 genome that distin-
guish VOCs, while also being able to generate new sequences that
characterize emerging variants of the virus. We posit that by lever-
aging existing sequencing data on the virus, we can train LLMs
that can model the SARS-CoV-2 evolutionary trajectory. Training
LLMs on SARS-CoV-2 genome datasets is non-trivial due to the
need to: (1) address the limitations of training LLMs with genomic
sequences; and (2) overcome infrastructural challenges to enable
LLM training on large sequence lengths in a reasonable time.

5.1 Data collection and description
5.1.1 SARS-CoV-2 genome dataset. The Bacterial and Viral Bioin-
formatics Resource Center (BV-BRC) web resource provides inte-
grated data and analysis tools for bacterial and viral pathogens
to support infectious disease research. It hosts >600,000 bacterial
genomes and 8.7 million viral genomes, including 6.4 million SARS-
CoV-2 genomes. All SARS-CoV-2 genome sequences were acquired
from NCBI’s GenBank and SRA databases and uniformly annotated
using VIGOR4 (Wang et al., 2012) to provide accurate and consis-
tent annotation of open reading frames (ORFs) and mature peptides
across all SARS-CoV-2 genomes. Automated and manual curation
provided accurate and uniform metadata across all genomes, in-
cluding host name, geographic location, and collection date.

To build GenSLMs for detecting and predicting SARS-CoV-2 vari-
ants of interest, we used >1.5 million high-quality BV-BRC SARS-
CoV-2 complete genome sequences. We filtered out any genome
sequences with < 29,000 bp and >1% ambiguous bases. However, we
note here that the data collectedmight not have sufficient diversity—
meaning that any model trained on the SARS-CoV-2 dataset may
end up overfitting to the data, with little opportunity to generalize.
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Hence, we took a foundation model-based approach that allowed us
to first build a more general model using a much larger collection
of diverse genomic data, namely gene-level data from prokaryotes.

We also utilized a dataset collected by the Houston Methodist
Hospital System - one of the largest single-institution collections
of SARS-CoV-2 genome sequences in the United States. We started
here with 70,000 SARS-CoV-2 patient samples collected from May
15, 2020 to January 14, 2022 and sequenced on Illumina instruments.
To ensure high quality, we first masked the leading and trailing 100
nucleotides for each sequence, as well as 56 positions in the spike
protein-encoding region that had low depth due to poor primer
binding. Sequences with >256 ambiguous characters were discarded,
leaving 16,545 total sequences. This subset was used for building
phylogenetic analyses at genome-scale (see Sec. 5.3).

5.1.2 BV-BRC dataset. To allow for better generalization and to
avoid overfitting of models to the SARS-CoV-2 data, we used >110
million unique prokaryotic gene sequences from BV-BRC. The
BV-BRC database provides cross-genera protein families, PGfams,
which allow for collection of homologous gene or protein sequences
across taxa that perform the same biological function (Davis et al.,
2016). We queried BV-BRC to find 10,206 unique PGfams, each
with >30,000 unique members. For each PGfam, we collected high-
quality non-redundant gene and protein sequences after filtering
out sequences that were more than one standard deviation from
the PGfam’s mean length. We term the Genome-Scale Language
Models (GenSLMs) models trained on this data foundation models.

5.2 Large language models
Large-language model (LLM) training required both algorithmic
and performance-level innovations. For algorithmic innovations,
we describe two key limitations of current LLMs. For performance
innovations in achieving optimal time-to-solution (training time
to achieve some accuracy or perplexity), we leverage an intercon-
nected cluster of four Cerebras CS-2 AI accelerators and scale to
large GPU-based supercomputers to train our LLMs.

5.2.1 Genome-scale Language Models (GenSLMs). We introduce
GenSLMs as a means to go beyond current PLMs to describe evolu-
tionary dynamics of SARS-CoV-2. Instead of focusing on specific
proteins, GenSLMs leverage genome-scale data to model individ-
ual mutations at the nucleotide scale, thus implicitly accounting
for protein-level mutations at the codon level. Fig. 1 shows that
GenSLMs take nucleotide sequences of SARS-CoV-2 genomes as
input and learns a semantic embedding of individual codons, which
can then be translated to the 29 individual protein sequences that
are encoded by the virus.

However, there are two fundamental challenges when training
GenSLMs directly from SARS-CoV-2 genome sequences: (1) The
entire genome consists of ∼30,000 nucleotides (which translates
to ∼10,000 codons/amino-acids). LLM training on long sequences
can be challenging because attention mechanisms largely focus on
shorter/local segments of the genome rather than global patterns.
(2) The overall sequence similarity in SARS-CoV-2 genomes is high
(>∼99%), with only a small (yet significant) number of changes that
yield distinct phenotypes. Thus, there is a need to address diversity

ACC  AAC  CAA  CTT   TCG  ATC   TCT   TGT  AGA ... 

…

L1

Lk

Semantic embedding

0.4   0.1   0.003 … …  0.8 …  0.1  

z

Transformer layers 
+ attention

Input sequence
X[N] \{i}

p(Xi | X[N]\{i})

TCG CGA CGT … … ACG … CTT

S R R T L… … …
GenSLM

Figure 1: Overview of GenSLM models for predictive mod-
eling of SARS-CoV-2 evolution. The inputs to GenSLM are
nucleotide sequences, encoded at the codon level (every three
nucleotide represents a codon; hence the 20 natural amino
acid language is described by 64 codons). These inputs are
successively fed into transformer blocks (referred to as layers
(𝐿𝑖 )), which ultimately results in learning a semantic embed-
ding ®𝑧 space from which one may obtain the probability of
any given sequence token 𝑝 ( ®𝑋𝑖 | ®𝑋 [𝑁 ]\{𝑖 } ), where 𝑁 represents
the sequence length and 𝑖 represents a particular position in
the entire genome.

in the sequences such that the trained model can generalize. It is
also necessary to account for frameshifts in viral genomes.

To overcome these challenges, GenSLM implicitly recognizes
intrinsic hierarchy (based on the central dogma) of individual pro-
tein production via DNA transcription and mRNA translation. We
trained on gene-level data from BV-BRC (see Sec. 5.1) to mimic
this process with GenSLMs. Although mapping between codons
and amino acids is degenerate (multiple codons may encode the
same amino acid) (Shin et al., 2015), we posited that with sufficient
diversity in the dataset, GenSLMs could exploit intrinsic organi-
zation of gene-level data to learn biologically-meaningful latent
representations. The training process follows a procedure similar
to the one outlined in (Zhang et al., 2022). We refer to the models
trained on the BV-BRC dataset as GenSLM foundation models.

While the benefits of pre-training LLMs on natural text are well
known (Turc et al., 2019), obtaining the optimal number of trans-
former layers and training on such a diverse set of gene data were
challenging. We, therefore, trained GenSLM foundation models
on a wide set of parameter scales ranging from 25 million to 25
billion, with a maximum sequence length of 2,048 tokens on the
BV-BRC dataset. Additionally, to evaluate performance on down-
stream tasks, we fine-tuned the foundation model GenSLMs using a
maximum sequence length of 10,240 tokens for the 25M and 250M
model sizes on the SARS-CoV-2 datasets (see Table 1). We note that
for the larger model sizes (2.5B and 25B), training on the 10,240
length SARS-CoV-2 data was infeasible on GPU clusters due to
out-of-memory errors during attention computation.

The entire repertoire of results from the GenSLM foundation
models is beyond the scope of this paper. However, as an empirical
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Figure 2: GenSLMs learned latent space describes biologically
meaningful properties for SARS-CoV-2 genomes. (A) The em-
beddings from GenSLMs are visualized with t-distributed sto-
chastic neighbor embedding (t-SNE) and each gene sequence
is represented as a dot in the 2D plot. We paint each sequence
by its variant ID – although we have more than 515 PANGO
(Rambaut et al., 2020) lineages represented in the data, we
only show those with WHO designated labels. (B) The latent
space can also be painted with the MAFFT-determined align-
ment score (Yamada et al., 2016) with respect to an Omicron
genome; clustering in the distance measures is clearly visible.
Visualizing the sequence log-likelihood (blue bar) and the
cross-protein attention (orange lines) from (C) Delta and (D)
Omicron SARS-CoV-2 strains highlights how different the co-
evolutionary patterns are in these lineages. It is interesting
to note that while the Spike protein from Delta strain shows
coupling to nsp3, nsp5, and other proteins, these couplings
are not observed in the Omicron strain.

demonstration of the power of GenSLMs trained on the SARS-
CoV-2 genomes, the learned latent space projected onto a low-
dimensional manifold as determined by t-distributed Stochastic
Neighbor Embedding (t-SNE) meaningfully distinguishes the SARS-
CoV-2 variants as shown in Fig. 2. This observation is significant
because this GenSLM-25M model was specifically trained only
on the first year of the SARS-CoV-2 data (consisting of ∼ 85,000
SARS-CoV-2 genome sequences) – meaning that the model did not
have the opportunity to see any of the other strains. Thus, the
ability of GenSLM to generalize and distinguish between SARS-
CoV-2 variants implies that the learning process is robust and the
underlying features can generalize to downstream tasks. We also
note that as the model parameters increase, the perplexity of the
model also improves, agreeing with previous observations (Radford
et al., 2018).

We note however that these training runs frequently take >1
week on dedicated GPU resources (such as Polaris@ALCF). To en-
able training of the larger models on the full sequence length (10,240
tokens), we leveraged AI-hardware accelerators such as Cerebras

CS-2, both in a stand-alone mode and as an inter-connected cluster,
and obtained GenSLMs that converge in less than a day (Sec. 5.2.4).

5.2.2 Reward-guided beam search for generative modeling. A sub-
sequent use of the GenSLM models is in its ability to generate new
SARS-CoV-2 sequences, with the eventual goal of predicting yet
unseen VOCs. One challenge with such sequence-based generation
strategies is sampling sequences with particular properties. Given
a conditional sequence model 𝑝𝜃 with weights, 𝜃 , the most likely
sequence is 𝑝𝜃 (x) =

∏𝑇
𝑡=1 𝑝𝜃 (𝑥𝑡 |𝑥0, . . . , 𝑥𝑡−1, 𝑐) where 𝑐 is the con-

text from the previous inference. However, computing this directly
is generally intractable as it is O(64𝑇 ), where 𝑇 is the maximum
sequence length with a vocabulary of size 64. Heuristics like greedy
sampling are commonly used, where a sequence is generated iter-
atively, with the next token 𝑥𝑡 , maximizing 𝑝𝜃 (𝑥𝑡 |𝑥0, . . . , 𝑥𝑡−1, 𝑐)
with complexity O(𝑇 ) .

Beam search is standard practice, combining a search strategy
with a heuristic where 𝑘 is the number of beams explored with
complexity O(𝑘𝑇 ). First, 𝑘 samples are drawn with the highest
probability (or sampled from a multinomial distribution) and added
to the set of possible hits Xbeam. Let X𝑖

beams be the set of beams
of length 𝑖 . Then, for time step 𝑡 , select 𝑘 tokens 𝑥𝑡 from the set
of all tokens which score highest (or sampled from multinominal
distribution) via 𝑝𝜃 (𝑥𝑡 |X𝑖

beams, 𝑐). The highest scoring beams from
Xbeam are selected via 1

𝐿𝛼
∑𝐿
𝑡=1 log𝑝𝜃 (𝑥𝑡 |𝑥0, . . . , 𝑥𝑡−1, 𝑐) and out-

put, where 𝐿 is the length of a sequence and 𝛼 , is a length penalty.
Given an episodic reward function 𝑅(𝑥) = ∑𝐿

𝑡=1 𝑟𝑡 (𝑥𝑡 ), we mod-
ify the scoring function for beam search with

𝜇

𝐿𝛼

𝐿∑︁
𝑡=1

log𝑝𝜃 (𝑥𝑡 |𝑥0, . . . , 𝑥𝑡−1, 𝑐) + (1 − 𝜇)𝑅(𝑥) (1)

where 0 ≤ 𝜇 ≤ 1 is a hyperparameter. Since the reward function is
episodic, at each step of beam search, the highest scoring beams
are chosen with

𝜇𝑝𝜃 (𝑥𝑡 |X𝑖
beams, 𝑐) + (1 − 𝜇)𝑟𝑡 (𝑥𝑡 ). (2)

This scoring modification effectively alters the likelihood of to-
kens to be sampled based on maximizing the reward function. In
order to sample sequences that are similar to a fixed sequence 𝑦,
we utilize 𝑟𝑡 (𝑥𝑡 ) equal to the global alignment score between 𝑦𝑡
and 𝑥𝑡 (Needleman and Wunsch, 1970). This scoring bias modifica-
tion effectively implements a property scoring function into beam
search without altering the complexity of beam search sampling.
In the case of non-episodic reward functions, rewards can only be
computed at the final time step in eq. 1.

5.2.3 Diffusion-based hierarchical modeling. Token-level autore-
gressive modeling has difficulty in generating coherent long se-
quences due to its underlying challenge in capturing long-range
dependencies (Papalampidi et al., 2022, Sun et al., 2021, 2022). We
developed a new hierarchical-modeling method based on a latent-
space diffusion model that operates on the ‘sentence’ level. For
each genome sequence, we uniformly truncated every 512 codons
by a special separator symbol; these 512 codons are considered a
‘sentence.’ (We set 512 codons to be a sentence such that the average
number of sentences per sequence, around 20, matches the number
of ORFs and non-coding regions: around 17.)
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Table 1: Description of GenSLMs foundation model archi-
tectures. #H – number of attention heads; #L – number of
layers; 𝑑model – embedding size; LR – learning rate (if range
is specified, decayed by factor of 10 each update); B – global
batch size in number sequences per step; P – total number
of trainable parameters; MSL – maximum sequence length.
The † denotes models that we were also able to train on the
10,240 sequence length for the full genome.

#H #L 𝑑model LR B P MSL

GPU

8 8 512 5e-05 4096 25M 2048†
16 12 1,840 5e-05 4096 250M 2048†
64 26 3,968 5e-05 512 2.5B 2048
64 64 8,192 5e-05 - 5e-09 1024 25B 2048
#H #L 𝑑model LR B P MSL

CS-2

12 12 768 2.8e-04 33 123M 10240
12 12 768 2.8e-04 132 123M 10240
16 24 2048 7.5e-05 11 1.3B 10240
16 24 2048 1.5e-04 44 1.3B 10240

AGA   TCT   GTT   GTC   TAA ACG   AAC   TTT   AAA   …XNi

r

Gaussian noise

G
radual denoising
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p(TAA | r, z) = p(TAA | GTC, GTT, z02)
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...

High-level 
representations

...
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...

...

Figure 3: Illustration of diffusion-based hierarchical mod-
eling. To predict a codon (such as TAA), we use both the
previous codons within the context window (we use size 3
shown in green for illustration) and the high-level represen-
tations z.

Our diffusion-based hierarchical modeling method consists of
three parts: (1) Learning high-level representations:We trained
a new encoder to embed sentences into a latent space with a con-
trastive loss such that learned features better capture high-level
dynamics. Our contrastive loss is similar to the masked language
modeling objective used in SpanBERT (Joshi et al., 2020), where
we predict missing sentences in the middle by conditioning on
the previous and the next sentences, and, at the same time, using
randomly sampled sentences as negatives (distractors).

A B

Figure 4: Diffusion-based hierarchical modeling of SARS-
CoV-2 genomes results in generation of sequences that cap-
tures the correct context of various open reading frames
(ORFs). (A) Comparison of statistics measured on generated
sequences and on real data for the ORFs. Diffusion-based
hierarchical LM has a global high-level plan whereas the
baseline can only take into account the previous 1023 codons.
(B) Generated sequences (light blue) from the model overlaid
on the phylogenetic tree demonstrate that these sequences
are similar to observed strains.

(2) Modeling high-level dynamics with a diffusion model:
Given the encoder output of each genome, i.e., a sequence of sen-
tence embeddings, we train a diffusion model to learn their dis-
tribution. The diffusion model parameterizes the distribution of
high-level representations by applying a sequence of denoising
operations on top of Gaussian noise. Similar to previous work (Ho
et al., 2020, Vincent, 2011), we used denoising score matching as
the training objective; we gradually apply noise to desired target
representations and the diffusion model learns to denoise at each
step.

(3) Fine-tuning LMs with high-level planning: Similar to
Time Control LM (Wang et al., 2022), we fine-tuned GenSLMs as
the decoder to generate the genome sequence conditioned on high-
level representations learned in step (1), which we term the ‘high-
level plan’. The decoder predicts the current codon token using
previous codon tokens within the context window size and the
corresponding sentence embeddings. The training objective is the
same as in training the original GenSLMs.

The overall generation procedure is shown in Fig. 3. Note that
without the guidance of the high-level representations z0, the de-
coder can only take into account a limited amount of context, but
with the guidance of z0, the decoder can take into account long-term
context because z0 is modeled globally.

We conducted experiments by training a baseline LM and a
diffusion-based hierarchical LM on the 1.5M SARS-CoV-2 genomes
(see Sec. 5.1.1). The goal of this experiment was to primarily assess
if the diffusion model can ‘stitch’ together the context of the genes
together at the genome-scale (much like how words are ordered
in a sentence). The baseline LM is the hierarchical LM without
high-level guidance - essentially, a normal transformer language
model. We initialized both the baseline LM and the hierarchical
LM decoders from the 2.5B foundation model trained on individual
genes from BV-BRC (see Sec. 5.1.2). We used a context window
size of 1,024. The sentence encoder is initialized from the 25M
foundation model. The diffusion denoising model is a transformer
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with the same architecture as BERT (Kenton and Toutanova, 2019).
We used 10 nodes from Polaris@ALCF for training, with a total of
40 A100 GPUs. We used an Adam optimizer with a learning rate
of 1e-4, a batch size of 2, and trained for 13k updates. Training
took approximately 6 hours. At generation time, we used a sliding
window-based approach: we first generate 1,023 codons from a
start-of-sequence symbol, then move the window 512 codons to the
right, generate the next 512 codons, and repeat this process until
either end-of-sequence is generated or a maximum of 15k codons
have been generated.

To evaluate if the generated samples capture high-level dynamics,
we compared the distribution of the number of 5’-3’ ORFs on real
data and on 1,000 samples from the model. As shown in Fig. 4A,
the diffusion-based hierarchical model outperforms the baseline
LM in generating realistic ORFs, possibly due to the high-level
plan, whereas the baseline LM can only account for the previous
1,023 codons. We also display the phylogenetic tree (see Sec. 5.3)
of the generated sequences from the diffusion-based hierarchical
model against real genomes in Fig. 4B. The plot exhibits that the
generated sequences cover the different lineages including all the
variants. Note that sequences with >120 mutations (1.4% of all
generated sequences) were excluded; this further demonstrates that
the diffusion-based hierarchical model can generate sequences that
are of higher quality than the standard transformer-based model.

5.2.4 Training with full viral genome sequences on Cerebras Wafer-
Scale Cluster. Training LLMs on whole SARS-CoV-2 genomes with
dense attention is challenging when using traditional approaches
and hardware. With codon-based encoding, the model needs to han-
dle sequences of 10,240 tokens. This results in high memory and
computational demand, severe limitations to batch sizes to fit on a
single device, and thus a need to develop and orchestrate compli-
cated hybrid parallelism approaches to get reasonable performance
with clusters of traditional devices. We overcome these challenges
with the Cerebras Wafer-Scale Cluster (Hall et al., 2021), where it
is possible to use only simple data parallelism, and achieve linear
weak scaling, even when LLMs are trained on very long sequences.
We pre-trained two GenSLMs to convergence on full viral genomes
with dense attention (Table 1) using a sequence length of 10,240
codon tokens on a single CS-2, and on a cluster with four CS-2s,
achieving desired accuracy and perplexity results in less than a day.
Beyond compute performance, the Cerebras Wafer-Scale Cluster
provides high usability through the appliance workflow, where
users no longer need to handcraft different parallelism choices
for their given hardware and only need to specify the number of
CS-2s to start data-parallel training. This flexibility allows faster ex-
periment iterations without compromising performance. Training
GenSLMs with multiple CS-2s is pioneering work with the Cerebras
Wafer-Scale Cluster, which demonstrates the potential of dedicated
AI hardware to apply LLMs on long-range context and work with
genome sequences at scale.

5.3 Phylogenetic analyses of whole genomes
As described in Sec. 5.1.1, we used a set of 16,545 sequences from
the Houston Methodist Hospital System that were filtered for high-
quality in order to analyze GenSLM outputs. We selected a diverse
subset by embedding these sequences, tessellating the embedding

space using a Gaussian mixture model (𝑁 = 40), and then sampling
each tessellation using a uniform distribution, resulting in a set of
1,000 sequences maximizing coverage of the embedding space.

The 1,000 sequence subset was aligned to the NC_045512.1 severe
acute respiratory syndrome coronavirus 2 isolateWuhan-Hu-1 com-
plete genome sequence using Mafft v7.310 (Yamada et al., 2016). We
then generated a Newick-format phylogenetic tree from the align-
ment using RAxML Next Generation (Kozlov et al., 2019), which
offers significant speed improvements over RAxML (Stamatakis,
2014). We then generated a phylogenetic tree using RAxML-NG’s
"search" algorithm, which searches for a maximum-likelihood tree
amongst 10 parsimonious trees and 10 randomly generated trees.
This takes ∼9 hours on 5 CPUs (the recommended RAxML-NG
parallelization settings for our data.) We used the most likely tree
generated as a seed tree for running further analyses with UShER.

UShER (Ultrafast Sample placement on Existing tRee, (Turakhia
et al., 2021)) is a SARS-CoV-2-specific analysis tool that can quickly
place new SARS-CoV-2 genomes onto an existing SARS-CoV-2
phylogenetic tree on the basis of mutation tracking. In addition
to to a “seed” phylogenetic tree, UShER requires a variant call
format (VCF) file to track mutation data, which we generated from
our multiple sequence alignment by using snp-sites ((Page et al.,
[n.d.])). UShER stores the mutation information along with the tree
in Google’s protobuff format created from the VCF and tree files.

We then used this tree as the basis for quickly examining and
labeling generated sequences of interest. Generated sequences are
(1) converted to fasta format, (2) aligned to the NC_045512 reference
genome sequence, (3) mutation profiled using snp-sites, (4) placed
on the seed phylogenetic tree using UShER, (5) proposed a variant
label on the basis of the labels of its K nearest tree neighbors (where
K=20 in our analyses), and (6) flagged for further examination if the
sequence has the longest phylogenetic distance to the NC_045512
reference genome amongst its X nearest neighbors.

We chose this flagging scheme to select for sequences that were
more distant to the original strain than the other sequences in their
close lineage, as these sequences represent more heavily mutated
novel genomes that may be more likely to produce variants of
interest or concern.

5.4 Integrated visualization
When visualizing long-distance genomic relationships, a linear lay-
out created edges crossing over entities and affected readability. We
therefore developed a circular arrangement to visualize relation-
ships between entities and positions. The visualization is flexible
and supports a rich set of layers to encode various data properties.
The outermost layer shows ORFs along the SARS-CoV-2 genome,
while the next layer displays protein-coding locations. These in-
teractive layers allow users to select an ORF or protein for closer
examination. All other layers (except the innermost) display differ-
ent properties of codons in the gene sequence. The layers encode
codon properties and are presented with custom visualizations
based on the property type; e.g., Fig. 2C and 2D, where probabilities
of codons are encoded using a radial bar chart (intensity of the
color represents the probability). The innermost layer visualizes the
GenSLM attention relationships between codons. To reduce visual
clutter, we employed hierarchical edge bundling techniques.
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Figure 5: Conceptual overview of our workflow. A "Thinker"
orchestrates data flow between two applications, namely the
sequence generator and the Bayesian optimization to drive
the generated sequences towards a target property using
reward-guided beam search, where 𝜇 represents the mixing
constant used to balance the reward function against the log
likelihood of generating the next token.

5.5 Workflow infrastructure
As illustrated in Fig. 5, we implemented and scaled the reward-
guided beam search procedure (see Sec. 5.2.2), leveraging a work-
flow that couples (1) a GenSLM sequence generator, and (2) a
Bayesian optimizer to tune the reward mixing hyperparameter
𝜇 to bias the generator towards a target property. On startup, an
ensemble of GenSLM generators are submitted to perform an ini-
tial grid search over the 𝜇 ∈ (0, 1) parameter space, providing
sequences to update a Gaussian process surrogate model. This, in
turn, suggests new 𝜇 values throughout the duration of the run.
Parameters are chosen by random sampling of 𝑛 points, and are
scored by their negative expected improvement (the optimization
is a minimization). Each generation task uses a single A100 GPU on
Polaris to run an instance of the a 25M parameter GenSLM model,
whereas the optimizer task uses the CPUs on a single node.

We extend the Colmena workflow toolkit by implementing an
Application abstraction for each workflow task (component). The
Application provides for (1) inter-process communication when
tasks are externally executable programs, and (2) warm-able func-
tions to avoid duplicate initialization. The Application abstrac-
tion enables us to isolate the many generator instances from the
Bayesian optimizer such that a single Thinker, executed on the
login node, orchestrates communication and task submission to
drive the property optimization. Leveraging Colmena allows us to
implement concisely a multithreaded Thinker where one thread
is responsible for handling outputs from the sequence generators
and immediately submitting a new generation request to maximize
utilization of the workers. This thread then handles any potential
task failures by checking the return status and allows the workflow
to be robust to application-level failures due to uncaught excep-
tions and hardware failures. The successful results are placed onto
a queue where another thread reads and batches the results, (𝜇, se-
quence) pairs, for submission to the Bayesian optimizer application.

Table 2: GPU supercomputing systems used for evaluation.
Polaris Selene

June-2022 Top 500# 14 8
System size (nodes) 560 560
CPU AMD Milan AMD Rome
Sockets/Node (total cores) 1 (32) 2 (128)
System Memory (TB) 0.5 2
Number of GPUs per node 4 8
A100 GPU Memory (GB) 40 80
GPU Memory Technology HBM2 HBM2e
GPU Memory BW (TB/s) 1.5 2.0
Interconnect HPE Slingshot-10 Mellanox Infiniband HDR
NICs per node 2 8
Network BW per direction (GB/s) 12.5 25
Number of nodes (GPUs) scaled 512 (2048) 512 (4096)

To further improve utilization of the workflow, we augment the
Thinker with a inference-only copy of the surrogate model which
is periodically transferred via pickling from the Bayesian optimizer
application.

Workflows expressed with Colmena contain three components:
a Thinker, a task server, and one or many workers. The Thinker
defines the policies of the workflow, i.e., the dynamic dispatching
of tasks and consumption of results. The Thinker is composed of
agents; agents interact with each other and the task server via
shared data structures. The task server pulls task definitions (task
name and input pairs) from a task queue and executes tasks on
workers via Parsl. The task server communicates task results from
workers back to agents via a results queue.

For large task inputs or results, Colmena provides integration
with ProxyStore (pro, 2021), a library for decoupling data movement
from control flow. Task inputs or results that exceed a user-defined
threshold are automatically communicated to the worker executing
the task via more optimal means (e.g., file system or Redis server).
This reduces overheads in the task server and workflow manager
and enables lower latency task execution and higher throughput.

6 HOW PERFORMANCEWAS MEASURED
We evaluate the performance of GenSLM models on a diverse set of
systems. We first explore the performance on two leadership class
GPU-based supercomputing systems: 1) Polaris supercomputer at
the Argonne Leadership Computing Facility (Polaris@ALCF), and
2) Selene supercomputer at NVIDIA (Selene@NVIDIA). Next, we
evaluate the performance on the Cerebras CS-2 wafer-scale cluster.

In the June 2022 Top-500 list (Top500, 2022), Polaris is ranked at
#14 with a peak of 44 PFLOPS and Selene is at #8 with a 63.4 PFLOPS
peak. Table 2 compares the two systems used for evaluation. The
Polaris system is an HPE Apollo Gen10+ system with 560 nodes
interconnected with HPE Slingshot 10 using a Dragonfly topology.
Each node consists of an AMD “Milan” processor with 32 cores
with 512GB of system memory. Each node has four NVIDIA A100
GPUs—each with 40GB memory. Each node has two Slingshot-10
endpoints at 12.5 GB/s for the interconnect network. Selene is based
on the NVIDIA DGX SuperPOD platform and consists of 560 nodes
interconnected with Mellanox HDR fabric. Each node consists of
two AMD “Rome” processors, each with 64 cores and 2TB system
memory. Each node has eight NVIDIA A100 GPUs, each with 80GB
memory. Each node has eight Mellanox ConnectX-6 HDR endpoints
at 20 GB/s each for the interconnect network. Each A100 NVIDIA
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GPU is capable of achieving a peak of 19.5 TFLOPS in FP32, 156
TFLOPS in TF32, and 312 TFLOPS in FP16 and BF16.

GenSLM was written with the PyTorch Lightning API (Pytorch,
2022), using transformer models from the Hugging Face repos-
itory (huggingface, 2022). PyTorch Lightning allows the use of
several distributed training strategies to scale model training on
clusters and supercomputers. This includes DistributedDataParallel
and DeepSpeed (Rasley et al., 2020). We use mixed precision using
FP16 and FP32 for our training runs. We focused our efforts on
DeepSpeed, as its employment of various ZeRO strategies for opti-
mization reduces the overall memory utilization in model training,
particularly for large parameter models (Rajbhandari et al., 2020).
Briefly, ZeRO strategies partition memory for training models—
including the optimizer, gradient, and model states—to use aggre-
gate memory across all GPUs. This enables training larger models
on GPU-based systems and trades overall memory capacity for
additional re-computation and communication. In particular, ZeRO-
1 partitions optimizers across GPUs, ZeRO-2 partitions both the
optimizers and gradients across all GPUs, and ZeRO-3 partitions
the parameters, in addition to ZeRO-2 optimizations, across all
GPUs. Additionally, ZeRO-3 can scale model sizes by leveraging
CPUmemory and any node-local storage to offload optimizer states,
gradients, parameters, and optionally activations to CPU. We used
PyTorch 1.12.0 and used NVIDIA NCCL 2.10.3 as the backend for
DeepSpeed. We used an environment with Docker containers for
the runs on Selene, and a bare-metal build using Conda on Polaris.

To measure compute performance of GenSLM model training,
we use the DeepSpeed flops profiler (Deepspeed, 2022). The Deep-
Speed flops profiler provides the flops and latency of the forward
and backward passes and latency of the weight updates, and thus
the compute performance of the GenSLM models. For scaling stud-
ies, we measure the entire end-to-end time including I/O as well
as model training at scale. We measure achieved throughput in
samples per second as the number of GPUs scales on the system.
We use the NVIDIA Nsight tool (Bradley, 2012) to get an in-depth
performance analysis.

CerebrasWafer-Scale Cluster:We also evaluated training per-
formance on full viral genomic sequences on a CerebrasWafer-Scale
Cluster with four CS-2s (Hall et al., 2021). The Cerebras Wafer-Scale
Cluster uses a weight streaming execution mode where weights
are stored off-chip on MemoryX, a memory extension. Weights
are streamed onto each CS-2 node using a broadcast/reduce fabric
called SwarmX. Each CS-2 node is powered by the Wafer-Scale
Engine, with 850,000 compute cores, 40 GB of on-chip memory, and
20 petabytes/s of memory bandwidth. After the computations, gra-
dients are streamed back to MemoryX where weights are updated.

We used data-parallelism in the Cerebras Wafer-Scale Cluster
through the appliance workflow, where no code changes or addi-
tional libraries were required to use either one or multiple CS-2
systems. GenSLM 123M and 1.3B were trained using the Cerebras
reference implementation for GPT-2 model. This implementation is
based on the TensorFlow estimator and is instrumented to collect
accuracy, perplexity and throughput measurements. We worked
with a Python virtual environment that included Cerebras software
version 1.6. All training was done using mixed precision.

7 PERFORMANCE RESULTS
We evaluated the performance of scaling GenSLM training on the
Selene and Polaris systems. We used two target sequence lengths
(2,048 and 10,240) in our scaling studies. Fig. 6 depicts performance,
in terms of overall throughput measured in samples/sec, as we
scaled with the number of GPUs on both systems. In our runs, we
used one rank per GPU with DeepSpeed ZeRO-3 optimizations. As
we scaled the number of GPUs, we kept the batch size per GPU
constant and scaled the global batch size appropriately.Wemodified
the learning rate parameter to account for scaling the number of
ranks. On Selene, for sequence length 2048, we employed twice the
batch size used on Polaris for the 25M, 250M, and 2.5Bmodels, as the
A100 GPUs on Selene have twice the memory capacity compared
to the Polaris GPUs. The performance obtained is the average of
the throughput measured over multiple iterations.

We observed that as themodel size increases from 25M to 25B, the
total achievable throughput, in terms of samples/sec, decreases. This
is expected as increasing themodel size increases the computational,
memory, and communication requirements. For the 25M, 250M, and
2.5B models, we observe a nearly 2× improvement in throughput on
Selene in comparison to Polaris, as a double batch size is employed.
In terms of efficiency, for smaller models, such as 25M, we observed
a drop in scaling efficiency as we scaled beyond 256 GPUs. Two
key attributes contributing to this include the fact that for smaller
model sizes that run with ZeRO-3, the ratio of data movement to
computational flops is too high to completely overlap these. We
see better performance efficiency for larger models as they have
higher utilization of computation and are able to better overlap
communication with computation. Some inefficiencies here are
also due to the performance of collectives and we investigate this
further next. In the case of the 25B model, we are able to fit just
a single batch on the GPU and observe a 50% improvement in the
throughput achieved on Selene over Polaris. We attribute this to the
increased interconnect performance on Selene together with the
larger memory capacity. We observe a super-linear speedup for the
25B case on both systems as we scale to 1024 GPUs in comparison
to the performance at 8 GPUs. This is attributed to the increased
memory and data movement overheads at smaller GPU scales.

To gain detailed insights on the runs, we performed a profiling
study on the 25M parameter model on both Polaris and Selene
systems using the NVIDIA Nsight tool (NVIDIA, 2022). To account
for the difference in the number of GPUs in a single node on both
systems, we performed profiling runs with the 32 GPUs on 8 nodes
on Polaris and 4 on Selene separately. We observed no significant
delay between the steps/iterations—data loading and I/O were not
bottlenecks. Given that the Selene DGX node has 80 GB memory
compared with 40 GB on the Polaris node, it allowed doubling the
batch size for the 25M parameter model, thereby achieving higher
throughput than Polaris.

In addition, we performed a study comparing the scaling be-
havior of the distributed training framework implementations for
PyTorch DistributedDataParallel (DDP) and with DeepSpeed with
ZeRO Stage 2 and 3 on Selene. With DDP, we were constrained to
smaller model sizes as it currently does not employ any memory
optimization, unlike DeepSpeed. As seen from Fig. 6B, DDP-based
runs exhibit linear behavior, while the performance of DeepSpeed
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CBA

Figure 6: (A) Scaling results on Polaris and Selene systems for MSL=2048; (B) Scaling behavior of DDP vs. DeepSpeed runs on
Selene (C) Scaling results on Polaris and Selene systems for MSL=10240;

Table 3: Compute performance of the production runs in
mixed precision (MP) for different model sizes with a se-
quence length of 2,048. This includes the I/O, computations
needed for forward pass, backward pass and weight updates,
and communication.
Model
Size

Tflops/
step(MP)

sec/
step

TFLOPS/
GPU(MP) # GPUs

Num
steps

Sustained
PFLOPS(MP)

Total
Zflops(MP)

25M 13.2 0.9 14.7 512 3500 3.49 0.02
250M 58.7 3.4 17.3 512 1800 7.59 0.05
2.5B 135.3 4.5 30.3 256 2250 5.83 0.08
25B 654.9 14.9 43.7 1024 2200 44.79 1.48

runs saturated beyond 256 GPUs for the ZeRO-2 optimizer and 512
GPUs for the ZeRO-3 optimizations. For the 25M case, at 512 GPUs,
DDP achieves 99% scaling efficiency with a 10% improvement over
ZeRO-3 and a 2× improvement over ZeRO-2. This could be attrib-
uted to the fact that DDP implements AllReduce collective com-
munication while DeepSpeed implements Reduce-Scatter and
AllGather collective communication operations. The performance
of the NCCL backend is highly optimized for AllReduce in com-
parison to AllGather. This highlights an opportunity to explore
further optimizations for the DeepSpeed implementation to scale
on systems. We would also like to note that there are additional
tuning knobs at the NCCL layer and in DeepSpeed, and this needs
further investigation for optimal performance.

For sequence length 10,240, we used a batch size of 1 and ZeRO-3.
As we increased the sequence length from 2,048 to 10,240, the mem-
ory requirements, including for activation and residuals, increased
by a similar factor. The computation requirements also grew by 5×.
We were able to fit only one batch for this sequence length on the
GPU with the current stages employed. From Fig. 6C, at 512 GPUs,
for the 25M case, we observed a 50% improvement on Selene (64
nodes) over Polaris (128 nodes). For the 250M case, we observed
only an 11% improvement for Selene over Polaris. As the model
size increased for this sequence length, we were bottlenecked pri-
marily by the memory subsystem performance and the overheads
associated with staging residuals and parameters between the GPU
and host. Additional staging optimization, model and activation
partitioning will need to be explored.

Table 4: Final loss and perplexity values achieved by the
GenSLM Foundation (F) (2,048 tokens) and SARS-CoV-2 (S)
(10,240 tokens) models. Reported values for S models are
trained on the first year of SARS-CoV-2 genomes. Perplexity
is computed by taking the exponential of the loss and can be
interpreted as the number of guesses needed for the model
to correctly fill a masked token.

Metric 25M F 250M F 2.5B F 25B F 25M S 250M S
Loss 0.57 0.46 0.30 0.70 0.015 0.011

Perplexity 1.78 1.59 1.34 2.01 1.02 1.01

Compute Performance:We discuss the overall compute per-
formance of the GenSLM model as we scaled the model size from
25M to 25B on the Polaris system for our production science runs.
Table 3 illustrates the measured GPU performance obtained us-
ing the DeepSpeed profiler for smaller-scale runs. We next take
the efficiency of the runs as we weak-scaled to larger nodes and
GPU counts for the sustained PFLOPS. We would like to note that
we account for the entire end-to-end application run, including
data processing and checkpointing. The number of GPUs for our
production science runs on Polaris was chosen based on system
availability, and the number of steps run was chosen to achieve an
appropriate loss scale. We observed that as we scaled the model
size, the overall computational flops per step increased given the
increase in model complexity. For the 25B model, we achieved a
sustained performance of 44.79 PFLOPS in mixed precision (MP).
We achieved a peak performance of 212.55 PFLOPS(MP) measured
by accounting for the highest FLOPS consumed by a single layer in
our network. For our production science runs, we used an aggre-
gate of 1.63 Zettaflops, and our 25B model used 1.48 Zettaflops to
train on 1,024 GPUs for 2200 steps. For our scaling runs on Selene
with the 25B model, we scale to 512 nodes with 4096 GPUs. We
achieve a sustained performance of 121.26 PFLOPS(MP) and a peak
performance of 850.21 PFLOPS(MP). The final model performance
is described in Table 4.

Cerebras Wafer-Scale Cluster Scalability: We measured the
throughput and training time of theWafer-Scale Cluster for GenSLM-
123M and GenSLM-1.3B with a sequence length of 10,240 codon
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tokens (Table 1). The batch size per CS-2 for each model was chosen
based on empirical experiences with models of similar sizes and
was kept constant when scaled up to multiple CS-2s.

Table 5: Cerebras Wafer-Scale Cluster throughput training
GenSLMs on a sequence length of 10,240 tokens.

Model size Samples/sec
1 CS-2 2 CS-2 4 CS-2

123M 11.1 23.1 46.2
1.3B 0.88 1.76 3.52

Table 6: Metrics of GenSLMs trained from scratch on a se-
quence length of 10,240 using Cerebras Wafer-Scale Cluster.

GenSLM-123M GenSLM-1.3B
1 CS-2 4 CS-2 1 CS-2 4 CS-2

Training steps 5,000 3,000 4,500 3,000
Training samples 165,000 396,000 49,500 132,000
Time to train (h) 4.1 2.4 15.6 10.4

Validation accuracy 0.9615 0.9625 0.9622 0.9947
Validation perplexity 1.0310 1.0290 1.0310 1.0255

Table 5 shows average samples per second training GenSLM-
123M and GenSLM-1.3B for 200 steps using one, two, and four
CS-2s. Regardless of the model configurations, we observed linear
weak scaling when using up to four CS-2s.

We trained GenSLM-123M and GenSLM-1.3B from scratch using
learned positional embeddings. Table 6 shows training time and a
total number of training samples used to achieve validation accu-
racy >96% and perplexity <1.03 using one CS-2 and with four CS-2s.
Validation measurements were taken from checkpoints every 500
steps. For GenSLMs of the same size, fewer training steps were
required to achieve comparable validation results when the global
batch size was increased in a four-CS-2 Wafer-Scale Cluster with
data parallelism. The reduced number of training steps plus linear
weak scaling led to a reduction of at least a third of the training
time when using four CS-2s versus one. All GenSLM training with
full genomes on CS-2s converged within 12 hours. GenSLM-1.3B
requires fewer training samples than the smaller GenSLM-123M to
achieve comparable validation metrics, following the sample effi-
ciency observation in neural language model scaling laws (Kaplan
et al., 2020). We note that further hyperparameter tuning is required
to 1) optimize the throughput on the Wafer-Scale Cluster, 2) draw
firmer conclusions on the impact of model size on model quality.

Workflow Performance:We measured the utilization of the
sequence generation workflow on 224 nodes of Polaris by counting
the number of workers actively serving a request as a function of
runtime. As shown in Fig. 7, we achieve 97.0% utilization over the
5.5-hour duration of the workflow. Persisting the GenSLMs in GPU
memory between requests generated 3.85 sequences per second,
whereas without model caching we estimate the workflow would
have only generated 1.98 sequences per second by extrapolating the
mean cold start time across the number of workers. This achieves
1.9× faster time to solution for generating synthetic sequences with
notable properties, allowing for rapid analysis at time scales not
previously feasible.

Figure 7: Workflow utilization measured by the number of
active workers (applications actively serving requests) as a
function of workflow runtime measured on 224 nodes of
Polaris (896 A100 GPUs). The warm-able application design
realizes 97% utilization, enabling 1.9X more sequences to be
generated compared to a cold start baseline.

8 IMPLICATIONS
In this paper, we presented GenSLMs, one of the first LLMs trained
on nucleotide sequences, particularly at the genome scale, and
demonstrated its performance in modeling evolutionary dynamics
of SARS-CoV-2. Our approach overcomes key challenges related
to training LLMs for biological data, specifically with respect to
longer sequence lengths and building biologically meaningful latent
spaces which can then be used for a variety of downstream predic-
tion tasks. GenSLM is a foundation model for biological sequence
data and opens up avenues for building hierarchical AI models
for several biological applications, including protein annotation
workflows, metagenome reconstruction, protein engineering, and
biological pathway design. We scaled the training of GenSLM for
sequence length up to 10240 tokens and 25B parameters on GPU-
based supercomputers. We scaled to 4,096 GPUs and utilized over
1.63 Zettaflops for science runs. We identified scaling avenues to be
pursued in order to tackle larger models and sequence lengths needs
for science. We demonstrated the efficacy of the Cerebras Wafer-
Scale Cluster, an AI accelerator, to scale the training of GenSLM
with high user-productivity and achieved linear scaling for 10,240
tokens and models up to 1.3B parameters.

We also note that the information contained within nucleotide
sequences represents a much richer vocabulary compared to PLMs
alone. Thus, the learned representation lets us capture amuch larger
repertoire of biological properties that are perhaps diminishedwhile
using PLMs, and enables a more faithful generation process that
captures the intrinsic organization of the SARS-CoV-2 sequences.
Further, the attention mechanism also reveals co-evolutionary pat-
terns at thewhole-genome scale that requires future investigation to
fully understand how these long-range interactions may influence
our ability to inform epitope modeling, immune escape, antibody
design, and even vaccine design strategies. We however note that
there is a need to rigorously compare PLMs with GenSLM-like
approaches. It remains to be seen if the GenSLM model does pos-
sess richer representative power and if so how it can be further
used. Note that we have also not been able to address the aspects

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.10.10.511571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.10.511571
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supercomputing ’22, November 14–19, 2022, Dallas, TX Zvyagin, M. et al.

of noise and bias in the data – similar to natural language models
where the models demonstrated extreme bias, there needs to be
rigorous analyses of GenSLMs generative capabilities. We welcome
the community to drive the development of suitable test harnesses
for rigorously evaluating GenSLM-like models.

A straightforward extension to our work would include the inte-
gration of GenSLMs with protein structure prediction workflows
such as AlphaFold (Jumper et al., 2021)/OpenFold4 and faster pro-
tein folding methods (Lin et al., 2022) to model both immune escape
and fitness, which determine the ability of the virus to adapt to
its host (human) (Beguir et al., 2022). Further, incorporating ex-
perimental and biophysical data into our workflow from antibody
binding assays, molecular docking, and other quantitative metrics
can also guide the training regimes for these models such that the
generative process can be constrained to focus on potential future
variants of concern.
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