Skip to main content
. Author manuscript; available in PMC: 2023 Jun 1.
Published in final edited form as: IEEE Trans Med Imaging. 2022 Jun 1;41(6):1331–1345. doi: 10.1109/TMI.2021.3139999

TABLE III:

Comparison of different semi-supervised learning frameworks trained with/without our SCO-SSL method for prostate ultrasound segmentation. Bold values indicate the best performance. Our SCO-SSL method can significantly improve the performance of most of the semi-supervised learning frameworks, except those underlined entries (p>0.05).

Methods UCLA dataset
labeled/unlabeled = 194/701
NIH dataset
labeled/unlabeled = 180/347
DSC
[%]
ASD
[mm]
ASD-shadow
[mm]
HD
[mm]
DSC
[%]
ASD
[mm]
ASD-shadow
[mm]
HD
[mm]
Π-model (2017) [36] 91.39 (2.54) 1.04 (0.36) 1.21 (0.59) 6.28 (2.34) 89.27 (5.18) 1.35 (0.79) 1.96 (1.44) 7.33 (3.86)
+ SCO-SSL 91.47 (2.54) 1.04 (0.34) 1.21 (0.52) 6.32(2.11) 89.53 (5.94) 1.35(1.39) 1.96(1.96) 7.40(3.98)
Temporal ensembling (2017) [36] 91.11(2.70) 1.09(0.38) 1.29(0.64) 6.95(2.77) 88.72(4.28) 1.44(0.78) 2.15 (1.70) 8.14(4.03)
+ SCO-SSL 91.61 (2.37) 1.02 (0.34) 1.23 (0.55) 6.30 (2.28) 89.63 (5.49) 1.32 (1.03) 1.96 (2.01) 6.94 (3.58)
Mean-teacher (2017) [37] 91.36(2.56) 1.05(0.36) 1.26(0.56) 6.48(2.34) 89.55(4.19) 1.30(0.66) 1.87(1.23) 7.12(3.32)
+ SCO-SSL 91.60 (2.37) 1.02 (0.34) 1.22 (0.52) 6.37 (2.36) 90.12 (3.61) 1.23 (0.63) 1.80 (1.18) 6.65 (2.89)
UA-MT (2019) [38] 91.29(2.68) 1.06(0.37) 1.27(0.57) 6.64(2.51) 89.54(3.75) 1.31(0.65) 1.88(1.23) 7.04(3.20)
+ SCO-SSL 91.80 (2.42) 0.99 (0.32) 1.17 (0.51) 6.12 (2.08) 90.07 (3.74) 1.23 (0.61) 1.78 (1.14) 6.61 (2.87)
TC-MT (2020) [41] 91.13(2.74) 1.08(0.39) 1.31(0.58) 6.91(2.75) 89.21(4.88) 1.36(0.74) 1.96(1.40) 7.69(3.75)
+ SCO-SSL 91.48 (2.41) 1.04 (0.35) 1.25 (0.56) 6.44 (2.45) 89.94 (3.53) 1.25 (0.62) 1.85 (1.25) 6.92 (2.96)