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ABSTRACT: Ultra-high performance liquid chromatography coupled to ion mobility
separation and high-resolution mass spectrometry instruments have proven very valuable
for screening of emerging contaminants in the aquatic environment. However, when
applying suspect or nontarget approaches (i.e., when no reference standards are available),
there is no information on retention time (RT) and collision cross-section (CCS) values
to facilitate identification. In silico prediction tools of RT and CCS can therefore be of
great utility to decrease the number of candidates to investigate. In this work, Multiple
Adaptive Regression Splines (MARS) were evaluated for the prediction of both RT and
CCS. MARS prediction models were developed and validated using a database of 477
protonated molecules, 169 deprotonated molecules, and 249 sodium adducts. Multivariate and univariate models were evaluated
showing a better fit for univariate models to the experimental data. The RT model (R2 = 0.855) showed a deviation between
predicted and experimental data of ±2.32 min (95% confidence intervals). The deviation observed for CCS data of protonated
molecules using the CCSH model (R2 = 0.966) was ±4.05% with 95% confidence intervals. The CCSH model was also tested for the
prediction of deprotonated molecules, resulting in deviations below ±5.86% for the 95% of the cases. Finally, a third model was
developed for sodium adducts (CCSNa, R2 = 0.954) with deviation below ±5.25% for 95% of the cases. The developed models have
been incorporated in an open-access and user-friendly online platform which represents a great advantage for third-party research
laboratories for predicting both RT and CCS data.

1. INTRODUCTION
In the last decade, considerable effort has been devoted to
enhance the performance of high-resolution mass spectrometry
(HRMS) suspect screening (SS) and nontarget screening
(NTS) strategies.1−3 The instrumental improvements of
HRMS instruments have required the development of more
sophisticated algorithms to be able to handle the large amount of
data generated.3,4 Therefore, the development of open-access
scripts for data processing and in silico prediction tools
represents a step-forward into the applicability of SS and NTS
in wide-scope campaigns by facilitating the identification
process.5−7 Furthermore, the establishment of community-
adopted levels of confidence for the identification of compounds
using chromatography coupled to HRMS has been of para-
mount importance for the comparison of data across studies.8

Recently, ion mobility separation (IMS) coupled to HRMS
instruments (IMS-HRMS) has proven promising for SS and
NTS strategies.9 It permits, in theory, to resolve co-eluting
compounds with the same nominal or exact mass that could not
be previously separated with solely the chromatographic
method, such as isobaric or isomeric compounds.9−11Moreover,
it allows the removal of mass spectrometric peaks that do not
correspond to the feature of interest, which is particularly
beneficial in data independent acquisition (DIA) experi-

ments.9,10,12 As a consequence, there is a reduction in the
necessity of data-dependent analysis because the full-spectrum
HRMS acquisition can be filtered on both RT and ion mobility
data.12,13

Collision cross section (CCS) values, derived from drift time
(DT) measured by IMS, are known to be system- and matrix-
independent and, therefore, experimental CCS data can be
included in home-made or online databases with an expected
deviation below 2% for most cases.9,14,15 However, this is not the
case for absolute chromatographic retention times (RT) which
cannot easily be compared between instrumental configurations
even when RT indexing approaches are applied.16−18 Thus,
reference standards are practically required for building a home-
made database. However, SS and NTS strategies for the
identification of emerging contaminants are commonly applied
prior to the acquisition of the corresponding reference standards
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1,3 and, therefore, lacking any information on experimental RT
and CCS. In this sense, in silico prediction tools of either
chromatographic retention data or ion mobility data are of great
utility to decrease the number of candidates to investigate and,
therefore, increase the chance of correct identification of
features.6

Several studies have predicted RT,6,19−28 CCS values,7,29−36

or both.13 Predictors of RT have been developed mainly to
model RT data in reverse-phase liquid chromatography (RPLC)
and hydrophilic interaction liquid chromatography (HILIC)
with prediction accuracy between approximately ±1 to ±3 min
(up to 22% of the chromatographic gradient length). However,
there is no clear agreement in the literature on how to express
the prediction accuracy of the models or which should be the
most appropriate statistical descriptor representing the
prediction power of the system developed.6 Although CCS
could be theoretically modeled from the three-dimensional and
chemical structure using supercomputing systems,34,37−39 data-
driven predictive models have also been developed showing
predictive accuracies in the range of 3−6% for Traveling Wave
Ion Mobility instruments (TWIMS)29,31,32,35 and Drift Tube
Ion Mobility instruments (DTIMS).30,31,33 Similar prediction
accuracy was obtained by Mollerup et al. in their study for the
simultaneous prediction of RT andCCS.13 However, these data-
driven models were fed with data generated using different
instruments depending on the output parameter. For the RT
prediction, they used data gathered from an ultra-high
performance liquid chromatography (UHPLC)-HRMS instru-
ment, while for CCS prediction, they modeled CCS data
generated with a UHPLC-IMS-HRMS instrument. Because RT
variations could probably be observed across instruments, the
utility of predicted RT in the identification of UHPLC-IMS-
HRMS features is limited.
In general, the reported models were based on univariate or

multivariate regressions,24,35 artificial neural networks
(ANNs),13,22,25,29,31 quantitative structure-retention relation-
ships (QSRR),6,21,40 supported vector regression (SVR),30,33,36

or statistical analysis.32,35 Although Multivariate Adaptive
Regression Splines (MARS) have been previously explored for
RT prediction, there has been no prior exploration of the
simultaneous prediction of RT and CCS.41,42 MARS is a
multivariate nonparametric regression procedure that was first
proposed by Friedman.43 One of the biggest advantages of
MARS compared to the “black box” methods of ANNs is that
they yield a straightforward model with simple quadratic
relationship and, therefore, they are easy to interpret, with the
interactions between variables clearly indicated.41 Additionally,
the developed MARS models for predicting analytically relevant
parameters requires limited informatics resources and knowl-
edge of prediction software tools and can consequently easily be
performed. In this sense, MARS has previously been applied in
the chemical sciences for quantitative structure-retention
relationships.41,44 However, the application of MARS for the
combined prediction of chromatographic and ion mobility data
of emerging contaminants has not previously been evaluated and
reported in the literature.
In this work, a prediction model for both RT and CCS has

been developed using MARS for the identification of candidates
in SS and NTS strategies using UHPLC-IMS-HRMS. To
facilitate other laboratories implementing this predictive tool in
their workflows, a free online-available application has been
released. This is, to best of the authors knowledge, the first
application of MARS for the prediction of RT and CCS data.

Additionally, it is the first parallel RT and CCS predictive model
for the same instrument facilitating the identification process of
emerging contaminants in SS and NTS strategies.

2. MATERIALS AND METHODS
2.1. Chemicals and Materials. A set of 556 reference

standards encompassing illicit drugs, hormones, mycotoxins,
new psychoactive substances, pesticides, and pharmaceuticals
was injected for the development of a CCS and RT
library.9Table S1 of the Supporting Information shows the
complete set of compounds used in the study with their SMILES
(simplified molecular-input line-entry system) representation
and measured RT and CCS data. This database is also available
on the Zenodo online repository.45 Within this data set, 477
protonated adducts ([M +H]+), 169 deprotonated adducts ([M
−H]−), and 249 sodium adducts ([M +Na]+) were used for the
development and validation of the CCS predictive models.
2.2. Instrumentation. Retention time and CCS data were

obtained with a Waters Acquity I-Class UPLC system (Waters,
Milford, MA, USA) coupled to a VION IMS-QTOF mass
spectrometer (Waters, Milford, MA, USA), using an electro-
spray ionization (ESI) interface operating in positive and
negative ionizationmode and following themethod presented in
Celma et al.9

The chromatographic column used was a CORTECS C18 2.1
× 100 mm, 2.7 μm fused core column (Waters) at a flow rate of
300 μL min−1. Gradient elution was performed using H2O (A)
and MeOH (B) as mobile phases, both with 0.01% formic acid.
The percentage of B was initially set to 10%, and it was
immediately linearly increased to 90% over 14 min, followed by
a 2 min isocratic period, and then returned to initial conditions
(at 16.1 min) with a 2 min equilibration of the column. The total
run time was 18 min. The injection volume was 5 μL.
A capillary voltage of 0.8 kV and cone voltage of 40 V were

used. The desolvation temperature was set to 550 °C, and the
source temperature to 120 °C. Nitrogen was used as drying and
nebulizing gas. The cone gas flow was 250 L h−1 and desolvation
gas flow of 1000 L h−1. The column temperature was set to 40 °C
and the sample temperature to 10 °C. MS data were acquired
using the VION inHDMSemode, over the rangem/z 50−1000,
with N2 as the drift gas, an IMS wave velocity of 250 m s−1, and
wave height ramp of 20−50 V. Leucine enkephalin (m/z
556.27658 andm/ z 554.26202) was used for mass correction in
positive and negative ionization modes, respectively. Two
independent scans with different collision energies were
acquired during the run: a collision energy of 6 eV for low
energy (LE) and a ramp of 28−56 eV for high energy (HE). A
scan time of 0.3 s was set in both LE and HE functions. Nitrogen
(≥99.999%) was used as collision-induced dissociation (CID)
gas. All data were examined using an in-house built accurate
mass screening workflow within the UNIFI software (version
1.9.4) from Waters Corporation.
2.3. Retention Time and Collision Cross-Section

Modeling. 2.3.1. Molecular Descriptors. A total of 1666
molecular descriptors were downloaded from Dragon v5.4
integrated within OChem website (Online Chemical Database
with modeling environment, www.ochem.eu).46 The complete
set of descriptors for the molecules used in the study is available
in Table S1.
2.3.2. Prediction Model. MARS analysis was applied to

predict both RT and CCS for protonated adducts ([M +H]+) in
a single multivariate model. Additionally, univariate models for
individual RT and CCS for protonated adducts ([M + H]+)
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(CCSH) and sodium adducts ([M + Na]+) (CCSNa) were also
performed. Because of the expected low correlation between RT
and CCS (r = 0.354), a multivariate model was not considered
essential. As a further justification for this decision, the cross-
validated R2 values for the multivariate model were 0.798 for RT
and 0.964 for CCSH. This suggests instability on the data that is
varying the accuracy of the model fits (particularly for RT).
Therefore, the development of a multivariate MARS model able
to predict simultaneously RT and CCS simultaneously was
discarded.
MARS was able to select the most suitable molecular

descriptors for each model (Table 1), and predictive interval

bands were constructed for the univariate cases assuming a linear
model variance structure. To meet this assumption, the square
root of RT was modeled. The selection of molecular descriptors
was automatically performed by theMARS algorithm during the
model development, so no chemical bias from the analysts
would influence the method.
The CCSH prediction model was also explored for the

prediction of CCS for deprotonated adducts ([M − H]−) and
sodium adducts ([M + Na]+). CCSH accurately modeled [M −
H]− data but could not predict data at acceptable levels of
accuracy for [M + Na]+. Therefore, an exclusive univariate

model was considered for the prediction of CCS data for sodium
adducts (CCSNa).
All analyses were complete using R,47 and MARS analysis was

completed using the earth package with the variance structure
defined using the linear model (lm) option.48

3. RESULTS AND DISCUSSION
3.1. Development and Validation of Prediction

Models. 3.1.1. Individual RT and CCS Model Development.
There is no assumption of an underlying variance structure with
the multivariate MARS analysis, and there was no facility to
define one within the earth package at the time of
implementation. However, for the univariate analyses, a linear
model variance structure was defined. This meant the standard
deviation was estimated as a function of the predicted response
and, hence, allowed for the construction of prediction intervals.
It is essential to use prediction intervals, rather than

confidence intervals, in cases where the goal is to predict future
values. A prediction interval is wider than a confidence interval
and, at the 95% level, will provide bounds within which 95% of
predicted values should fall.
All analyses considered the whole set of 1666 molecular

descriptors as possible inputs to be used in the models. The
assumptions of normality, linearity, and homoscedasticity were
assessed for the univariate models which held those
assumptions. The univariate MARS fit to RT violated the
assumptions of linearity and homoscedasticity, so a square root
transform was applied. This then reasonably met assumptions.
In summary, three different univariate models were developed

for the prediction of RT (eq 1), CCS data for (de)protonated
molecules (CCSH) (eq 2), and CCS data for sodium adducts
(CCSNa) (eq 3). As an example and to assist with interpretation,
in eq 1, the term 0.099·max(0,(nDB-3)) is equal to 0 for nDB ≤
3 and equal to 0.099·(nDB-3) for nDB > 3.

RT model (eq 1):

RT 2.343 0.171 max(0, (4.22 ALOGPS logP) )

0.099 max(0, (nDB 3)) 0.086

max(0, (3 nDB)) 0.451

max(0, (N. 068 1) ) 0.725

max(0, (1 N. 068) ) 0.632

max(0, (1 nRNHR) ) 2.177

max(0, (BEHm4 3.582) ) 0.533

max(0, (3.582 BEHm4) ) 1.565

max(0, (Mor16m 0.54) ) 0.111

max(0, (ALOGP 2.719) ) 0.234

max(0, (2.719 ALOGP) ) 0.114

max(0, (O. 059 1) ) 0.138

max(0, (1 O. 059)) 3.185

max(0, (GATS1m 1.422) ) 0.132 max(0,

(STN 6.985)

= · _

+ · ·
·

+ ·
+ ·

·
·
·

+ ·
·

+ ·
·

·
·

(1)

Table 1. Descriptors Needed for Each of the Univariate
MARS Models for RT and CCSH and CCSNa

a,b

molecular descriptors

RT CCSH CCSNa
ALOGP AMR AMR
ALOGPS_LogP L1m Har2
BEHm4 LPRS MAXDN
GATS1m MDDD Mor17m
Mor16m nRCHO nR09
N-068 PCR piID
nDB Whetp QXXv
nRNHR QZZm
O-059 RDF065v
STN ZM1v

aNote that there are no similarities between the three univariate
models. bALOGP: Ghose-Crippen octanol−water partition coefficient
(logP) (calculation based on Viswanadhan et al.;49ALOGPS_LogP:
Ghose-Crippen octanol−water partition coefficient (logP) (calcu-
lation based on Tetko and Tanchuk;50AMR: Ghose-Crippen molar
refractivity; BEHm4:highest eigenvalue n. 4 of Burden matrix/
weighted by atomic masses; GATS1m: Geary autocorrelation − lag
1/weighted by atomic masses; Har2: square reciprocal distance sum
index; L1m: 1st component size directional WHIM index/weighted
by atomic masses; LPRS: log of product of row sums; MAXDN:
maximal electrotopological negative variation; MDDD: mean distance
degree deviation; Mor16m: 3D-MoRSE − signal 16/weighted by
atomic masses; Mor17m: 3D-MoRSE − signal 17/weighted by atomic
masses; N-068: Al3-N atom-centered fragment; nDB: number of
double bonds; nR09: number of 9-membered rings; nRCHO: number
of (aliphatic) aldehydes; nRNHR: number of secondary (aliphatic)
amines; O-059: Al-O-Al atom-centered fragment; PCR: ratio of
multiple path count over path count; piID: conventional bond-order
ID number; QXXv: Qxx COMMA2 value/weighted by atomic van der
Waals volumes; QZZm: Qzz COMMA2 value/weighted by atomic
masses; RDF065v: radial distribution function − 6.5/weighted by
atomic van der Waals volumes; STN: spanning tree number (log);
Whetp: Wiener-type index from polarizability weighted distance
matrix; ZM1v: first Zagreb index by valence vertex degrees.51
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CCSH model (eq 2):

CCS 203.344 0.482 max(0, (AMR 94.347))

0.524 max(0, (94.347 AMR))

0.002 max(0, (Whetp 1940.49))

0.836 max(0, (9.95 L1m)) 14.618

max(0, (PCR 1.109)) 36.31

max(0, nRCHO ) 0.361

max(0, (LPRS 171.967)) 0.157

max(0, (171.967 LPRS)) 0.74

max(0, (28.622 MDDD))

H = + ·
·
·
·

· +
· + ·

·
· (2)

CCSNa model (eq 3):

CCS 197.356 0.252 max(0, (102.616 AMR))

0.575 max(0, (Har2 117.656))

0.793 max(0, (117.656 Har2))

5.873 max(0, (nR09 1)) 5.475

max(0, (1 nR09)) 0.046

max(0, (158.403 QXXv)) 0.074

max(0, (527.605 ZM1V)) 0.038

max(0, (470.721 QZZm)) 8.192

max(0, (Mor17m 0.302)) 12.649

max(0, ( 0.302 Mor17m)) 0.116

max(0, (171.057 piID)) 1.392

max(0, (MAXDN 2.491)) 4.682

max(0, (2.491 MAXDN)) 0.442

max(0, (RDF065v 6.402))

Na = ·
+ ·

·
·

· +
· +
·
· +
· +
· +
· +
· +
·
· (3)

The univariate models obtained a cross-validated R2 = 0.855
for the RT model, R2 = 0.966 for the CCSH model, and R2 =
0.954 for the CCSNa model. Table 1 reveals that the univariate
models (RT and CCSH) do not share a single descriptor, lending
weight toward the argument that univariate models provide
better fits to the data than the previously explored multivariate
model.
3.1.2. Cross-Validation of the RT, CCSH, and CCSNa Models.

MARSmodels were fitted using a threefold cross-validation with
30 iterations. This procedure splits the data into three sections,
fits the model to two of those sections (training data), and then
tests the accuracy of the resulting model on the final section (test
data). This procedure is then repeated 30 times, each time
randomly dividing the data into three sections. The measure of
accuracy used to assess goodness of fit is the cross-validated R2,
which looks at the average R2 value obtained across all 30
iterations when the model was fit to the test data. This value is
usually lower than the R2 for the best model fit but dramatic
changes suggest volatility in the data or overfitting in the
modeling procedure.
In order to perform an additional model evaluation and to

obtain an overview of the model performance, RT and CCS data

were predicted for the molecules used for model development,
but flagged as “unknown” substances. By comparing predicted
and experimental RT data (Figure 1A, top), it was observed that
the average deviation obtained using the RT model (eq 1) was
±0.72 min, as shown in Table 2. However, 95% of the
predictions fell within ±2.32 min. Additionally, it could also be
observed that deviations in predicted data distributed normally
around 0% deviation (marked as a red line in Figure 1A, bottom)
The prediction accuracy obtained is an improvement for the
95% intervals in previously developed models (±4.0 min (22%)
using linear correlation logKow predictor,24 ±2.80 min (15%)
using ANNs25 over a total chromatographic run of 18 min) and
in line with the model developed by means of ANN byMollerup
et al. (over ±2 min (13%) deviation in a total run of 15 min).13
The developed model herein presented also improves the
prediction accuracy compared to Barron and McEneff where
they obtained an average deviation of ±1.02 min22 (3−13% for
the gradient length ranging 8−35 min). As another way of
presenting prediction accuracy, Figure 2 plots the predicted vs
experimental data with the 95% prediction intervals (blue area)
for the univariate MARS analysis of the RT . Approximately,
only 8% of predicted RT were more than 2 min away from
experimental ones. In this figure, we can also observe the 95%
interval boundaries of the predicted values. This should be
estimated depending on the RT because the prediction intervals
are not constant across the whole chromatogram.
Prediction accuracy for CCS data was also studied. The

deviation observed for CCS data of [M + H]+ using CCSH
model averaged ±1.23%, being ±4.05% within 95% of the cases
(Table 2). Figure 1B, bottom shows that deviations randomly
distributed around 0% (marked as a red line) value without
biasing predicted data. When compared with previous models,
the CCSHmodel outstands the performance of developed ANNs
prediction tools for CCS data of protonated molecules, which
showed an accuracy of ±5−6% for 95% of the cases13,29 or
roughly ±2.5% deviation for 50% of the cases.31 This vast
improvement in the accuracy could be explained by the larger
database used for the model development as well as the better
fitting of experimental data with MARS than ANNs. In addition,
the present method also improves other machine learning
models, such as CCSbase, which yield an accuracy slightly over
±5% deviation (95% confidence interval).32 The recently
developed model AllCCS used more than 5000 experimental
CCS values to train a support vector regression-based prediction
model, which resulted in an accuracy of ±4% for 84% of the
cases.36 The obtained accuracy is in line with that obtained in the
present study, although the CCSH model is slightly more
accurate for predictions because 95% of the cases have a
deviation of ±4.05%.
Figure 3A shows the 95% prediction intervals (blue area) for

the univariate MARS analysis on the CCSH model. The blue
lines are placed at predicted values ±2 Å2 and the purple are ±5
Å2. It is clear that the model still predicts well at higher values
because all data points are below the purple lines. However,
because there are less data at higher CCS values, the prediction
intervals are much larger to accommodate the uncertainty than
they are in the low CCS values range where there are more data,
resulting in a better fit.
Additionally, the application of the CCSH model for the

prediction of CCS values for deprotonatedmolecules was tested,
yielding highly accurate predictions (Figure 1C, top). By
predicting mobility data for a set of 169 molecules ionized in
negative mode, it was observed that the differences between the
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observed and predicted CCS for the [M − H]− fell, 95% of the
time, within −13.4 and 9.3 Å2, with a slight tendency to under-
predict CCS values (Figure 1C, bottom). In relative terms,
average deviation for [M − H]− data was ±2.79% (±5.86% for
the 95% of the cases, Table 2). Although these deviations seem
larger than the ones observed for [M + H]+ data, this increase in
the deviations observed for [M−H]− was expected because the
model was developed with [M + H]+ data. However, it was
assumed that the predictions of the CCSHmodel developed with
[M + H]+ data could also be extrapolated to the prediction of
CCS data for [M − H]−, as no remarkable improvement was
expected if a model was exclusively developed for deprotonated
molecules.
Ideally, a unique model for the prediction of CCS for

(de)protonated molecules and sodium adducts was intended.

Therefore, the CCSH model was also tested against [M + Na]+
data. However, high deviations were observed (±4.77% average,
±10.86% for the 95% of the cases, Table 2), which could be
expected because of the likely higher impact of the volume of the
sodium atom in the overall CCS of themolecule. In light of these
data, [M + Na]+ data required a separate model for CCS
prediction that was different to the one initially developed. The

procedure for the CCSNa model development was equivalent to
the process described above (section 2.3) but using as input a
data set of 249 CCS values for [M + Na]+ ions. The accuracy of
the model was evaluated by also comparing predicted and
experimental data (Table 2). Prediction deviations were±2.08%
on average (±5.25% for the 95% of the cases), showing a great
improvement compared with predicted data using the CCSH
model. Figure 3B depicts the predicted vs experimental CCS
values comparing the 95% prediction intervals (blue colored
area) for the univariate MARS analysis on the CCSNa model.
The fact that different predicted values can be obtained for both
protonated molecules and sodium adducts is of great help for
experimental observations of both species for a suspect
substance. Hence, increased confidence on the tentative

Figure 1. Top: Comparison of experimental and predicted RT data using the RT model (A), CCS for protonated molecules using CCSH model (B),
CCS for deprotonated molecules using the CCSH model (C), and CCS for sodium adducts using the CCSNa model (D). (Red line indicates region
where Experimental CCS = Predicted CCS) Bottom:Histogram distribution of deviations between experimental and predicted data for RT data using
the RTmodel (A), CCS for protonated molecules using the CCSH model (B), CCS for deprotonated molecules using the CCSH model (C), and CCS
for sodium adducts using the CCSNa model (D). (Red vertical lines indicate 0% deviation).

Table 2. Deviations at Percentiles 50 (Average), 95, and 99
for the Predicted RT and CCS Data during Model Validation

model
average
deviation

deviation at
95%

deviation at
99%

RT ±0.72 min ±2.32 min ±3.82 min
CCSH [M + H]+ ±1.23% ±4.05% ±6.33%

[M − H]− ±2.79% ±5.86% ±8.39%
[M + Na]+ ±4.77% ±10.86% ±12.80%

CCSNa [M + Na]+ ±2.08% ±5.25% ±6.86%

Figure 2. 95% prediction intervals (blue area) for the univariate MARS
analysis on the square root of RT. Blue lines are placed at the predicted
values ±2 min. Approximately, only 8% of observed retention times
were more than 2 min away from their predicted value.
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identification can be garnered by matching both of the CCS
values observed with the predicted data.
The CCSNa model herein presented also improves the

prediction accuracy of the previously developed model by the
authors.29 In that work, we evaluated the performance of the
ANN predictive model for sodium adducts, finding that
deviations between predicted and experimental data were
below 8.7% for 95% of the cases. However, the development
of an exclusive model for the sodium adducts by MARS
improves the prediction accuracy.
3.1.3. Blind Testing of the Models. Several reference

standards were purchased from different research projects
during the development of the predictors based on MARS.
However, these newly available compounds were not included
in the training and validation data sets used but were used to
verify the utility of our prediction models for chemicals not
previously considered in the training steps. Thus, model
applicability can be extrapolated for upcoming RT and CCS
predictions of real suspect compounds. Therefore, we calculated
deviations between predicted and experimental data for this data
set and compared the observed deviations with previously
calculated accuracies at different percentiles (shown in Table 2).
Table 3 depicts the experimental and predicted values of RT and
CCS for the different adducts observed for the additional set of
25 reference standards. Moreover, the deviation between
experimental and predicted is shown, and as it can be observed,
the RT predictions are generally in agreement with the
experimental data with the 95th percentile of the observed
deviations (±4.15 min) being in the same range than that

observed during validation. However, diphenyl hydrogen
phosphate showed a high deviation between experimental and
predicted values. This can be potentially explained because of
the lack of sufficient compounds featuring a P atom in their
chemical structures in the initial training database. Hence, it is
not surprising that for these molecular skeletons, the RT
prediction does not fit precisely with the experimental data.
Furthermore, the vast majority of CCS values for [M + H]+

are in agreement with the values calculated using the CCSH
model. For these compounds, 95% of the cases showed
deviations below ±3.71%, yielding even better results than the
initial database during model validation. Only 3,4-dichloroaniline
shows a deviation greater than 4%, which could be explained by
the small CCS value calculated. When evaluating CCSNa, higher
deviations are observed concretely for the case of di(2-
ethylhexyl) terephthalate and vildagliptin (−8.61 and 8.74%,
respectively). These deviations could be explained because of
the particular chemical structures of the molecule such as the
presence of an adamantyl group in vildagliptin, which has a large
and rigid structure, or the high rotatability of alkyl chains in the
di(2-ethylhexyl) terephthalate. However, if these adducts would
be treated as outliers, 95% of the CCSNa values show deviations
of±3.15%, which is in accordance with the data obtained during
method validation. Finally, for [M − H]−, a small set of
molecules was gathered, and all of them fit well within the±5.8%
deviation.
3.2. Open-Access Prediction Platform. To aid future

researchers working with UHPLC-IMS-HRMS, a free online
webpage incorporating these models has been released. The
models are available for the scientific community through
https://datascience-adelaideuniversity.shinyapps.io/
Predicting_RT_and_CCS/. Figure 4 illustrates the layout of the
online platform for the prediction of RT and CCS for both
(de)protonated molecules or sodium adducts.
The operational of the platform is user-friendly and easy-to-

follow. As an example, the step-by-step method to obtain
prediction for omeprazole is shown. First, selection of which
parameter is going to be predicted need to be done (Figure 4A).
In this case, CCS for protonated molecules is selected by
indicating “Select Response: Collision Cross Section” and
“Sodiated: No”. After downloading the appropriate descriptors
for the molecule of interest using Dragon v5.4 integrated within
OChem (www.ochem.eu),46 those can be added in the
corresponding editable fields (Figure 4B). The CCS value can,
then, be predicted, and the output is shown together with their
corresponding prediction intervals (Figure 4C). In this case, the
CCS predicted value for the protonated molecule of omeprazole
is 181.51 Å2 with a prediction interval of 171.93−190.08 Å2. The
experimental value for [M + H]+ for omeprazole is 180.58 Å2,
denoting that the prediction only deviated by 0.52% from the
experimental value.
The ease of prediction as well as the open access for this online

platform is of great help for those researchers working on
UHPLC-IMS-HRMS instruments who do not have an in-house-
developed prediction model.

4. CONCLUSIONS
Three different prediction models using MARS have been
developed for the prediction of RT, CCS for (de)protonated
molecules, and CCS for sodium adducts. This is the first
application of MARS for the prediction of RT and CCS data. In
addition, the reported models are the first parallel prediction of
RT and CCS data for the same instrument, facilitating the

Figure 3. 95% prediction intervals (blue area) for the univariate MARS
analysis on (a) CCSH and (b) CCSNa models. blue lines are placed at
2% error bands and the purple at 5%. It is clear that the model still
predicts well at higher values where there are less data but the
prediction intervals are much larger to accommodate the uncertainty
due to lack of data.
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identification process of chemicals of emerging concern in SS
and NTS strategies. The developed predictive models make use
of a set of 26 molecular descriptors to predict RT and/or CCS
values. The prediction accuracy achieved with these models
bettered previously reportedmodels in the literature by reducing

the deviation between predicted and experimental to±2.32 min
for RT, ±4.05% for CCS of protonated molecules, ±5.86% for
CCS of deprotonated molecules, and ±5.25% for CCS of
sodium adducts (95% confidence intervals). Additionally, a free
access online platform has been released to enable the

Table 3. Experimental and Predicted Values of RT and CCS for Additional Compounds Not Initially Included in Data Sets:
Investigation of the Deviation of Predicted Values

compound

retention time (min) CCSH for [M + H]+ CCSNa for [M + Na]+ CCSH for [M − H]−

exp. pred.
dev
(min) exp. pred. dev (%) exp. pred. dev (%) exp. pred. dev (%)

(−)-cotinine 0.87 3.05 2.18 141.48 136.12 −3.79%
3,4-dichloroaniline 7.92 6.21 −1.71 137.10 125.87 −8.19%
3-hydroxyphenyl diphenyl
phosphate

11.09 10.36 −0.73 174.31 178.94 2.66% 184.84 189.67 2.61% 180.89 178.94 −1.07%

5,6-dimethylbenzotriazole 6.74 4.38 −2.36 129.73 127.21 −1.94% 129.38 127.21 −1.68%
8-hydroxyquinoline 1.51 4.57 3.06 125.01 123.54 −1.18%
amisulpride 2.46 1.99 −0.47 193.15 189.60 −1.84%
antiblaze V6 10.84 14.49 3.65 208.45 207.32 −0.54% 208.45 212.12 1.76%
benzotriazole 3.50 2.75 −0.75 121.49 117.94 −2.92%
BClPHP phosphatea 8.07 7.69 −0.38 159.22 157.05 −1.36% 165.14 166.24 0.67%
caffeine 3.08 1.94 −1.14 136.62 136.37 −0.18%
chlorotoluron 2.54 6.79 4.25 146.29 146.00 −0.20% 155.35 157.96 1.68%
citalopram 6.49 5.21 −1.28 179.10 184.48 3.01%
Di(2-ethylhexyl)
terephthalate

16.86 15.02 −1.84 216.36 197.07.23 −8.61%

diphenyl hydrogen
phosphate

12.46 5.06 −7.41 152.45 151.61 −0.55% 161.58 162.65 0.66% 152.18 151.61 −0.38%

diphenylcresyl phosphate 7.36 11.07 3.72 175.28 178.08 1.60%
metolachlor ESAb 7.89 4.99 −2.90 168.38 171.29 1.73% 175.57 179.13 2.03% 174.30 171.29 −1.73%
metoxuron 5.98 7.04 1.06 149.83 150.62 0.53% 158.51 161.17 1.68%
mono(2-ethylhexyl)
phthalate

12.73 11.75 −0.98 170.91 167.767215 −1.84%

monuron 6.68 5.67 −1.01 140.59 142.94 1.67%
nicotine 0.69 1.11 0.42 138.34 134.77 −2.58%
niflumic acid 11.51 10.86 −0.65 157.46 157.79 0.21% 156.92 157.79 0.55%
pirbuterol 1.30 1.28 −0.02 153.78 156.91 2.04% 160.02 165.52 3.44%
prometon 6.74 7.50 0.76 156.67 155.56 −0.71%
trietazine 10.81 8.91 −1.90 150.63 151.12 0.33%
vildagliptin 1.38 1.67 0.29 176.98 174.62 −1.33% 172.29 187.35 8.74%

aBis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate. bMetolachlor ethane sulfonic acid.

Figure 4. Online platform for the prediction of RT and CCS data using univariate models. (A) Selection of response to predict, that is, RT, CCS for
(de)protonated molecules or CCS for sodium adducts; (B) introduction of molecular descriptors for the molecule of interest; (C) output of the
predictor model together with the prediction intervals. Example illustrated by omeprazole.
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application of these models to third-party laboratories interested
in predicting RT and CCS data.

■ DATA AND SOFTWARE AVAILABILITY
Data used for model development and validation are available in
Table S1 of the Supporting Information as well as on the open-
access online repository Zenodo (https://zenodo.org/record/
3966751#.Ymf5f9rP1aQ, DOI: 10.5281/zenodo.3966751).
Additionally, molecular descriptors are also shown in Table
S1. Mathematical equations resulting from MARS model
development are available for their implementation throughout
the manuscript (eqs 1−3).
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