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Abstract

Prostate segmentation in transrectal ultrasound (TRUS) image is an essential prerequisite for many 

prostate-related clinical procedures, which, however, is also a long-standing problem due to the 

challenges caused by the low image quality and shadow artifacts. In this paper, we propose a 

Shadow-consistent Semi-supervised Learning (SCO-SSL) method with two novel mechanisms, 

namely shadow augmentation (Shadow-AUG) and shadow dropout (Shadow-DROP), to tackle this 

challenging problem. Specifically, Shadow-AUG enriches training samples by adding simulated 

shadow artifacts to the images to make the network robust to the shadow patterns. Shadow-DROP 

enforces the segmentation network to infer the prostate boundary using the neighboring shadow-

free pixels. Extensive experiments are conducted on two large clinical datasets (a public dataset 

containing 1,761 TRUS volumes and an in-house dataset containing 662 TRUS volumes). In 

the fully-supervised setting, a vanilla U-Net equipped with our Shadow-AUG&Shadow-DROP 

outperforms the state-of-the-arts with statistical significance. In the semi-supervised setting, even 

with only 20% labeled training data, our SCO-SSL method still achieves highly competitive 

performance, suggesting great clinical value in relieving the labor of data annotation. Source code 

is released at https://github.com/DIAL-RPI/SCO-SSL.

yanp2@rpi.edu . 
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I. Introduction

PROSTATE cancer is the most common type of cancer for men in the United States 

and the second leading cause of cancer mortality for this population [1]. Transrectal 

ultrasound (TRUS) imaging is widely used in prostate cancer diagnosis and treatment 

due to its great accessibility, low cost, and non-ionizing nature. Segmenting the whole 

prostate volume from TRUS acts as an essential prerequisite for a set of subsequent clinical 

procedures, such as image-guided biopsy, needle placement, and interventional therapy 

delivery. Manual segmentation not only consumes tremendous amount of time and labor 

but also varies significantly between different annotators. To this end, automatic prostate 

ultrasound segmentation is highly desired in practice with great clinical significance.

However, accurate prostate segmentation in TRUS images is a long-standing and 

challenging problem due to the following difficulties. First, TRUS images often suffer 

from low signal-to-noise ratio (SNR) and inhomogeneous intensity distribution, resulting 

in low-contrast and ambiguous boundaries of the prostate. Second, the large variability of 

the prostate shape and size across different patients increases the difficulty of segmentation. 

Last, but very importantly, the shadow artifacts caused by the ultrasonic absorption and 

reflection often lead to the missing prostate boundary in some local regions. All these 

facts complicate the prostate ultrasound segmentation and make it more challenging than 

other medical image segmentation tasks including the prostate segmentation in computed 

tomography (CT) [2]-[4] and magnetic resonance imaging (MRI) images [5], [6]. Fig. 1 

shows four example TRUS images to illustrate the low image quality caused by the shadow 

artifacts.

Currently, the most popular methodology for prostate ultrasound segmentation is based on 

deep learning (DL), more specifically, the fully convolutional networks (FCNs) [7], [8]. The 

powerful representation ability of the self-learned hierarchical features makes FCN-based 

methods significantly outperform those conventional methods, whose performance largely 

relies on the hand-crafted image features. Some more advanced DL technologies, such as the 

long short-term memory [9], attention mechanism [10], [11], deep supervision [6], [12], and 

ensemble learning [13], further pushed the limits of segmentation performance.

Even though the FCN-based prostate segmentation methods have achieved impressive 

performance, significant challenges still remain. First, most of the existing methods count on 

the general DL techniques to facilitate the prostate segmentation but overlook the specificity 

of ultrasound images. Unlike other imaging modalities, ultrasound images often exhibit 

a unique kind of noise, the shadow artifacts as shown in Fig. 1. The information inside 

the shadow regions is largely lost and less reliable than that in the shadow-free regions. 

However, the existing methods tend to treat all the pixels equally no matter where they 

locate. Intuitively, treating the shadow pixels and the shadow-free pixels in ultrasound 
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images is more desirable for accurate prostate segmentation. Second, the previous methods 

can only work in a fully-supervised learning manner, where the model performance highly 

depends on the size and quality of the labeled training data. However, large-scale and 

well-annotated TRUS images are very expensive to collect in clinic. In contrast, the raw 

TRUS images without any annotations are much easier to acquire. Leveraging the unlabeled 

TRUS images to facilitate the prostate segmentation on top of limited annotations is another 

problem yet to be solved in this domain.

In this paper, we propose a Shadow-consistent Semi-supervised Learning (SCO-SSL) 

method to address the above two issues in prostate ultrasound volume segmentation. The 

proposed method contains two novel mechanisms, namely shadow augmentation (Shadow-

AUG) and shadow dropout (Shadow-DROP), which aim to encourage a segmentation 

network to extract discriminative features from the shadow-free regions at both image and 

feature levels, respectively. Specifically, the Shadow-AUG strategy enriches the training 

samples by adding the simulated shadow artifacts to the input ultrasound images to 

make the trained network robust to the potential shadow artifacts. The Shadow-DROP 

mechanism selectively erases a part of features extracted from the shadow regions and thus 

enforces the segmentation network to infer the prostate boundary using the neighboring 

shadow-free pixels for a reliable segmentation. Both Shadow-AUG and Shadow-DROP are 

independent of the network architectures and the training procedures. Thus, they can be 

easily incorporated into any FCN-based segmentation methods.

The main contributions of this work are four-fold, as summarized below.

• We propose a novel data augmentation strategy, namely Shadow-AUG, for 

training prostate ultrasound image segmentation networks. By simulating the 

shadow artifacts in training samples, a deep segmentation network becomes 

more robust against such shadow artifacts and thus achieves higher segmentation 

accuracy.

• We develop a Shadow-DROP mechanism to complement a deep network’s 

feature extraction ability, which encourages the trained network to infer the 

missing prostate boundaries using the neighboring shadow-free pixels by 

ignoring the features from a shadow region.

• Both Shadow-AUG and Shadow-DROP can be easily incorporated into the 

consistency learning framework, reaching a novel SCO-SSL method for semi-

supervised prostate ultrasound segmentation. To the best of our knowledge, this 

is the first attempt to leverage the power of semi-supervised learning to handle 

the challenging problem of prostate ultrasound segmentation.

• We comprehensively evaluated the proposed SCO-SSL method on two large-

scale clinical datasets, a public dataset with 1,761 TRUS volumes and an 

in-house dataset with 662 TRUS volumes. The experimental results show 

that, when trained with 100% labeled data, the proposed SCO-SSL method 

outperforms the state-of-the-art methods by statistically significant margins, 

especially inside the shadow regions. When trained with 20% labeled data, 
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our method still yields competitive result in comparison to the state-of-the-art 

methods, which are trained using 100% labeled data.

II. Related works

A. Prostate ultrasound segmentation

Prostate ultrasound segmentation is a long-standing topic in medical image analysis. In the 

early stage of this domain, researchers designed various hand-crafted features to handle this 

challenging problem through statistical shape model based methods [14]-[16]. Conventional 

machine learning methods have also been explored [17]. The performance of these methods 

highly relies on the hand-crafted features, which tend to fail in segmenting low-contrast 

boundaries and regions affected by shadow artifacts.

In recent years, DL has become the dominant methodology in medical image segmentation. 

The powerful representation ability with self-learned hierarchical features makes the FCNs 

[7] significantly outperform the conventional methods. The state-of-the-art benchmark in 

medical image segmentation is U-Net [8], [18], which consists of an encoding path and a 

decoding path joint with several skip-connections in a U-shape architecture. With proper 

fine-tuning of a set of hyper-parameters, the U-Net may achieve superior performance on 

various medical image segmentation tasks, even surpassing some advanced networks that 

were specially designed for the specific tasks [18]. Specifically, on prostate ultrasound 

segmentation, Orlando et al. [19], [20] resampled series of 2D slices radially around the 

superior-inferior axis of the 3D TRUS image, and then utilized a standard U-Net to predict 

2D contours on the extracted slices to handle the prostate appearance variation in transverse 

slices. The segmentation results are then combined to reconstruct the 3D prostate volume. 

Yang et al. [9] resampled the 2D TRUS image to a series of patches along the prostate 

boundary and exploited recurrent neural networks (RNNs) to infer the prostate shape 

sequentially, aiming to bridge the missing boundaries through long short-term memory 

(LSTM) networks. Wang et al. [10], [11] leveraged the attention mechanism to selectively 

extract multi-level features from TRUS images, facilitating the prostate segmentation by 

suppressing irrelevant background noise while enhancing prostate structural details. Lei et 

al. [12], [13] integrated multi-view ensemble learning and deep supervision strategies into 

3D V-Nets [21] to refine the prostate segmentation with limited training data.

Although these methods have achieved promising performance on various TRUS image 

datasets, they have ignored the shadow artifacts and thus may fail to deal with the situation 

where severe shadow artifacts present. On the other hand, the training of these methods 

largely relies on the fully-annotated TRUS data, which is not always feasible to acquire in 

clinical practice. In contrast, our proposed SCO-SSL method provides special mechanisms 

(i.e., the Shadow-AUG and Shadow-DROP) to handle the complex imaging condition 

caused by the shadow artifacts. Furthermore, it supports the semi-supervised learning with 

limited annotated data and large portion of unlabeled data, which is more close to the real 

scenario in clinic.
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B. Ultrasound shadow segmentation

Acoustic shadow is a special artifact often encountered in ultrasound imaging. It can be 

useful for locating certain acoustic-reflecting/-absorbing objects [22]-[26], but can also 

hinder the ultrasound image analysis tasks such as segmentation [27]-[33]. In both scenarios, 

accurate segmentation of the shadow regions is favorable. Prior works in this domain 

range from the early-stage hand-crafted feature based methods [24], [27]-[30] to the more 

recent DL-based methods [25], [26], [31]-[33]. For example, Hellier et al. [27] used the 

geometrical and statistical features of the shadow distribution to detect the existence of 

such artifacts in ultrasound brain images. Basij et al. [28] designed a thresholding function 

to adaptively segment the shadow regions behind the calcification plaque in intra vascular 

ultrasound images. Karamalis et al. [29] utilized the random walker algorithm [34] to 

calculate a confidence map to measure the reliability of each ultrasound pixel in shadow 

conditions. Berton et al. [30] and Hacihaliloglu [24] sought to distinguish the shadow 

regions from shadow-free pixels by a set of hand-crafted features.

In the DL category, Meng et al. [31] proposed a weakly-supervised DL method for 

ultrasound shadow segmentation by training a classification network to tell whether the input 

image is shadow-free or not. The saliency map of this classifier was then used for shadow 

segmentation through a generative adversarial network (GAN) and GraphCut [35]. Meng 

et al. [32] further boosted the shadow segmentation accuracy by designing two co-trained 

FCNs equipped with attention mechanisms. Alsinan et al. [25] utilized a GAN to segment 

the shadow regions in ultrasound images. Wang et al. [26] proposed a multi-task network to 

separately estimate the coarse bone shadow enhancement and horizontal bone interval, both 

of which were then combined to generate the final shadow mask. Yasutomi et al. [33] trained 

an autoencoder with synthetic shadow masks to achieve the goal of semi-supervised shadow 

estimation.

The prior works on ultrasound shadow segmentation demonstrate the importance of shadow-

robustness for ultrasound image analysis. It motivates us to design the Shadow-AUG and 

Shadow-DROP mechanisms in our prostate segmentation method.

C. Semi-supervised medical image segmentation

Semi-supervised learning is a special type of machine learning approach that falls into 

the category between fully-supervised learning and unsupervised learning. It combines the 

unlabeled data with a small portion of fully-annotated data during training, which aims to 

relieve the labor for labeling data while improve the model performance by leveraging the 

unlabeled data. The core assumption of semi-supervised learning is that the data points 

close to each other in the latent space should have similar or identical labels, which 

is often referred to as the smoothness assumption [36]. In other words, by conducting 

different transformations/augmentations on the same input image, the trained model can be 

regularized through consistency constraints on the output, no matter whether the input image 

is labeled or not. For example, Laine and Aila [36] proposed a self-ensembling framework 

to realize the semi-supervised learning, where the historic predictions of the trained model 

are averaged to generate the training target (or pseudo label) for the unlabeled data. As a 

further step of the self-ensembling learning, Tarvainen and Valpola [37] proposed to average 

Xu et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the model parameters rather than the model predictions in the self-ensembling framework. 

The output of the resulting mean model (teacher) was used as the pseudo label to supervise 

the current trained model (student), leading to higher accuracy and more stable performance 

than the previous self-ensembling learning methods.

Since the raw medical images are much easier to collect than their annotations, semi-

supervised learning methods are widely used in handling various of medical image 

segmentation tasks. Specifically, Yu et al. [38] proposed an uncertainty-aware self-

ensembling model for semi-supervised segmentation of 3D left atrium, in which the teacher 

and student networks were interpreted as Bayesian networks through Monte Carlo dropout 

[39] to make the pseudo label aware of uncertainty. Li et al. [40], [41] applied different 

spatial augmentations on the same input image for the student and teacher models, aiming to 

build transformation-consistency during training. Xia et al. [42], [43] proposed a multi-view 

co-training method for semi-supervised 3D medical image segmentation. They trained three 

individual sub-networks using three orthogonal views (i.e., axial, coronal, and sagittal views) 

of the 3D images. The predictions of these three sub-networks were then combined to serve 

as pseudo labels for unsupervised training. In this paper, we propose a shadow-consistent 

semi-supervised learning method to improve prostate ultrasound segmentation by utilizing 

extra unlabeled images with shadow artifacts.

III. Method

Fig. 2 gives an overview of the proposed SCO-SSL method for prostate ultrasound 

segmentation. The innovation of this SCO-SSL method lies in two components: a) the 

Shadow-AUG strategy applied to the input images and b) the Shadow-DROP layer acting 

on the intermediate feature maps, which will be introduced in Sections III-A and III-B, 

respectively. We then present the entire pipeline of the proposed SCO-SSL in Section III-C. 

The implementation details are provided in Section III-D.

A. Shadow augmentation strategy

In order to make the segmentation network robust to the shadow artifacts appearing in the 

TRUS images, we propose the shadow augmentation strategy (Shadow-AUG) to simulate 

the shadow artifacts in the input images during model training. Fig. 3 gives a scheme of 

the proposed Shadow-AUG, whose core idea is to impose the shadow artifacts extracted 

from other TRUS images on the training image. Specifically, to generate realistic shadow 

artifacts for a given input TRUS image X, we randomly select another TRUS image Xs, 

namely shadow source image, from the training set and extract its shadow mask S using the 

following soft thresholding function:

si =
1
2 − 1

2 cos π
xis

τs
, xis ≤ τs

1, otℎerwise
, (1)

where si, and xis denote the i-th voxel of the shadow mask S and the shadow source image 

Xs, respectively. τs is a hyper-parameter thresholding the range of the extracted shadow 

region. Fig. 4 shows example shadow images augmented using different values of τs. We use 
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this soft thresholding function instead of a hard threshold here to avoid sharp boundaries in 

the shadow masks. After the extraction of the shadow mask S, the augmented image X can 

be generated by masking S on the original input image X as follows:

X = TS(X) = X ⊗ S (2)

where ⊗ denotes element-wise multiplication.

Since the shadow source image Xs can be any TRUS image in the training set other than 

the input image X, the diversity of the augmented samples is extensively enriched, which 

largely alleviates the risk of over-fitting in training. On the other hand, since the shadow 

mask S is extracted from a real TRUS images Xs, the distribution of the simulated shadow 

artifacts may well approximate what exists in the real data. This is beneficial to the learning 

of discriminative and robust features for prostate segmentation in the presence of severe 

shadow artifacts.

B. Shadow dropout mechanism

As the original image information in the shadow regions is largely eroded by the artifacts, 

the feature extracted from the shadow regions could be less reliable for accurate prostate 

segmentation. It is intuitive that a discriminative learning mechanism paying more attention 

to the shadow-free regions than the shadow regions could help to improve the robustness of 

the trained network. However, conventional convolutional neural networks tend to treat all 

the image voxels equally without telling whether they locate inside the shadow regions 

or not, which may hinder the learning of discriminative features for accurate prostate 

segmentation. To handle this issue, we design a novel Shadow-DROP layer to filter the 

features extracted from the shadow regions in the intermediate layers of the segmentation 

network. Fig. 5 shows the scheme of the proposed Shadow-DROP layer. Given an input 

feature map V with C channels, the proposed Shadow-DROP operates as:

V c = DS(V c) = V c ⊗ resample(S, V c), (3)

where Vc and V c denote the c-th channel of the input feature map V and output feature map 

V , respectively. S denotes the shadow mask, which is created in the same way as the one 

used in the aforementioned Shadow-AUG (see Eq. (1)&(2)). The function resample(S, Vc) 

resamples the shadow mask S to the same spatial size as the input feature Vc so that they can 

be merged through the element-wise multiplication operation ⊗.

Essentially, the proposed Shadow-DROP layer works similarly as the standard dropout 

layer [44], [45], which randomly drops a part of the neural nodes out of the training 

by suppressing their output. This enforces the subsequent networks to leam generalized 

representations using the remaining neural nodes to meet the training objective. The major 

difference between the standard dropout layer and our proposed Shadow-DROP layer lies 

in the dropout mask. Our Shadow-DROP layer uses the shadow mask extracted from a real 

ultrasound image, where the spatial distribution of the dropped neural nodes submit to the 

prior knowledge of the shadow artifacts. Consequently, the trained networks learn to bridge 
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the gap when dealing with the ultrasound images containing similar patterns of shadow 

artifacts. We will demonstrate this through an ablation study in Section IV-D.

C. Shadow-consistent semi-supervised learning framework

In order to utilize the unlabeled TRUS images to facilitate the prostate segmentation, we 

integrate the Shadow-AUG and Shadow-DROP mechanisms into the consistency learning 

framework [37], achieving the proposed SCO-SSL method for semi-supervised prostate 

ultrasound segmentation. As shown in Fig. 2, the SCO-SSL method consists of a student 

network fstu(·∣θ) and a teacher network ftea(·∣θ′), both of which have the same network 

architecture but different model parameters θ and θ′, respectively. Shadow-AUGs are 

applied on the input images. We exploit U-Net [8] as the backbone of the teacher/student 

networks, where the proposed Shadow-DROP layers are inserted to all the convolutional 

blocks in the encoding path (see “ShadowBlock” illustrated in the legend of Fig. 2).

Without loss of generality, we introduce the workflow of the proposed SCO-SSL method 

under the standard semi-supervised learning setting, where the training set contains Nl 

image-annotation pairs XL = {(Xi
L, Y i)}i = 1

Nl  and Nu unlabeled images XU = {Xi
u}i = 1

Nu . Given 

an arbitrary image X from XL or XU, we first conduct two independent Shadow-AUGs on it 

to generate two different shadow augmented images X1 = TS1(X) and X2 = TS2(X). These 

two augmented images are then fed to the student network and teacher network to generate 

the prostate segmentation P = fstu(X1 ∣ θ) and Q = ftea(X2 ∣ θ′), respectively. According to 

the smoothness assumption in semi-supervised learning [36], the data point perturbing in 

image space should keep consistent in label space. In our problem, since the two augmented 

images X1 and X2 come from the same input image X, their segmentation masks should 

be the same through either the student network or the teacher network. Therefore, we can 

build a consistent constraint between the student prediction P and the teacher prediction Q 
by minimizing the following binary cross entropy (BCE) loss, namely consistency loss:

ℒcon = − E Q log P + (1 − Q) log(1 − P ) . (4)

Note that, the consistency loss is applicable not only for the unlabeled images XU but 

also the labeled images XL since the smoothness assumption stands for both of them. For 

a labeled image XL, we also calculate the supervised loss on it using the corresponding 

ground-truth segmentation mask Y. In our method, we use Dice loss [21] as the supervised 

loss:

ℒsup = 1
C ∑

c = 0

C − 1
1 −

2∑i
N pciyci

∑i
N (pci2 + yci2 )

, (5)

where pci and yci denote the i-th voxel in the c-th channel of the student prediction P and the 

ground-truth segmentation mask Y, respectively.

The student network parameters θ are updated through stochastic gradient descent (SGD) 

and back-propagation algorithm by minimizing the training objective ℒ = ℒsup + λ(T) 
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· ℒcon, where λ(T) is a function of training epoch index T used to dynamically balance 

the supervised loss and the consistency loss. In our method, we adopt a Gaussian rampup 

function as λ(T), which is the same as other consistency learning methods [36], [38], [41]:

λ(T ) =
λmax ⋅ exp[ − 5(1 − T

Tmax
)2], T ≤ Tmax

λmax, otℎerwise
, (6)

where λmax is the maximum weight for the consistency loss reached after Tmax training 

epochs. We empirically set λmax=0.1 and Tmax=200 epochs. The teacher network 

parameters θ′ are updated by calculating the exponential moving average (EMA) of the 

student model parameters θ:

θt′ =
αθt − 1′ + (1 − α)θt, t > 0
θt, t = 0

, (7)

where t indicates the index of training batches. Momentum term α controls the speed of 

teacher model updating, which is empirically set to 0.99. The student network parameters 

θ and teacher parameters θ′ are updated alternately during training. At inference stage, 

we adopt teacher network’s prediction as the final output since it is more stable and 

accurate than the student network’s prediction. Both the Shadow-AUG and the Shadow-

DROP mechanisms merely work in the training stage, and thus they will bring no extra 

computational cost to the segmentation networks at inference time.

D. Implementation details

The proposed SCO-SSL method is implemented in 3D using PyTorch. Model parameters 

in the student network are initialized using Xavier algorithm [46] and optimized by SGD 

optimizer with a learning rate of 0.001 and momentum factor of 0.99. We train the model 

for 400 epochs and evaluate its performance on the validation set every epoch using Dice 

similarity coefficient (DSC) as the metric. The model achieving the highest DSC on the 

validation set is selected as the final model to be evaluated on the test set. The training 

batch size is set to 16 in fully-supervised setting and 36 in semi-supervised setting (12 

labeled samples and 24 unlabeled samples). The input TRUS images are center-cropped and 

resampled to a uniform size of 96×64×96 with a spacing of 1.0×1.0×1.0mm3. The image 

intensities are normalized from [0.0, 255.0] to [0.0, 1.0]. Random translation ([−5,5]mm) 

and rotation ([−0.05,0.05]rad) are used to augment the training data. We keep the largest 

component in the predicted binary mask as the final segmentation of the prostate. Unless 

otherwise noted, all the competing methods and ablation models are trained and evaluated 

using the same configuration as our method. It is worth noting that, using the same training 

configuration for all the competing methods may not guarantee all of these methods to 

reach their full potential. However, this vanilla configuration can ensure all the performance 

disparities are caused by the method designs rather than the training strategies. For better 

reproducibility, the source code is released at https://github.com/DIAL-RPI/SCO-SSL.
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IV. Experiments

A. Datasets and metrics

In this study, we conduct experiments on two large TRUS image datasets. One is a public 

dataset1 [47] shared by the Institute of Urologic Oncology, University of California-Los 

Angeles (UCLA) on the Cancer Imaging Archive (TCIA) platform [48]. The other one is 

an in-house dataset collected at the Nation Institutes of Health (NIH) from IRB-approved 

clinical trial. For brevity, we denote the two datasets as UCLA dataset and NIH dataset, 
respectively, in the following contents.

1) UCLA dataset: The UCLA dataset contains 1,761 3D TRUS images collected from 

1,150 patients2. All these image volumes are acquired by rotating a Hitachi Hi-Vision 5500 

7.5 MHz end-fire probe or a Noblus C41V 2-10 MHz end-fire probe 200 degrees about its 

axis, and interpolating to resample the volume with isotropic resolution (spacing), which 

ranges from 0.21mm to 0.55mm. The image size varies from 342×226×342 to 452×290×452 

(in voxel). Each TRUS volume has a prostate segmentation mask stored in the same size as 

the image.

We randomly divide the UCLA dataset into three parts with a proportion of 575(50%): 

115(10%):460(40%) in terms of patients, resulting in a split of training/validation/test sets 

containing 895/169/697 TRUS image volumes, respectively. For fully-supervised learning, 

all the 575 patients (895 images) are used as the training samples. For semi-supervised 

learning, we randomly select 115 patients (20%, 194 images) in the training set as labeled 

samples and reserve the rest 460 patients (80%, 701 images) as unlabeled samples.

2) NIH dataset: The NIH dataset contains 662 3D TRUS images collected from different 

patients. The image volumes are reconstructed from 2D TRUS frame sequences acquired 

by a Philips iU22 ultrasound scanner with C9-5 probes. All the images have isotropic 

voxel resolution (spacing) ranging from 0.40mm to 0.90mm. The image size varies from 

173×113×122 to 218×184×337 (in voxel). 315 of the 662 TRUS images have a prostate 

segmentation mask manually annotated by two experienced physicians. The rest 347 TRUS 

images are unlabeled.

Considering the relatively smaller size of the NIH dataset compared with the UCLA dataset, 

we conducted a 3-fold cross validation on the NIH dataset to comprehensively evaluate 

method performance on it. Specifically, the 315 labeled samples are randomly divided into 

three folds with 105 samples in each fold. In each iteration of the cross validation, one 

fold (105 samples) is used for testing and the rest two folds (210 samples) are reserved 

for training and validation with a fixed split of 180 and 30 samples, respectively. The 347 

unlabeled samples are only used for semi-supervised learning as the unlabeled training 

samples.

1 https://doi.org/10.7937/TCIA.2020.A61IOC1A 
2The original UCLA dataset contains 1,151 patients but one patient has no annotation on the TRUS image.
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3) Metrics: We use Dice similarity coefficient (DSC), average symmetric surface distance 
(ASD), and Hausdorff distance (HD) to quantitatively evaluate the model performance. We 

also calculate ASD-shadow to evaluate the segmentation performance inside the shadow 

regions, which is the ASD between the estimated boundary and ground-truth boundary 

inside the identified shadow regions. Paired t-tests on the above metrics are conducted to 

check the statistical significance between different results.

B. Comparison with fully-supervised methods

1) Benchmarking methods: To justify the performance of our method, we compare 

it with five fully-supervised methods, including three state-of-the-art methods for general 

medical image segmentation and two recent methods dedicated to prostate ultrasound 

segmentation. Most of the competing methods are published in the past two years and thus 

represent the frontier performance in this domain.

• V-Net [21] and U-Net [8]: Two popular FCNs with U-shape-like architectures 

that are widely used for various of medical image segmentation tasks.

• nnU-Net [18]: The latest state-of-the-art method in many benchmark medical 

image segmentation tasks, which is actually a standard U-Net trained with 

specially tuned hyper-parameters. The value of the hyper-parameters are 

determined by a set of pre-defined guidelines regarding the dataset properties.

• Radial-2.5D-UNet [20]: A 2.5D DL-based method dedicated for prostate 

ultrasound segmentation, where the TRUS volume is radially resampled to a set 

of slices around the superior-inferior axis and a 2D U-Net is trained to segment 

the prostate in the slices to reconstruct the 3D prostate volume.

• DAF-Net [11]: A 3D DL-based method dedicated for prostate ultrasound 

segmentation, where a feature pyramid network combined with a special-

designed attention module is trained through deep supervision to deal with the 

complex background condition in TRUS image.

Both U-Net and nnU-Net are implemented in 3D. The training configuration of nnUNet 

is tuned following the guidance provided in the original literature [18], which makes it 

different than the original UNet. Since the Radial-2.5D-UNet is a 2D network with a 

convergence behavior different from other 3D networks, it is trained using Adam optimizer 

(β1=0.9, β2=0.999) with a base learning rate of 1×10−4 for 200 epochs.

2) Intra-dataset comparison: We first evaluate the model performance with the 

training and test data coming from the same dataset. In this case, the training data and 

test data share the same distribution. In this experiment, we evaluate the performance 

of our method working in two learning modes: 1) In fully-supervised mode, we train a 

3D UNet equipped with our Shadow-AUG and Shadow-DROP mechanisms using all the 

labeled data in each dataset. 2) In semi-supervised mode, we train the proposed SCO-SSL 

method using a mixture of labeled and unlabeled data in each dataset. Table I lists the 

results of this intra-dataset comparison. It can be seen that, under the fully-supervised 

setting, our method (“SCO-SSL (full-supervised)” in Table I) generally achieves better 

performance than other competing methods on both datasets, and most of the improvement 
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margins are statistically significant. Meanwhile, we observe that the segmentation accuracy 

in UCLA dataset is generally higher than that in NIH dataset. We attribute this performance 

gap to the data disparity between the two datasets. The NIH dataset contains fewer 

training samples but shows heavier shadow artifacts, both of which could degrade the 

performance of DL models. Notably, our method shows better performance inside the 

shadow regions in NIH dataset (see the column of “ASD-shadow” in Table I), which 

justifies the effectiveness of our Shadow-AUG and Shadow-DROP mechanisms. We also 

list the result of our SCO-SSL method trained under semi-supervised setting (“SCO-SSL 
(semi-supervised)” in Table I). On UCLA dataset, our SCO-SSL is trained with only 20% 

of image annotations while achieves comparable accuracy (DSC=91.60%) to that of the best 

competing method (nnUNet, DSC=92.17%) trained with 100% image annotations. On NIH 

dataset, by adding 347 extra unlabeled images to the training set, our SCO-SSL further 

improves the segmentation DSC from 89.85% to 90.12% with a significant margin (p<0.05). 

These results demonstrate the effectiveness of the semi-supervised learning framework. By 

incorporating unlabeled data into limited labeled data, the proposed SCO-SSL can present 

similar accuracy as the fully-supervised counterparts, which largely relieves the labor of 

data annotations in prostate ultrasound segmentation. On the other hand, by adding extra 

unlabeled data to regularize the model training, the accuracy of our SCO-SSL method can 

get further improved, which suggests an effective way to facilitate the DL-based prostate 

ultrasound segmentation with lower cost other than enlarging the data annotations. Fig. 6 

and Fig. 7 visualize some results of this comparison.

3) Inter-dataset comparison: We then evaluate the model performance with the 

training and test data coming from different datasets. The test data exhibit significant 

domain shifts from the training data. The purpose of this experiment is to evaluate the 

generalizability of our method. Same as the intra-dataset comparison, we evaluate the 

inter-dataset performance of our method under both fully-supervised and semi-supervised 

learning settings. All the models are tuned using the training/validation sets from one dataset 

and then evaluated using the test set from the other dataset. Table II lists the results of this 

inter-dataset comparison. It can be seen that, when compared with the intra-dataset results 

in Table I, all the competing methods suffer a large performance drop in the inter-dataset 

comparison. This performance degradation is caused by the large distribution gap between 

the training and test data, which are acquired using different types of ultrasound probes. 

On the other hand, we can see that both DAF-Net [11] and our method consistently show 

superior performance in this inter-dataset comparison. The outperformance margins over 

other competing methods are significantly larger than that in the intra-dataset comparison, 

demonstrating the good generalization ability of these two methods. Notably, our method 

achieves significantly better performance than DAF-Net (p<0.05) in the comparison where 

the models are trained on the smaller NIH training set (180 TRUS images) and tested on the 

larger UCLA test set (697 TRUS images). It is more challenging than the other comparison, 

where the models are trained on the larger UCLA training set (895 TRUS images) and tested 

on the smaller NIH test set (315 TRUS images).
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C. Incorporation with semi-supervised frameworks

1) Benchmarking methods: To demonstrate the flexibility of our SCO-SSL method, 

we incorporate it into five representative semi-supervised learning frameworks and evaluate 

the performance using both UCLA and NIH datasets. The selected semi-supervised 

baselines are:

• Π-model and temporal ensembling model [36]: Two classical consistency 

learning methods for semi-supervised learning, where the trained network 

utilizes its own historic predictions to regularize the training on unlabeled data.

• Mean-teacher [37]: A popular teacher-student model for semi-supervised 

learning, where the historic average of the trained model is used to generate 

the pseudo label to supervise the unlabeled data.

• Uncertainty-aware mean-teacher (UA-MT) [38]: A variant of the mean-

teacher [37] model designed for semi-supervised 3D left atrium segmentation 

in MRI images, which exploits Monte Carlo dropout [39] layers to estimate the 

uncertainty map of the pseudo label and guide the network to learn from more 

reliable targets.

• Transformation-consistent mean-teacher (TC-MT) [41]: Another variant of 

the mean-teacher [37] model where the input of the student network and the 

teacher network are perturbed with different geometric transformations.

Since most of the existing semi-supervised segmentation methods can be seen as different 

variants of the five selected frameworks, the combination with these frameworks is sufficient 

to justify the flexibility of our SCO-SSL method. Considering different baselines may 

be implemented using different networks in their original literature, to eliminate the 

interference from network structures, we use a 3D version of U-Net [8] as the segmentation 

network for all the semi-supervised frameworks in this comparison.

2) Comparison results: Table III lists the comparison result. It can be seen that, by 

incorporating our Shadow-AUG and Shadow-DROP mechanisms, the five semi-supervised 

methods show better performance than their baselines on both datasets. Most of the 

improvement margins are statistically significant (p<0.05). This overall performance gain 

demonstrates the effectiveness and flexibility of our shadow-consistent learning method 

when deployed in the mainstream semi-supervised frameworks. Among the five evaluated 

baselines, we find that our method achieves relatively better performance when combined 

with the mean-teacher [37] and UA-MT [38] frameworks. Since the UA-MT framework 

involves extra computations on uncertainty estimation, we finally build our SCO-SSL 

method upon the mean-teacher framework to balance the accuracy and efficiency.

In Fig. 8, we visualize some results of the five evaluated semi-supervised learning 

frameworks when they are trained with/without our SCO-SSL method. It can be seen 

that, by incorporating our SCO-SSL, the semi-supervised learning methods achieve better 

performance in the shadow regions (pointed out by the orange arrows), where the corroded 

prostate boundaries can be merely inferred from the neighboring shadow-free boundaries.
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D. Ablation study

1) Effectiveness of Shadow-AUG and Shadow-DROP: We demonstrate the 

effectiveness of the two key components (i.e., Shadow-AUG and Shadow-DROP) of our 

SCO-SSL method through an ablation study on both the UCLA and NIH datasets. In 

this experiment, we adopt a 3D version of UNet [8] as the baseline model and evaluate 

its performance under a fully-supervised setting when combined with one or both of 

the two components. The experimental results are listed in Table IV. It can be seen 

that, by adding the Shadow-AUG and Shadow-DROP mechanisms to the baseline UNet 

model, the segmentation accuracy gradually get improved. This progressively increased 

accuracy suggests the effectiveness of the Shadow-AUG and Shadow-DROP mechanisms. 

Furthermore, the improvement margin caused by the Shadow-DROP is larger than that of 

the Shadow-AUG, indicating that applying the shadow masking in feature level (Shadow-

DROP) is more effective than that in image level (Shadow-AUG) to facilitate the model 

training.

2) Shadow-AUG using different shadow threshold τs: In our Shadow-AUG 

strategy, the threshold τs in Eq. (1) controls the area of the shadow regions extracted 

from the source image. The optimal value of τs may vary from UCLA dataset to NIH 

dataset due to the different image properties. Therefore, we conduct an experiment to 

justify the choice of the shadow threshold τs on the two datasets. In Table V, we list the 

results of a fully-supervised 3D UNet trained with our Shadow-AUG and Shadow-DROP 

mechanisms when successively using τs=20/255, 40/255, 60/255, and 80/255 for shadow 

thresholding. It can be seen that, although the model accuracy varies across different τs, 

most of the differences are nonsignificant (p>0.05), suggesting that the shadow-consistent 

learning method is insensitive to the change of the shadow threshold τs in a wide range. 

We finally set τs to the value of 60/255 and 40/255 on UCLA dataset and NIH dataset, 

respectively, given the relatively smaller standard deviations.

3) Shadow-AUG/-DROP using hard thresholding function: Our Shadow-AUG 

and Shadow-DROP mechanisms adopt a soft thresholding function in Eq. (1) to generate the 

shadow masks with continuous values between 0 and 1. We also try to use a simple hard 

thresholding function to generate binary shadow masks in the proposed method. In Table 

VI, we list the results of a fully-supervised 3D UNet trained with our Shadow-AUG and 

Shadow-DROP mechanisms when using hard/soft thresholding functions. It can be seen that 

the hard thresholding achieves slightly lower accuracy than the soft thresholding without 

statistical significance (p>0.05). However, when using the hard thresholding function, the 

simulated shadowed TRUS image exhibits abrupt pixel intensity change and looks less real 

as shown in Fig. 9. We thus chose to use the soft thresholding function in our method.

4) Shadow-DROP at different stages of segmentation network: In this 

experiment, we investigate the model performance when the Shadow-DROP layers are 

deployed at four different stages of the segmentation network, including 1) the encoder, 2) 

the bottle-neck, 3) the decoder, and 4) the whole network (excluding the last convolutional 

layer). We conduct the experiments on both the UCLA and NIH datasets. The segmentation 

network is a fully-supervised 3D UNet trained with our Shadow-AUG and Shadow-DROP 
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mechanisms. The experimental results are listed in the odd rows of Table VII (start with 

“Shadow-DROP”). It can be seen that the model achieves the best performance when 

the Shadow-DROP layers are deployed at the encoder of the UNet. When we move the 

Shadow-DROP layers from the bottom layers (encoder) to the top layers (bottle-neck and 

decoder), the model accuracy gradually decreases. We attribute this result to the fact that 

the extracted features are more vulnerable to the neighboring shadow artifacts at the early 

stage of UNet, due to the relatively small size of the receptive field. These corroded features 

are harmful to the subsequent inference of prostate boundaries. Since the Shadow-DROP 

layer drops the feature associated with low-intensity pixels (shadow-like pixels), most of the 

corroded features can be filtered out if we deploy the Shadow-DROP at the early stage. As 

a consequence, the subsequent layers will suffer less interference and thus produce more 

discriminative features for better prostate segmentation. Based on these observations, we 

choose to deploy the Shadow-DROP layers to the encoder of the UNet in our method.

We also compare our Shadow-DROP mechanism with the standard dropout mechanism [44]. 

Specifically, we replace all the Shadow-DROP layers in the above models with standard 

dropout layers and retrain them on the two datasets. The results of the standard dropout 

models are listed in the even rows of Table VII (start with “Standard dropout”). It can 

be seen that the standard dropout deployed at bottom layers (encoder) generally shows 

lower accuracy than that deployed at top layers (bottle-neck and decoder), which is opposite 

to the result of our Shadow-DROP. Since the low-level spatial feature extracted by the 

bottom layers contains more interference from the shadow artifacts in comparison with the 

high-level semantic feature extracted by the top layers, dropping out the low-level spatial 

features associated with low-intensity pixels can effectively suppress the interference caused 

by the shadow artifacts and thus facilitate the subsequent boundary inference. In contrast, 

the standard dropout layer drops the feature in a completely random way, either the shadow-

associated features or the useful boundary features could be dropped if it is deployed at 

the bottom layers of the segmentation network. As a consequence, less useful features 

will remain for subsequent inference, which finally leads to performance degradation. 

This phenomenon is more pronounced when the images contain heavier shadow artifacts 

(which means more corroded information contained in the low-level spatial features). The 

significant performance degradation on NIH dataset (see “Standard dropout at encoder” 

on NIH dataset, Table VII) is an evidence for this explanation since the NIH dataset suffers 

worse image quality than the UCLA dataset.

5) Semi-supervised training with different ratio of labeled data: The number of 

labeled training samples is a key factor affecting the performance of DL methods. In this 

experiment, we evaluate the performance of the competing methods in Sec. IV-B and our 

SCO-SSL method when they are successively trained with 10%, 20%, 40%, 60%, 80%, 

and 100% of the training samples. For our SCO-SSL method, we also take advantage of 

the rest part of the training samples as unlabeled samples through semi-supervised learning. 

Since the NIH dataset is in a relatively small size and partially labeled, we conduct this 

experiment using only the UCLA dataset. In Fig. 10, we plot the curves of testing DSC 

(y-axis) v.s. the ratio of labeled training samples (x-axis). It can be seen that, when we 

increase the labeled data ratio from 10% to 80%, the segmentation accuracy gradually gets 
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improved with statistically significant margins. This observation is in line with our common 

sense that more labeled samples can bring stronger and more accurate regularizations to the 

model, and thus lead to better performance. However, when we further increase the labeled 

data ratio from 80% to 100%, the model accuracy does not get significant improvement. 

This can be attributed to the relatively large size of UCLA dataset where 80% of labeled 

samples is sufficient to represent the data distribution in the training set. On the other 

hand, our SCO-SSL method generally outperforms other competing methods throughout 

different ratios of labeled training data. The improvement margin gets larger when fewer 

labeled samples are involved during training. This result demonstrates the effectiveness of 

semi-supervised learning for prostate ultrasound segmentation, where the unlabeled images 

provide extra regularizations to the optimization and thus facilitate the model performance.

6) Choice of consistency loss function: In the proposed SCO-SSL method, we use 

the BCE loss in Eq. (4) as the consistency loss to regularize the student network training 

on unlabeled data. This consistency loss can also be implemented with mean squared 

error (MSE) and Kullback-Leibler (KL) divergence, which are often used to minimize 

the disparity between two distributions. In Table VIII, we compare the performance of 

our SCO-SSL method when successively using MSE loss, KL loss, and BCE loss as the 

consistency loss for semi-supervised training. It shows that the three loss functions achieve 

similar performance on the two datasets. None of them is universally better than the other 

two loss functions.

V. DISCUSSION

1) Clinical significance:

Prostate segmentation is in many ways a critical step of prostate cancer-related clinical 

workflows because improper identification of the prostate in image will result in inaccuracy 

of downstream processes. The clinical significance of our method comes from the following 

three aspects. 1) It achieves better performance inside shadow regions. The recent works 

using deep learning technology have substantially pushed the limit of prostate ultrasound 

segmentation to a very high level of accuracy (around 90% of DSC as shown in our 

experimental results in Table I). For most of the test samples, these methods can achieve 

good results. The remaining challenge is mainly about the shadow regions. According to our 

experimental results shown in Table I, our method exhibits lower boundary error inside the 

shadow regions in comparison to other methods (see the columns of “ASD-shadow [mm]” 

in Tables I&II). This improvement is clinically significant since the clinicians often need to 

draw much more attention and efforts to the shadow regions to make sure they are well and 

correctly processed. 2) Our method generalizes better on unseen datasets. According to our 

experimental results of the inter-dataset evaluation, our method shows superior performance 

when the test data comes from a completely unseen dataset. The outperformance margin 

over other competing methods is also significant. This is of great clinical value since the data 

from different clinical sites often suffer from significant quality disparities or domain shifts. 

3) Our method requires fewer data annotations. Our method can work in the semi-supervised 

manner and achieve very competitive performance in comparison to the fully-supervised 
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state-of-the-art methods (approximately 0.6% drop in DSC) while using only 20% data 

annotations. This can significantly lower the cost of data annotation in clinical practice.

2) Inter-/intra-observer variability:

Inter- and intra-observer variabilities are acknowledged as an inherent challenge in 

prostate ultrasound segmentation, especially inside the shadow regions, where the prostate 

boundaries are highly subject to the physicians’ experience and judgment. In this study, 

our goal is to develop a DL model that can approximate a specific expert physician who 

defined the ground-truth segmentations. To this end, any performance improvement of 

the DL model would be meaningful, since it can finally contribute to the efficiency and 

reproducibility of prostate segmentation. On the other hand, although our improvement over 

the competing methods is relatively small regarding the global performance, our method 

performed significantly better inside the shadow regions and on the unseen datasets, both of 

which are meaningful to the model deployment in clinical practice.

3) Accurate estimation of shadow regions:

In the proposed Shadow-AUG and Shadow-DROP mechanisms, we designed a thresholding 

function in Eq. (1) to extract the shadow masks from the ultrasound images. A number 

of non-shadow regions associated with low intensities (e.g., the region out of field-of-view 

and the bladder) could be included in these “over-segmented” shadow masks. However, our 

main purpose is to filter out the irrelevant regions that hardly contribute to the judgment 

of the prostate boundaries. Using these “over-segmented” shadow masks will not affect our 

target since the non-shadow regions associated with low intensities hardly contain useful 

information for prostate segmentation. On the other hand, it is certainly interesting if we 

can incorporate some advanced DL-based methods (such as [31]-[33]) into our framework to 

accurately estimate the shadow regions. We would like to set it as one of our future research 

aims.

4) Potential of shadow-consistent weakly-/self-supervised learning:

The Shadow-AUG and Shadow-DROP mechanisms manipulate input images and 

intermediate feature maps, respectively, without requiring the ground-truth segmentations. 

Hence it is possible to incorporate the proposed shadow-consistent learning method 

into other annotation-efficient DL paradigms such as weakly-supervised [49]-[51] and 

self-supervised learning [52]-[54]. For example, we can train a weakly-supervised UNet 

equipped with our Shadow-AUG and Shadow-DROP mechanisms by replacing the Dice loss 

with the bounding box tightness constraints [49], which do not require pixel-wise annotation 

and would thus further lower the cost of clinical data annotation for prostate segmentation.

5) Generalization to other types of ultrasound images:

In this study, the Shadow-AUG and Shadow-DROP mechanisms are designed to deal with 

the shadow artifacts encountered in the TRUS images. Since the shadow artifacts are not 

only seen in the TRUS images but also present in other ultrasound images, such as the 

breast ultrasound image [55], both Shadow-AUG and Shadow-DROP could be applied to the 
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analysis tasks towards other types of ultrasound images. Investigating their performance on 

other types of ultrasound images may be explored in our future work.

VI. Conclusion

In this study, we propose a shadow-consistent semi-supervised learning (SCO-SSL) method 

to address the challenging problem of prostate ultrasound segmentation with large amount 

of unlabeled data on top of limited annotations. Two novel mechanisms, i.e., the Shadow-

AUG and Shadow-DROP, are highlighted in the proposed SCO-SSL method to enhance 

the segmentation performance against shadow artifacts. We conduct extensive experiments 

on two large clinical datasets. The experimental results show that, in fully-supervised 

setting, our SCO-SSL outperforms the state-of-the-art methods on most of the metrics 

by statistically significant margins, demonstrating the superior performance of our design 

towards the challenging task of prostate ultrasound segmentation. In semi-supervised setting, 

even with 20% labeled training data, our SCO-SSL still achieves competitive results 

(approximately 0.6% lower DSC) in comparison to that of the state-of-the-art methods 

trained by fully annotated dataset, suggesting great clinical value in relieving the labor of 

data annotation for medical image analysis.
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Fig. 1: 
Axial slices extracted from four different 3D TRUS images illustrating the low image quality 

caused by the shadow artifacts (pointed out by the orange arrows). The orange dashed lines 

indicate the ground-truth prostate boundary.
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Fig. 2: 
Scheme of the proposed shadow-consistent semi-supervised learning (SCO-SSL) method for 

prostate segmentation in TRUS images.
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Fig. 3: 
Illustration of shadow augmentation (Shadow-AUG) in 2D as an example. The actual 

Shadow-AUG is conducted in 3D on TRUS volumes.
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Fig. 4: 
Example shadow images augmented using different values of shadow threshold τs

Xu et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5: 
Scheme of the shadow dropout (Shadow-DROP) layer. 2D feature map is used for 

illustration purpose only. The actual Shadow-DROP is conducted in 3D.

Xu et al. Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6: 
Visualization of 3D distance error of fully-supervised prostate segmentation results of 

different methods. Each row illustrates one case.
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Fig. 7: 
Fully-supervised prostate segmentation results superimposed on 2D TRUS slices. Each row 

illustrates one case. Green dashed line and red solid line indicate the ground-truth boundary 

and predicted boundary, respectively.
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Fig. 8: 
Segmentation results of the semi-supervised learning methods trained with/without our 

SCO-SSL. Green dashed lines indicate the ground-truth segmentations. Red/blue solid lines 

indicate the segmentations by the semi-supervised learning methods equipped with/without 

our SCO-SSL, respectively. Orange arrows point to the shadow regions where SCO-SSL 

helps improve the segmentation.
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Fig. 9: 
Contrast view of three Shadow-AUG images using soft thresholding function (top row) and 

hard thresholding function (bottom row).
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Fig. 10: 
DSC curves of different prostate segmentation methods trained with different numbers of 

labeled samples. For brevity, we only show the curves of the best five methods.
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TABLE V:

Results of a fully-supervised 3D UNet trained with Shadow-AUG and Shadow-DROP mechanisms using 

different shadow threshold τs. Bold values indicate the best result. Underlined values suggest results without 

statistical significance compared with the best result (p>0.05).

Models
UCLA dataset NIH dataset

DSC[%] ASD[mm] DSC[%] ASD[mm]

τs = 20/255 92.21(2.45) 0.94(0.32) 89.68(3.74) 1.29(0.65)

τs = 40/255 92.17(2.34) 0.94(0.32) 89.85(3.30) 1.26(0.58)

τs = 60/255 92.25(2.19) 0.93(0.29) 89.81(3.86) 1.27(0.65)

τs = 80/255 92.25(2.34) 0.93(0.31) 89.84(3.90) 1.27(0.60)

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 37

TABLE VI:

Results of a fully-supervised 3D UNet trained with Shadow-AUG and Shadow-DROP mechanisms using 

hard/soft shadow thresholding functions. Bold values indicate the best result. Underlined values suggest results 

without statistical significance compared with the bottom row (p>0.05).

Models
UCLA dataset NIH dataset

DSC[%] ASD[mm] DSC[%] ASD[mm]

Hard threshold 92.24(2.19) 0.93(0.30) 89.82(3.57) 1.28(0.63)

Soft threshold 92.25(2.19) 0.93(0.29) 89.85(3.30) 1.26(0.58)
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TABLE VIII:

Results of our SCO-SSL method when using mean squared error (MSE) loss, Kullback-Leibler (KL) 

divergence loss, and binary cross entropy (BCE) loss as the consistency loss for semi-supervised learning.

Losses
UCLA dataset NIH dataset

DSC[%] ASD[mm] DSC[%] ASD[mm]

BCE 91.60(2.37) 1.02(0.34) 90.12(3.61) 1.23(0.63)

KL 91.73(2.35) 1.00(0.34) 90.00(3.53) 1.25(0.62)

MSE 91.76(2.35) 1.00(0.34) 90.04(3.45) 1.24(0.61)
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