Skip to main content
. Author manuscript; available in PMC: 2023 Jun 1.
Published in final edited form as: IEEE Trans Med Imaging. 2022 Jun 1;41(6):1331–1345. doi: 10.1109/TMI.2021.3139999

TABLE VIII:

Results of our SCO-SSL method when using mean squared error (MSE) loss, Kullback-Leibler (KL) divergence loss, and binary cross entropy (BCE) loss as the consistency loss for semi-supervised learning.

Losses UCLA dataset NIH dataset
DSC[%] ASD[mm] DSC[%] ASD[mm]
BCE 91.60(2.37) 1.02(0.34) 90.12 (3.61) 1.23 (0.63)
KL 91.73(2.35) 1.00(0.34) 90.00(3.53) 1.25(0.62)
MSE 91.76 (2.35) 1.00 (0.34) 90.04(3.45) 1.24(0.61)