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Abstract
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used to identify factor binding to genomic
DNA and chromatin modifications. ChIP-seq data analysis is affected by genomic regions that generate ultra-high artifac-
tual signals. To remove these signals from ChIP-seq data, the Encyclopedia of DNA Elements (ENCODE) project developed
comprehensive sets of regions defined by low mappability and ultra-high signals called blacklists for human, mouse (Mus
musculus), nematode (Caenorhabditis elegans), and fruit fly (Drosophila melanogaster). However, blacklists are not currently
available for many model and nonmodel species. Here, we describe an alternative approach for removing false-positive
peaks called greenscreen. Greenscreen is easy to implement, requires few input samples, and uses analysis tools frequently
employed for ChIP-seq. Greenscreen removes artifactual signals as effectively as blacklists in Arabidopsis thaliana and hu-
man ChIP-seq dataset while covering less of the genome and dramatically improves ChIP-seq peak calling and downstream
analyses. Greenscreen filtering reveals true factor binding overlap and occupancy changes in different genetic backgrounds
or tissues. Because it is effective with as few as two inputs, greenscreen is readily adaptable for use in any species or ge-
nome build. Although developed for ChIP-seq, greenscreen also identifies artifactual signals from other genomic datasets
including Cleavage Under Targets and Release Using Nuclease. We present an improved ChIP-seq pipeline incorporating
greenscreen that detects more true peaks than other methods.

Introduction
Chromatin immunoprecipitation followed by sequencing
(ChIP-seq) probes the association of a factor or modification
with chromatin (Johnson et al., 2007). After factor crosslink-
ing to chromatin and shearing of the genomic DNA, DNA
fragments associated with the factor of interest are enriched
by immunoprecipitation and sequenced after crosslink rever-
sal (Johnson et al., 2007). ChIP-seq produces both true-
positive signals and artifactual signal during the process of

sequence enrichment (Kharchenko et al., 2008; Park, 2009;
Kidder et al., 2011; Chen et al., 2012; Bailey et al., 2013).

Guidelines for accurate analyses of ChIP-seq data suggest
using experimental controls, including input DNA or mock
ChIP, to account for areas of the genome with sequencing
efficiency biases (Kharchenko et al., 2008; Park, 2009, p. 200;
Kidder et al., 2011; Chen et al., 2012; Landt et al., 2012;
Bailey et al., 2013). Input control samples are identical to a
given experimental sample except that they are not
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subjected to immunoprecipitation (Johnson et al., 2007).
Mock samples are ChIP reactions where either the genetic
background lacks the antigen or antiserum is employed that
does not bind to the antigen (Kharchenko et al., 2008; Park,
2009; Kidder et al., 2011; Chen et al., 2012; Landt et al., 2012;
Bailey et al., 2013). In the absence of sequencing biases, in-
put DNA should appear uniformly distributed across the ge-
nome, whereas no peaks are expected for the mock ChIP
experiment (Kharchenko et al., 2008; Park, 2009).

However, some regions in the genome give rise to ampli-
fied artifactual signals that are not efficiently removed
through normalization with experimental controls, which af-
fect experimental analysis (Kharchenko et al., 2008; Kundaje,
2013; Carroll et al., 2014; Amemiya et al., 2019). These ultra-
high signals are present in ChIP, mock, and input samples at
various levels. The failure to remove these artifactual signals
prevents accurate estimates of sample quality, replicate con-
cordance, and identification of factor binding sites (Kundaje,
2013; Carroll et al., 2014; Amemiya et al., 2019). To identify
and mask out these regions from downstream analysis, the
Encyclopedia of DNA Elements (ENCODE) project curated a
filter called “blacklist” for mouse (Mus musculus), human
(Homo sapiens), fruit fly (Drosophila melanogaster), and
nematode (Caenorhabditis elegans) (Kundaje, 2013; Carroll
et al., 2014; Amemiya et al., 2019).

Ultra-high signals often occur near assembly gaps and in
other genomic regions with low copy repeat elements and
have high ratios of multi-mapped to unique reads (Carroll
et al., 2014; Amemiya et al., 2019). The genomic regions that
give rise to artifactual signals are invariant for a given species
with regards to developmental stage/tissue sampled, yet the

signal strength in these regions can vary between experi-
ments (Kundaje, 2013; Carroll et al., 2014; Amemiya et al.,
2019; Wimberley and Heber, 2020). Where these signals arise
is also sensitive to the genome build, as new genomic
regions prone to artifactual signal may be added and others
lost due to the addition or resolution of genome gaps or
the inclusion of centromeric regions or additional satellite
sequences. Therefore, new blacklists have been generated for
successive genome assemblies (Amemiya et al., 2019).

The blacklist filter identifies areas of the genome that
have low mappability rates or contain high artifactual sig-
nals. UMap software (Karimzadeh et al., 2018) uses genome
assembly files to measure a region’s mappability, a metric
for how uniquely all predicted read-length fragments map
to the genome. In addition, blacklists identify high signal
regions in inputs (top 0.1% given quantile-normalization of
read depth) (Amemiya et al., 2019). Next, these artifactual
signal regions are merged within a certain distance (20 kb
for human and 5 kb for Drosophila blacklists) only if the
merged region maintains an overall average signal intensity
in the top 1% (Amemiya et al., 2019). ENCODE blacklists
were generated using several hundred inputs, and it was rec-
ommended that users employ these curated blacklist regions
to mask out reads that overlap with them before applying
ChIP-seq peak-calling software such as MACS2 (Zhang et al.,
2008; Amemiya et al., 2019).

However, blacklists are not available for most species. In
addition, the blacklist generation pipeline requires tools not
frequently used in ChIP-seq analysis and that require consid-
erable amounts of RAM and disc storage (minimum require-
ments are RAM: 64 + GB; CPU: 24 + cores, 3.4 + GHz/core;

IN A NUTSHELL
Background: Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and other genomic approaches
reveal transcription factor occupancy at target loci, providing insight into gene activation and repression. These
methods rely on amplification of factor-associated and control DNA and amplification artifacts have been identi-
fied that obscure detection of biologically meaningful binding events.

Question: We asked whether we can develop a simple, versatile method to remove these artifacts. We then
asked how incorporation of this tool into an improved ChIP-seq analysis pipeline affects insight into factor
occupancy.

Findings: We were able to remove artifactual signals using a combination of common ChIP-seq analysis tools
and control samples in a method we call greenscreen. A greenscreen filter can be generated in any new organism
with a single ChIP experiment that has at least two controls (input samples). We developed and tested green-
screen filters for Arabidopsis, rice, and human and found that filtering out peaks that overlap with greenscreen
regions is required to detect similarities and differences between biological ChIP replicates, to test for overlap in
genome occupancy by different transcription factors and to quantify changes in factor binding in different condi-
tions. When linked to an optimized ChIP-seq pipeline we present, greenscreen furthermore leads to identification
of more true peaks. The greenscreen tool thus improves ability to answer biological questions with ChIP-seq and
related approaches.

Next steps: We would want to develop, test, and optimize greenscreen filters for other plant species. We would
like to know whether greenscreen or an adapted version thereof can filter artifactual signals from other types of
genomic datasets that measure facture binding, chromatin accessibility or genome architecture.
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https://github.com/Boyle-Lab/Blacklist) (Amemiya et al.,
2019). Finally, existing blacklists for H. sapiens, M. musculus,
D. melanogaster, and C. elegans employed hundreds of
inputs (Carroll et al., 2014; Amemiya et al., 2019). Given that
such large input numbers are not available for most other
model or nonmodel species, there is a need for a facile tool
that enables the identification of artifactual signal regions
with few inputs.

To address this need, we developed an alternative ap-
proach for removing ultra-high signal peaks from ChIP-seq
datasets called greenscreen. We hypothesized that we could
identify regions of ultra-high noise from a small number of
inputs with a common peak-calling tool, MACS2 (2.2.7.1)
(Zhang et al., 2008). We show here that our method is ro-
bust with as few as two inputs and performs as well as the
blacklist in masking artifactual signals from Arabidopsis thali-
ana (Arabidopsis) and human ChIP-seq datasets. Because of
these attributes, and because it utilizes software that is fre-
quently used for ChIP-seq peak calling, greenscreen can
readily be applied to any model and nonmodel species, as
we show here with rice (Oryza sativa). In addition to in-
creased versatility and ease of implementation, greenscreen
masks less of the genome and fewer genes than blacklists.
Greenscreen filtering uncovers true ChIP-seq replicate con-
cordance, true factor binding overlaps, and factor occupancy
changes under different conditions. We present a ChIP-seq
pipeline that incorporates greenscreen and identifies a larger
number of true peaks than other methods.

Results

Development of the greenscreen mask
To design artifactual signal masks, we first focused on
Arabidopsis, a model plant for which there is currently no
blacklists available. We collected inputs and identified 20
that passed our quality control (see “Materials and
methods”). These inputs were derived from different tissues
and were generated in different laboratories (Supplemental
Table S1). Ultrahigh signal peaks were present in these
inputs (Supplemental Figure S1A), as previously observed for
human (Kundaje, 2013; Carroll et al., 2014; Amemiya et al.,
2019).

First, we generated a blacklist for Arabidopsis as a positive
control using UMap (version 1.1.0) (Karimzadeh et al., 2018)
based on the TAIR10 A. thaliana genome assembly
(Berardini et al., 2015). Employing the 20 inputs in
Supplemental Table S1 and the UMap output, we applied
the recently published blacklist tool (Supplemental Figure
S2; Amemiya et al., 2019). We manually adjusted the merge
parameter for regions with artifactual signal to 5 kb as for
the Drosophila blacklist, since Arabidopsis and Drosophila
have similar genome sizes. The resulting Arabidopsis black-
list masked 2.39% of the genome, including 173 protein-
coding genes (Table 1 and Supplemental Tables S2 and S3).
As previously described (Amemiya et al., 2019), we re-
moved reads that overlapped with blacklist regions prior to

ChIP-seq peak calling with MACS2 (Figure 1A and
Supplemental Figure S2).

To design the Arabidopsis greenscreen mask, we
employed MACS2 (Zhang et al., 2008), a tool routinely used
to identify ChIP-seq peaks. Following the same steps com-
monly used to identify peaks in ChIP-seq experiments, we
trimmed and mapped each of the 20 inputs and called in-
put “peaks” with MACS2 using the entire genome as back-
ground (Figure 1A). The broad peak setting was applied to
call peaks in each of the input samples (Figure 1A). We opti-
mized the threshold of significance for the mean q-value for
each base pair in the input peaks such that the resulting
greenscreen filter maximizes overlap between a ChIP-seq
and an orthogonal ChIP-chip dataset for the same transcrip-
tion factor (Figure 1A and Supplemental Table S3). As ChIP-
chip is not based on next-generation sequencing, it is not
subject to ultrahigh artifactual signal peaks (Supplemental
Figure S3A). At the same time, we strove to minimize the
number of genomic regions and genes masked out by the
greenscreen filter (Figure 1A and Supplemental Table S3).
Using these criteria, we chose MACS2 q5 10–10 as the cut-
off to identify input peaks. MACS2-called regions in each in-
put were concatenated into a single list and, to maximize
artifactual signal removal, regions within a certain distance
were merged (three red arrows in Figure 1A). Using the
same criteria as described above for the q-value cutoff, we
selected the merge distance. Merging regions within 5 kb
was optimal; it resulted in slightly higher overlap with the
orthogonal ChIP-chip datasets than the 2.5 kb merge, which
also performed well (Supplemental Table S3). Finally, to
minimize over masking, we restricted the greenscreen mask
to regions where significant input peaks were called in at
least half (i.e. 10) of the input samples (see “Materials and
methods” for details; Figure 1A). Our final greenscreen filter
masks �0.41% of the genome and covers 26 protein-coding
genes (Table 1 and Supplemental Table S3). Most of the
greenscreen regions (99.9%) overlap with the blacklist
(Supplemental Figure S3). Because greenscreen covers less of
the genome than blacklist, we apply the greenscreen filter
after ChIP-seq peak calling in MACS2. Removing peaks that
overlap with greenscreen regions prevents the retention of
artifactual ChIP peaks at the outer edges of ultrahigh signal
regions (Figure 1A).

As expected, both the blacklist and greenscreen filter
regions overlap with ultra-high signal in the inputs and ChIP
datasets (Supplemental Figure S1A). Consistent with the

Table 1 Comparison of blacklist and greenscreen filter regions

Arabidopsis
greenscreen

Arabidopsis
blacklist

Human
greenscreen

Human
blacklist

Percentage of the
genome masked

0.41 2.49 0.01 7.36

Protein-coding genes
masked

26 172 20 3,390

All filters for artifactual signal removal were generated in this study, except for the
human blacklist, which was published previously (Amemiya et al., 2019).
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higher genome coverage of the blacklist filter, blacklist
regions were found to be significantly broader than green-
screen regions (Figure 1B). We then compared the read sig-
nal strength across the identified blacklist and greenscreen
regions. Given their variable lengths, we iteratively boot-
strapped 100 sample populations of 500 nonoverlapping
500 bp regions from the blacklist and greenscreen filters and
measured the mean signal for each bootstrap. On average,

the inferred read signal was significantly lower in blacklist
regions than in greenscreen regions (Figure 1C). Thus, the
blacklist may over mask, leading to potential false negatives
(Supplemental Figure S1, B–D).

Like blacklist regions developed for human samples,
Arabidopsis artifactual signals are frequently found near as-
sembly gaps (Kundaje, 2013; Carroll et al., 2014; Amemiya
et al., 2019; Supplemental Figure S1). To determine how
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Figure 1 Generating ultrahigh signal blacklist and greenscreen masks for Arabidopsis. A, ChIP-seq analysis workflow (top). Generation of the
greenscreen filter (bottom). The steps, from raw fastq collection to peak calling in MACS2 and peak filtering (q-value5 10–10), are identical for
ChIP-seq and greenscreen, except that the latter employs inputs. To generate the greenscreen filter, input peaks (MACS2 q-value5 10–10) are
concatenated (three red arrows), and those within a set distance (5 kb for Arabidopsis) are merged into one region. Greenscreen regions that con-
tained peaks in fewer than half of the 20 inputs (Supplemental Table S1) were removed from the filter. To apply the greenscreen filter, ChIP-seq
peaks are called in MACS2 (q-value5 10–10) using the appropriate controls. Subsequently, peaks that overlap with the greenscreen regions are re-
moved. In contrast, blacklist removes reads from ChIP-seq and control samples before peak calling in MACS2. B, Box-and-whisker/swarmplot of
the length of artifactual signal regions [log10(base pairs)] in the blacklist masks (n = 83, mean = 4.1) and the greenscreen mask (n = 36,
mean = 3.8). Two sample one-sided t test **P = 1.6e–3. C, Grouped box-and-whisker plot of average normalized read signal in input or ChIP-seq
data (Moyroud et al., 2011; Sayou et al., 2016; Collani et al., 2019; Goretti et al., 2020; Romera-Branchat et al., 2020; Zhu et al., 2020; Jin et al., 2021).
Peaks that do not overlap with greenscreen or blacklist regions are shown in blue, peaks that overlap with blacklist regions are shown in black,
and peaks that overlap with greenscreen regions are shown in green. Bootstrapping (n = 100) of 500 random nonoverlapping regions (500 bp in
length). Nonartifactual (Input mean: 10; ChIP-seq mean: 36), blacklist (Input mean: 28; ChIP-seq mean: 39), or greenscreen (Input mean: 139;
ChIP-seq mean: 178.3). Kruskal–Wallis H test was performed to identify differences among the three input groups (P = 0.0) or ChIP groups
(P = 0.0). Gray bars above the boxplots show one-sided Mann–Whitney U rank test comparisons with Holms multiple test correction. Inputs:
nonartifactual signal regions and blacklist (***P = 0.0) or greenscreen (***P = 0.0), greenscreen relative to blacklist (***P = 0.0). ChIP-seq samples:
nonartifactual signal regions and blacklist (P = 0.48) or greenscreen (***P = 9.9e–258) and greenscreen relative to blacklist (***P = 4.3e–307). D,
Box-and-whisker plot of the frequency of 100 randomly sampled 500-bp regions from nonartifact, blacklist, or greenscreen sites residing within
1 kb of an assembly gap. Nonartifactual (mean = 0.5), blacklist regions (mean = 11.5), and greenscreen regions (mean = 9.4). n = 1,000 trials with
replacement were conducted. ANOVA was performed to test for differences among the three groups (P = 0). Welch’s one-sided t test with
Holm’s correction relative to nonartifactual regions: blacklist ***P = 0, greenscreen, ***P = 0. Welch’s two-sided t test comparing blacklist and
greenscreen ***P = 1.8e–52. B–D Legend: Types of filters applied.
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frequently blacklist or greenscreen regions are found within
1 kb of an assembly gap, we generated 1,000 bootstrap pop-
ulations of 100 nonoverlapping 500 bp regions from green-
screen, blacklist, and nonartifactual signal regions. Both
blacklist and greenscreen regions were significantly more
likely to be located near assembly gaps than random geno-
mic regions that did not overlap with blacklist or green-
screen regions (Figure 1D).

Efficacy of artifactual signal removal by greenscreen
Prior studies have identified metrics suitable for assessing
artifactual signal removal from ChIP-seq and control sam-
ples. One such metric is the standardized standard devia-
tion (SSD), which measures the variation in signal across
the genome normalized over read depth (Planet et al.,
2012; Carroll et al., 2014). Since SSD is calculated before
peak calling, we computed the SSD with ChIPQC (1.26.0)
htSeqTools (Carroll et al., 2014) before and after removing
reads that overlap with either greenscreen or blacklist
regions. Both filters significantly reduced the input SSD
scores to the expected value of �1 (Figure 2A). Thus, de-
spite covering less of the genome, the greenscreen mask is
as effective as the blacklist at removing regions of strong
artifactual signal. We also compared the efficacy of the
Arabidopsis blacklist and greenscreen in removing artifac-
tual signals from ChIP-seq replicates by testing for a reduc-
tion in the SSD (Planet et al., 2012; Carroll et al., 2014).
Applying the greenscreen filter to ChIP-seq replicates
caused the SSD values to decrease, with similar efficiency
as filtering out reads with the Arabidopsis blacklist
(Figure 2B; Zhu et al., 2020).

Another commonly used metric to assess the quality of
a blacklist is strand cross-correlation (SCC) of all the reads
in an experiment (Carroll et al., 2014). While true protein
binding sites show strand-specific enrichment toward the
5-prime ends of reads, peaks found in input controls lack
this pattern (Kharchenko et al., 2008; Landt et al., 2012).
When plotting the SCC at given distances between reads
from opposite strands, ChIP-seq experiments have a peak
at the fragment length (usually between 200 and 350 bp),
while input samples have a peak at the read length
(Kharchenko et al., 2008). Most ChIP-seq samples have a
so-called “phantom” peak at the read length in addition
to the fragment length peak (Landt et al., 2012). When
we measured ChIP-seq replicate SCC after masking reads
using blacklist or greenscreen, the “phantom” peak at the
read length position (75 bp) disappeared (Figure 2C).
Again, the Arabidopsis blacklist and greenscreen were
equally effective at removing this artifactual signal
(Figure 2C). To quantify phantom peak removal, we com-
puted the relative strand correlation (RSC), defined as the
SCC at the fragment size divided by the SCC at the read
size (Kharchenko et al., 2008; Landt et al., 2012). The
lower the read length signal (characteristic of inputs), the
greater the RSC of the ChIP-seq experiment. Masking
ChIP-seq reads or peaks that overlap with artifactual sig-
nals using either blacklist or greenscreen regions resulted

in a similar increase in RSC (Figure 2D). The combined
data suggest that the greenscreen pipeline removes arti-
factual ultra-high signals as effectively as the Arabidopsis
blacklist.

Effect of greenscreen or blacklist filters on ChIP-seq
replicate concordance
Having established greenscreen as an effective tool for ultra-
high signal removal based on established metrics (Carroll
et al., 2014; Amemiya et al., 2019), we then investigated its
effect on the assessment of ChIP-seq replicate reproducibil-
ity. Correlations between peak signals are often used to eval-
uate the quality of biological replicates (Schmitz et al., 2022).
However, highly reproducible artifactual signal common to
all replicates distorts this metric (Amemiya et al., 2019).
Previous studies showed that removing artifactual signal by
applying blacklist masks reveals the true correlation struc-
ture between ChIP-seq replicates (Amemiya et al., 2019). To
test replicate reproducibility before and after masking by
blacklist or greenscreen, we analyzed published data from
ChIP-seq experiments, where ChIP-seq for the same proteins
was conducted in different laboratories. We clustered ChIP-
seq replicates and experiments on pairwise Pearson correla-
tion coefficients of read signals within called peaks and
assessed how well these samples clustered compared with
biological expectation.

In particular, we employed ChIP-seq datasets for the tran-
scription factors FD, TERMINAL FLOWER 1 (TFL1), and
LEAFY (LFY) conducted in different laboratories (Moyroud
et al., 2011; Sayou et al., 2016; Collani et al., 2019; Goretti
et al., 2020; Romera-Branchat et al., 2020; Zhu et al., 2020;
Jin et al., 2021). Two of the transcription factors probed are
related: TFL1 is a transcriptional co-regulator that is
recruited to chromatin by the bZIP transcription factor FD
(Zhu et al., 2020), while LFY binds to different genomic loca-
tions (Winter et al., 2011). Our expectation is therefore that
the TFL1 and FD ChIP-seq replicates will cluster together
more often than either does with LFY ChIP-seq replicates
(Yk = 2, Figure 3A).

For blacklist, we first removed mapped reads from ChIP-seq
replicates that overlapped with blacklist regions. We then
called significant peaks in MACS2 using q-value5 10–10 and
experiment-matched input controls. When experiment-
matched inputs were unavailable, we used experiment-
matched mock controls for peak calling in MACS2 instead.
Conversely, for greenscreen, we first called significant ChIP-seq
peaks in MACS2 (using q-value5 10–10) using experiment-
matched inputs (or mock if that was the only control avail-
able). Following peak calling, we removed the significant
peaks that overlapped with greenscreen regions.

To evaluate the blacklist and greenscreen filter, we calcu-
lated pairwise Pearson correlation coefficients on the repli-
cates, performed unsupervised hierarchical clustering, and
generated Rand index values (Yk = 2, Yk

0
= 2) to measure how

similar the identified clusters were to biological expectation
(Rand, 1971). Without artifactual signal removal, LFY, TFL1,
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and FD ChIP-seq samples did not cluster according to bio-
logical expectation, yielding a low Rand index of 0.56
(Figure 3B). A similar spurious correlation structure was ob-
served when we computed Pearson correlation coefficients
for the reads found in greenscreen regions (Supplemental
Figure S4). Hence, the correlation structure observed with-
out filtering is likely due to artifactual signal. Indeed, when
we applied either the blacklist read filter or the greenscreen
peak mask to the ChIP-seq replicates, the expected correla-
tion structure emerged, with LFY and FD/TFL1 in separate
clusters, yielding a Rand index of 1 (Figure 3, C and D). In
contrast, random genomic regions of similar length distribu-
tion that did not overlap with artifactual signal regions did
not improve the pairwise correlation coefficients or the
Rand index (Figure 3E).

The relationships between replicates can also be visualized
by transforming the peak signals of each experiment from a
multi-dimensional to a lower dimensional space using prin-
cipal component analysis (PCA) to project the two principal
components that make up the most variance in each ChIP-
seq replicate. PCA conducted without an artifactual signal
mask or with a random mask only slightly separated LFY

ChIP-seq replicates from the TFL1 and FD experiments in
the second principal component (Figure 3F). However, after
greenscreen or blacklist masking, the first principal compo-
nent clearly distinguished the replicates or experiments
based on the factor assayed, as expected (Figure 3, G and
H). Random masks were indistinguishable from no mask
(Figure 3, B and I). Our combined data reveal that green-
screen is as effective as blacklisting in improving analysis of
ChIP-seq replicate concordance.

Although ENCODE blacklists were generated using hun-
dreds of inputs (Carroll et al., 2014; Amemiya et al., 2019), in
Arabidopsis, 20 inputs sufficed to generate effective masks
for the removal of artifactual reads. This prompted us to
test the performance of greenscreen filters derived from
fewer inputs. We tested 1, 2, 3, 4, 6, or 10 inputs randomly
chosen from our 20 inputs (Supplemental Table S1) to build
greenscreen masks and applied them to the ChIP-seq repli-
cates. We found that as few as two inputs yielded a robust
increase in the Rand index for unsupervised clustering of
the LFY, FD, and TFL1 ChIP-seq experiments (Figure 4A).
Next, we contrasted the effect of generating a greenscreen
mask using three experiment-matched inputs to that
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Figure 2 Efficacy of artifact removal with greenscreen. A, Box-and-whisker plot/swarmplot of SSD in 20 inputs. All reads (mean = 3.9), reads af-
ter applying blacklist (mean = 1.2), and reads after applying greenscreen (mean = 1.2). Kruskal–Wallis H test was performed to test for differen-
ces among the three groups: ***P = 2.9e–8. P-values (a = 0.001). One-sided Mann–Whitney U rank test with Holms correction relative to
samples without mask: blacklist ***P = 5.8e–07, greenscreen ***P = 5.8e–07, and two-sided Mann–Whitney U rank test with Holms multiple test
correction blacklist relative to greenscreen: NS (not significant, P = 0.9) (B) Bar graphs of SSD values of two ChIP-seq replicates (Zhu et al., 2020,
p. 2) after blacklist or greenscreen read masking relative to the no mask control. C, SCC curves of two ChIP-seq replicates (GSE141894) (Zhu
et al., 2020). Without an artifactual signal mask (blue), a phantom peak is seen at a read length of 75 bp. D, Bar plot of two ChIP-seq replicates
(Zhu et al., 2020). RSC values after applying the blacklist or greenscreen read masks relative to the no mask control. Legends indicate filters
appplied.
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derived from three unmatched inputs from Supplemental
Table S1. Inputs generated for a given experiment were as
effective at removing artifactual signals as the unrelated

inputs based on Rand indices (Figure 4B). We conclude that
greenscreen can be applied to remove artifactual signals
from ChIP-seq datasets in any new organism using a single
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Figure 3 Clustering of ChIP-seq replicates. A, Biological expectation for clustering of 21 ChIP-seq replicates. Because TFL1 is recruited by FD, we
expect all TFL1 and FD samples to cluster into one group and all LFY samples to cluster into a second group (k = 2). Color: ChIP for different fac-
tors (LFY, FD, and TFL1) (Moyroud et al., 2011; Sayou et al., 2016; Collani et al., 2019; Goretti et al., 2020; Romera-Branchat et al., 2020; Zhu et al.,
2020; Jin et al., 2021); Symbol: lab that conducted the ChIP. ChIP-seq peaks were called by MACS2 using published input controls, or mock con-
trols if input was not available. B–E, Heatmaps of pairwise Pearson correlation coefficients. Samples were sorted using unsupervised hierarchical
clustering (left of heatmaps). Legend: low (left) to high (right) correlation. Below: Rand index of clustering success relative to biological expecta-
tion. Artifactual signals were either not masked (c(Yk=2, Yk

0
=2) = 0.51) (B), masked using greenscreen (c(Yk = 2, Yk

0
= 2) = 1.00) (C), masked using

the blacklist (c(Yk = 2, Yk
0

= 2) = 1.00) (D), or masked using random genomic regions length matched to greenscreen regions (c(Yk = 2, Yk
0

= 2)
= 0.51) (E). F–I, PCA of the top two principal components. The percent of variance explained by each principal component is listed in the x- and
y-axis label. PCAs were calculated using signals from the union of all ChIP-seq replicate peak sets. Artifactual signals were either not masked (F),
masked using greenscreen (G), masked using a blacklist (H), or masked using random genomic regions (I).
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ChIP-seq experiment with at least two experiment-matched
inputs.

Greenscreen effectively masks artifactual signals in
larger genomes
To test the efficacy of greenscreen in a large and more re-
petitive genome, we focused on human cell lines. We devel-
oped a greenscreen filter from 20 inputs selected randomly
from the hundreds of inputs used for the human blacklist
(Amemiya et al., 2019). We essentially followed the proce-
dure employed for the Arabidopsis greenscreen filter (inputs
using MACS2 [q-value5 10–10], peaks present in 510
inputs). However, we merged signal peaks into contiguous
regions if they were less than 20 kb apart, as was done for
the human blacklist (Amemiya et al., 2019), due to the
larger genome size (Supplemental Table S4). We then tested
our greenscreen filter versus the published human blacklist,
which was generated using 636 human inputs (Amemiya
et al., 2019), on 42 ChIP-seq replicates derived from 20
ChIP-seq datasets. The mapped reads from these datasets
were from 9 laboratories and 13 different cell lines
(Wimberley and Heber, 2020). We performed peak calling
and applied the blacklist or greenscreen filters as described
above for Arabidopsis.

Based on Pearson correlation analysis, the human ChIP-seq
samples showed a correlation structure before masking
(Figure 5A). Application of the greenscreen or blacklist filter
yielded nearly identical results and revealed a different
Pearson correlation structure (Figure 5, B and C). Importantly,
the filtering correctly recovered known correlations between
factors. For example, RNA binding protein HNRNPK and

PCBP2 occupy similar states of ENCODE-annotated genome
segmentation that differ from those occupied by RNA bind-
ing protein FUS (Xiao et al., 2019). This relationship was also
revealed by PCA after either greenscreen or blacklist filtering
(Figure 5, D–F).

Given the known genome segmentation state preferences
of HNRNKP, PCBP2, and FUS (Xiao et al., 2019), we calcu-
lated a Rand index for unsupervised hierarchical clustering
of Pearson correlation coefficients before masking (c(Yk = 2,
Yk
0

= 2) = 0.56), after blacklist (c(Yk = 2, Yk
0

= 2) = 1.0), or after
greenscreen masking (c(Yk = 2, Yk

0
= 2) = 1.0). Blacklist and

greenscreen filters increased the Rand index in a similar
manner using Pearson correlation analysis (Supplemental
Figure S5, A–C). Likewise, samples transformed using PCA
showed the biological relationship more clearly in the top
principal component after blacklist or greenscreen masking
than without masking (Supplemental Figure S5, D–F). Thus,
greenscreen is as effective as the ENCODE blacklist in re-
moving artifactual signal from ChIP-seq datasets derived
from organisms with large, repeat-rich genomes.

We then used this Rand index metric to test the efficacy
of human greenscreen filters generated with fewer inputs.
Randomly sampling 10 times groups of 10, 6, 4, and 3 differ-
ent input controls, we found that as few as three inputs
were sufficient to generate a greenscreen filter that effec-
tively removed artifactual signal in human ChIP-seq datasets
(Rand index c(Yk = 2,Yk

0
= 2) = 1.0 with no variance) while

only covering 0.01% of the genome and masking 26 tran-
scripts (Supplemental Table S3). Thus, although the pub-
lished human blacklist masks used over 600 inputs and
masked over 227,162 kb and 3,390 transcripts (Amemiya
et al., 2019; Table 1 and Supplemental Table S4), greenscreen
filters generated with 20 or 3 inputs, and covering less of
the genome, were as effective as the blacklist in removing
artifactual signal in ChIP-seq datasets from human cell lines.

To further test the efficacy of greenscreen on larger
genomes, we developed and applied a greenscreen filter for
ChIP-seq experiments from rice using 20 inputs. The rice
greenscreen filter covered 0.01% of the genome and
20 protein-coding genes. Masking peaks that overlapped
with the rice greenscreen filter enhanced clustering based
on biological expectation (Supplemental Figure S6 and
Supplemental Tables S5 and S6).

Additional methods have been developed to assess factor
binding to genomic locations, including Cleavage Under
Targets and Release Using Nuclease (Cut&Run), which tar-
gets micrococcal nuclease to a chromatin-bound factor to
specifically liberate factor-associated genomic DNA (Skene
and Henikoff, 2017; Skene et al., 2018). Cut&Run requires
less tissue and is often performed without crosslinking
(Skene and Henikoff, 2017; Zheng and Gehring, 2019). We
found that Cut&Run experiments also harbor artifactual ul-
trahigh signal peaks and that these peaks overlap with
greenscreen regions (Figure 6; Zheng and Gehring, 2019).
The data suggest that greenscreen could also be applied to
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Figure 4 As few as three inputs effectively remove artifactual signals
using greenscreen masks. A, Violin plot of Rand index values c(Yk = 2,
Yk
0

= 2, Figure 3A) for greenscreen filters generated using different
numbers of inputs derived from subsamples (n = 0, 1, 2, 3, 4, 6, and
10) of the 20 random inputs (Supplemental Table S1). Central dot:
mean. Subsampling was conducted 10 times with replacement. One-
sample t test (n = 10) P-values relative to no mask: 1 input
***P = 1.4 – 07; 2 inputs ***P = 8.4e–08; 3 inputs ***P = 3.4e–08; 4
inputs: ***P = 7.3e–9; 6 inputs ***P = 0; 10 inputs ***P = 0. B, Box-and-
whisker plot of Rand index values c(Yk = 2, Yk

0
= 2) for greenscreen fil-

ters derived from five different combinations of three experiment-
matched inputs (Zhu et al., 2020; Jin et al., 2021) or three unmatched
inputs from Supplemental Table S1. One-sample t test (n = 5) P-val-
ues relative to no mask: matched inputs ***P = 0; unmatched inputs
***P = 0.
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other types of genomic datasets that probe associations of a
factor with chromatin or chromatin modifications.

A ChIP-seq analysis pipeline that incorporates
greenscreen removes type I errors and identifies
more true peaks
ChIP-seq peak calling by MACS2 given a q-value cutoff
(q-value 5 10–10) rejects the null hypothesis that the signal
identified is noise because this signal is significantly higher
than background. However, for significant peaks that overlap
with greenscreen regions (i.e. peaks also found in input), the
null hypothesis is correct, resulting in a type I error or false

positive peaks. We, therefore, assessed the effects of green-
screen, blacklist, and different commonly used ChIP-seq
analysis parameters on the false positive rate. For ChIP-seq
analysis, we merged the LFY peak signals from replicates in
MACS2 after down sampling to achieve equal genome cov-
erage (see “Materials and methods” for details) and identi-
fied significant (MACS2 summit q-value5 10–10 cutoff)
peaks using either no control, input, or mock controls. We
identified false positive peaks as peaks that overlapped with
the combined greenscreen and blacklist regions. ChIP-seq
peak calling on an LFY ChIP-seq dataset (Jin et al., 2021)
without controls yielded a large number of false positive
peaks (193, Figure 7A). In contrast, ChIP-seq peak calling in
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Figure 5 Greenscreen is as effective as blacklist in removing human artifactual signals. A–C, Signals within merged peak regions of ChIP-seq repli-
cates from 20 different ChIP experiments conducted in 13 human cell lines by 9 labs (Wimberley and Heber, 2020) were used to calculate and
plot Pearson correlation coefficient values. In heatmaps, pairwise correlations between HNRNKP, PCBP2, and FUS are highlighted by white boxes
and arrows. D–F, Scatterplot of samples transformed using the top two principal components. The percent of variance explained by each principal
component is listed in the x- and y-axis label. Arrows show HNRNKP, PCBP2, and FUS samples. A and D, No filter, (B, E) greenscreen filter, and (C,
F) blacklist filter. Color: ChIP for different factors; Letter: lab that conducted the ChIP.
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MACS2 using input controls removed more than half of the
false positive peaks, while calling ChIP-seq peaks in MACS2
using mock controls eliminated all false positive peaks in the
LFY dataset. Similar results were obtained for an FD ChIP-
seq experiment (Zhu et al., 2020) analyzed in the analogous
manner (Supplemental Figure S7).

We then examined the effect of using no control, input
control, or mock control in MACS2 for significant peak call-
ing on the peak overlap between the above-mentioned LFY
ChIP-seq dataset conducted on root explants (Jin et al.,
2021) and an orthogonal LFY ChIP-chip dataset from seed-
lings (Winter et al., 2011), which does not overlap with
greenscreen (Supplemental Figure S3A). MACS2 ChIP-seq
peak calling without controls (q-value 510–10) resulted in
the largest peak overlap between the two LFY binding data-
sets. About 99% of this peak overlap was retained when we
called LFY ChIP-seq peaks in MACS2 peak using input con-
trols. In contrast, MACS2 peak calling using mock controls
only retained 77% of the overlap between the two LFY ChIP
datasets. Similar results were obtained when we compared
two FD ChIP-seq datasets generated in different laboratories
and under different plant growth conditions (Collani et al.,
2019; Zhu et al., 2020; Supplemental Figures S3B and S7).
Thus, peak calling in MACS2 using mock controls likely
increases the false negative rate.

Since using input controls for MACS2 peak calling
retained high peak overlap between ChIP-seq datasets for
the same factor while eliminating some false positive peaks,
we tested the effect of duplicate removal, artifactual signal
masking, and summit q-value thresholds on input normal-
ized ChIP datasets. It is quite common to remove all dupli-
cates from ChIP-seq data analysis even though a more
nuanced approach was proposed, as duplicate reads are

known to contribute to true ChIP-seq signal (Chen et al.,
2012, p. 201; Bailey et al., 2013; Carroll et al., 2014; Tian
et al., 2019). One such approach is the MACS2 default
“–keep-dup=auto,” which removes duplicates in excess of
expectation based on the effective genome length and
sampling depth, and those that do not fit a binomial distri-
bution at a given location (P4 1e–5) (Zhang et al., 2008).
We found that removing all duplicates reduced, but did
not eliminate, LFY or FD peaks overlapping with artifactual
signals (Figure 7A and Supplemental Figure S7A). In addi-
tion, removing all duplicate reads reduced the peak overlap
between the two orthogonal LFY or two orthogonal FD
ChIP-seq datasets (Figure 7A and Supplemental Figure
S7A). We conclude that retaining some duplicate reads
enhances peak detection. As expected, the greenscreen or
blacklist filters removed most peaks that overlapped with
universal artifacts, and neither approach adversely affected
peak overlap between the two LFY or between the two FD
datasets (Figure 7A and Supplemental Figure S7A). A small
number of ChIP-seq peaks were in blacklist but not in
greenscreen regions, and hence remained after applying the
greenscreen filter. However, these regions were character-
ized by low input signal and are likely evidence of over
masking by the blacklist (Supplemental Figures S10
and S11).

Finally, we examined the effect of increasing peak calling
stringency on artifactual signal removal by decreasing the
minimum summit q-value threshold. This approach did not
remove artifactual peaks. This was expected, as artifactual
peaks contain ultra-high signals and thus have highly signifi-
cant summit q-values. Lowering the q-value also reduced
the peak overlap between the LFY or the FD datasets
(Figure 7B and Supplemental Figure S7B). We conclude that
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Figure 6 Ultrahigh signals in Arabidopsis Cut & Run datasets correlate with greenscreen regions. Top: greenscreen and blacklist regions. Below:
Cut&Run bedgraph files for IgG, H3, and H3K27me3 from fixed and non-fixed Arabidopsis tissues (Zheng and Gehring, 2019). Ultrahigh artifactual
peaks overlap with greenscreen regions.
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greenscreen or blacklist filters applied to ChIP-seq datasets
effectively remove type I errors and uncover true binding
peaks.

Properties of peaks that are lost when using mock
ChIP reactions as MACS2 controls or when
removing all duplicates
In parallel, we examined the properties of the 1,677 LFY and
5,294 FD ChIP-seq peaks called by applying the above ChIP-
seq pipeline [replicate down sampling before merge, “–keep-
dup=auto” in MACS2, ChIP-seq peak calling using input
controls and removing peaks that overlap with the green-
screen filter], as well as the properties of the peaks removed
by the greenscreen mask. We assigned peaks to genes as

previously described (Zhu et al., 2020; Jin et al., 2021) (see
“Materials and methods). Most of the LFY (470%) and FD
(490%) peaks identified using our ChIP-seq pipeline that
includes greenscreen were located near protein-coding or
microRNA genes. Furthermore, more than half or one quar-
ter of these genes, respectively, were rapidly differentially
expressed after LFY or FD activation (Figure 7C and
Supplemental Figure S7C). In contrast, most of the peaks re-
moved by greenscreen in the LFY (490%) and FD (480%)
ChIP-seq datasets were not located near genes (nor were
they differentially expressed). Moreover, the ChIP-seq peaks
that overlapped with greenscreen regions had SCC signal
peaks at the read length (Supplemental Figure S8), like the
input (Landt et al., 2012). The combined data support the

Figure 7 Optimizing the ChIP-seq peak calling pipeline with filtering. A, Stacked bar chart to assess the impact of calling LFY ChIP-seq peaks in
MACS2 using no control (-), input control (I) or mock control (M), duplicate removal (MACS2 keep dup auto [D] or no duplicates retained [-]),
and masking (none [-], greenscreen [G], and blacklist [B]). Total peak number (“n” value under the x-axis). LFY ChIP-seq peaks (Jin et al., 2021)
that overlap with LFY ChIP-chip peaks (Winter et al., 2011) (bottom bars), and peaks that overlap with the union of blacklist and greenscreen
regions (orange bars with peak numbers; top bars). B, Stacked bar chart to assess the impact of increasing the ChIP-seq peak summit q-value
threshold for calling LFY ChIP-seq peaks. Bar colors as in (A). C, Horizontal stacked bar charts for ChIP-seq peaks (MACS2 “–keep-dup=auto”)
called using input controls. Top: ChIP-seq peaks that overlap with greenscreen (n = 68). Bottom: ChIP-seq peaks do not overlap greenscreen
(n = 1677). Peaks were assigned to genes (legend) or could not be assigned as previously described (Jin et al., 2021) . Genes rapidly differentially
expressed in response to factor binding (round 2 annotation) (Winter et al., 2011; Jin et al., 2021). D, Horizontal stacked bar charts for LFY ChIP-
seq peaks that were lost when using mock instead of input control in MACS2 (n = 693; top) or when removing all duplicates instead of using
MACS2 “–keep-dup=auto” (n = 456; bottom). Peak-to-gene assignment and identification of differentially expressed genes were performed as de-
scribed in (C).
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conclusion that greenscreen removes false positives from
ChIP-seq datasets.

The distinct properties of the true and artifactual ChIP-
seq peaks prompted us to examine the peaks lost when us-
ing mock rather than input control in MACS2 (Figure 7A
and Supplemental Figure S7A), and the peaks lost when re-
moving all duplicates rather than using the MACS2 preset
“–keep-dup=auto” (Figure 7A and Supplemental Figure
S7A). We found that the peaks removed when using mock
controls to call peaks in MACS2, or when excluding all du-
plicate reads from the analysis, mapped near genes, and
showed differential expression at similar levels to true ChIP-
seq peaks (Figure 7D and Supplemental Figure S7D). Our
data suggest that calling peaks using MACS2 duplicate pre-
sets and input controls, followed by the greenscreen filter,
increases the number of potential true positive peaks.

To further test this hypothesis, we applied the ChIP-seq
pipeline (replicate down sampling before merge, “–keep-
dup=auto” in MACS2, input controls, and greenscreen filter)
to all ChIP-seq datasets described in this article (Moyroud
et al., 2011; Sayou et al., 2016; Collani et al., 2019; Goretti
et al., 2020; Romera-Branchat et al., 2020; Zhu et al., 2020;
Jin et al., 2021). Relative to these published datasets, our
pipeline generally identified at least twice as many peaks (n
value in each heatmap row; Figure 8A and Supplemental
Table S7). To assess whether these newly identified peaks
are true peaks, we performed a pairwise peak overlap analy-
sis. We computed the fraction of peaks in a given experi-
ment (rows in Figure 8) that overlapped with ChIP-seq
peaks identified in a second experiment (columns). For pair-
wise comparisons using the same DNA binding factor, peak
overlap was consistently higher with the new ChIP-seq
analysis pipeline. Hypergeometric tests revealed equal signifi-
cance for the peak overlaps of the new pipeline and the
published (smaller) peak sets (Supplemental Figure S9).
Thus, the new ChIP-seq pipeline, which includes greenscreen
masking, identified more true positive peaks than published
procedures. Moreover, the newly identified target genes are
differentially expressed at similar rates to those identified by
the published approaches (Supplemental Figures S10–S12).

In addition, the new ChIP-seq pipeline identified genes in
pathways previously linked to FD/TFL1 (Zhu et al., 2020) in
several of the datasets analyzed, including the chromatin
regulators PICKLE RELATED 1 and BRAHMA, the strigolac-
tone phytohormone response factor SUPPRESSOR of
MAX2 LIKE 6, and the meristem identity regulators LATE
MERISTEM IDENTITY 2 and FRUITFULL (Figure 8B). For
LFY, several new target genes were identified in all datasets,
such as the transcription factor PEAR1, which controls vas-
cular development, and the auxin conjugating protein
DWARF in LIGHT1, while in other cases, new targets were
found in only some of the datasets (chromatin regulator
JMJ30) (Staswick et al., 2005; Gan et al., 2014; Miyashima
et al., 2019; Figure 8C). Thus, the improved ChIP-seq pipeline
removes artifactual signal, calls more true peaks, and identi-
fies additional biologically relevant target genes.

Greenscreen filtering improves the detection of
factor binding site overlap and changes in factor
occupancy
Artifactual signal removal also improves estimates of factor
binding overlap between ChIP-seq datasets. For example,
when considering binding peak overlap in the LFY, FD, and
TFL1 ChIP-seq datasets described above, LFY and FD appar-
ently occupy similar genomic regions in some experiments
without masking or after applying a random mask based on
Pearson correlation analysis and PCA (Figure 9, A, D, E, and
H). Application of the greenscreen (or the blacklist) filter
clearly separated the LFY from the FD/TFL1 bound regions
by Pearson correlation and in the first principal component
of the PCA (Figure 9, B, C, F, and G). In addition, application
of the greenscreen filter allowed us to detect factor binding
under different conditions after greenscreen filtering. For ex-
ample, LFY ChIP-seq data obtained in root explants were
clearly separated from data obtained in reproductive tissues
(Figure 9F). Thus, removing artifactual signal by greenscreen
is critical for deriving biologically relevant information from
comparative ChIP-seq binding analyses.

The importance of masking for the biological conclusions
derived from ChIP-seq datasets was further underscored by
our analysis of the enhancer co-occupancy of different tran-
scription factors. A database for Human and Arabidopsis
ChIP-seq and DNA affinity purification sequencing (DAP-
seq) datasets called ReMap 2020 includes binding informa-
tion for 372 Arabidopsis transcriptional regulators (179
ChIP-seq and 330 DAP-seq datasets) (Chèneby et al., 2020).
This catalog can be used to identify enhancers bound by
many transcription factors, possible stretch or super
enhancers (Chèneby et al., 2020). However, since artifactual
signal masking was not performed, it was difficult to distin-
guish genomic regions to which many proteins bind from
regions of high artifactual signal. Indeed, we found that
6,664 peaks and 91 “cis-regulatory modules” (CRMs) identi-
fied by Remap 2020 overlapped with greenscreen regions
(Figure 10). About 17 of these CRMs contained 100 or more
different transcription factor binding peaks. Hence, analysis
of factor binding and the specific identification of hotspots
should include artifactual signal filters.

Finally, masking artifactual signals allows changes in factor
binding to be properly detected, for example in different ge-
netic backgrounds. In Arabidopsis, PRC2 is recruited to tar-
get loci by class I BPC and C1-2iD Zn-finger transcription
factors (Xiao et al., 2017). Without greenscreen filtering, de-
pletion of PRC2 recruiting factors appeared to have subtle
effects on PRC2 occupancy (Figure 11), perhaps due to
shared ultrahigh artifactual signal between the two ChIP-seq
datasets. Indeed, application of the greenscreen filter dra-
matically reduced background noise and revealed the true
contribution of the PRC2 recruiting factors to PRC2 occu-
pancy. In summary, employing the greenscreen filter
improves the detection of ChIP-seq peak and allows accu-
rate detection of changes in factor occupancy under differ-
ent conditions.
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Discussion
Artifactual signals obscure true correlations between ChIP-
seq replicates or experiments, estimates of changes in factor
binding in different genetic backgrounds or tissues, and the

identification of bona fide multi-factor high-occupancy
regions. The underlying mechanism by which ChIP-seq arti-
facts arise remains unknown; they are likely caused by multi-
ple factors and depend on the quality of the genome
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that overlap with the peaks from experiment Y (in columns) divided by the total number of peaks in experiment X. A, The number of peaks per
experiment are listed on the perimeter of the heatmap. ChIP-seq samples of three factors (LFY, FD, and TFL1) conducted in four different labo-
ratories (Moyroud et al., 2011; Sayou et al., 2016; Collani et al., 2019; Goretti et al., 2020; Romera-Branchat et al., 2020; Zhu et al., 2020; Jin et al.,
2021) were analyzed. MACS2 controls were matched to the corresponding publications. B, Peaks were either identified using the optimized
ChIP-seq pipeline (published previously = false) or as published (published previously = true). Note that published datasets from the Wagner
lab were already greenscreen filtered (Zhu et al., 2020; Jin et al., 2021). Scale below the heatmap: percent overlap. Raw numbers for the heatmap
are listed in Supplemental Table S4. B and C, Examples of new peaks identified (arrows) by applying the ChIP-seq pipeline (equal genome cover-
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annotation (Kundaje, 2013; Carroll et al., 2014; Amemiya
et al., 2019). Artifactual signal in ChIP-seq dataset has previ-
ously been described in many species (Kharchenko et al.,
2008; Park, 2009; Kidder et al., 2011; Chen et al., 2012; Landt

et al., 2012; Bailey et al., 2013; Kundaje, 2013; Carroll et al.,
2014; Amemiya et al., 2019), and reads are commonly
masked from downstream analysis in human, mouse, nem-
atodes, and fruit fly using curated blacklists (Landt et al.,

C D

No Mask Greenscreen Mask

Blacklist Mask Random Mask

A B

G H

No Mask Greenscreen Mask

Blacklist Mask Random Mask

E F

PC
2

(3
2.

2%
) 0.4

0.2
0.0

-0.2
-0.4 PC

2
(1

3.
2%

)

0.5
0.4
0.3
0.2
0.1
0.0

PC1 (47.5%)
0.0 0.1 0.2 0.3 0.4 -0.4   -0.2  0.0 0.2

PC1 (59.8%)

PC
2

(1
3.

5%
)

-0.4  -0.2 0.0 0.2
PC1 (58.6%)

PC
2

(3
2.

4%
) 0.4

0.2
0.0

-0.2
-0.4

PC1 (47.4%)
0.0 0.1 0.2 0.3 0.4

0.5
0.4
0.3
0.2
0.1
0.0

Parcy Wagner

Schmid Coupland

ChIPLab
FD TFL1
LFY

0.00

0.25

0.50

0.75

1.00

PEAR
SO

N
C

O
R

R
ELATIO

N
C

O
EFFIC

IEN
T

Figure 9 Artifactual signal masks reveal biologically relevant relationships between Arabidopsis ChIP-seq datasets. Pearson correlation coefficient
values for FD, LFY, and TFL1 ChIP experiments (Moyroud et al., 2011; Sayou et al., 2016; Collani et al., 2019; Goretti et al., 2020; Romera-Branchat
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2012; Kundaje, 2013; Carroll et al., 2014; Amemiya et al.,
2019). However, in other model and nonmodel organisms,
the identification and removal of the artifactual regions has

not been standardized. Here, we developed the greenscreen
method to identify and filter out the artifactual signal using
a small number of inputs with tools commonly used for
ChIP-seq analysis.

Like for blacklists, greenscreen parameters should be opti-
mized based on both the size of the genome and the quality
of the genome build. Of particular importance is the ultra-
high signal merge parameter. This parameter should be de-
fined empirically by testing greenscreen performance based
on Pearson correlation analysis of ChIP-seq data and Rand
index values from clustering analyses, maximizing overlap
with orthologous datasets while minimizing overlap with
unrelated datasets and the percentage of the genome
masked (Figure 3 and Supplemental Table S3). We chose a
5-kb merge parameter for Arabidopsis, as it results in a
slightly higher overlap with orthogonal ChIP-chip datasets
compared with the 2.5 kb merge parameter (Supplemental
Table S3). Independently, ENCODE blacklist chose a 5-kb
merge parameter for Drosophila, which has a similar ge-
nome size as Arabidopsis (Amemiya et al., 2019). For
humans, we employed a 20-kb merge, since this merge pa-
rameter is used for the human ENCODE blacklist (Amemiya
et al., 2019). Finally, for rice, we employed a 10-kb merge pa-
rameter to generate our greenscreen mask, as the rice ge-
nome is intermediate in size between that of Arabidopsis
and human (Jackson, 2016). In contrast, input peak calling
(MACS25 10–10) and the number of inputs needed to
build the greenscreen filter were the same for Arabidopsis
and human (Figures 3 and 9 and Supplemental Tables S3
and S4).

By identifying and masking ChIP-seq peaks with the green-
screen filter, we improved enrichment of true-positive peaks
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shows blacklist or greenscreen regions (top), signals from the 20 inputs used to generate the greenscreen filter (below), and ChIP-seq factor binding hot-
spots called CRMs defined according to Remap 2020 as merged regions of all nonredundant peaks (Chèneby et al., 2020). Tracks: nonredundant Remap
2020 binding regions (average start and stop sites of overlapping target sites for each given transcription factor) (Chèneby et al., 2020). Different colors
represent different transcription factors (Chèneby et al., 2020). Bottom: Araport 11 Gene models (Cheng et al., 2017).
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and decreased erroneous correlations, revealing true biologi-
cal signals. The application of greenscreen masking to
Arabidopsis ChIP-seq datasets from different laboratories
was as effective at removing artifactual signal as the
Arabidopsis blacklist based on metrics commonly employed
to assess ultrahigh artifactual signal removal (SSD, RSC, and
SCC) (Carroll et al., 2014; Wimberley and Heber, 2020). Both
filters performed equally well in revealing true ChIP-seq rep-
licate and experiment concordance using Pearson correla-
tion analysis or PCA for both Arabidopsis and human ChIP-
seq data. In both Arabidopsis and human ChIP-seq datasets,
greenscreen masks a smaller percentage of the genome
(0.41% and 0.01%, respectively) than blacklisting. The biggest
difference between blacklist and greenscreen is that blacklist
software identifies broader regions. Additional experiments
are needed to determine whether blacklist software is over-
masking the genome. In summary, by applying metrics that
assess artifactual signal removal, such as SCC, RSC, and SSD,
and by revealing correlation structures between ChIP-seq
replicates and experiments that conform with prior data, we
showed that greenscreen removes false positive peaks from
ChIP-seq datasets as effectively as blacklists.

In nonmodel or new model genomes, few sequenced
inputs are generally available. In Arabidopsis, greenscreen fil-
ters based on 20 inputs performed as well as the
Arabidopsis blacklist we generated. Moreover, a greenscreen
filter derived from 20 human ChIP-seq inputs generated a
remarkably similar correlation structure for human ChIP-
seq replicates after filtering as did the published blacklist,
which is based on over 600 inputs (Amemiya et al., 2019).
Indeed, based on the Rand index, as few as two to three
inputs are effective at artifactual signal removal. The inputs
can be from the same experiment as the ChIP-seq datasets:
experiment-matched and unmatched inputs performed
equally well. Hence, greenscreen can be used to improve
ChIP-seq data analysis in any new species using a single
ChIP experiment with as few as two matched inputs. An
additional advantage of the small number of inputs re-
quired is that it is easy to generate a new greenscreen filter
if a new reference genome build is released, or under condi-
tions where massive genome re-arrangements occur, such
as in cancer cell lines (Ballouz et al., 2019; Ghandi et al.,
2019). This flexibility is also useful for partially assembled
genomes or polypoid genomes, like those of many crops.

We present a flexible ChIP-seq analysis pipeline that
incorporates greenscreen. This pipeline uses replicates with
equal genome overage, input controls, and the MACS2 pre-
set “–keep-dup=auto.” We employed down sampling of
high-quality replicates to equal genome coverage to prevent
the replicate with the highest sequencing depth from domi-
nating the analysis in MACS2. Other approaches have been
proposed to address this issue (Yang et al., 2014), and fu-
ture efforts are needed to improve replicate handling in
ChIP-seq analysis. In addition, while mock controls can re-
move artifactual signal (Xu et al., 2021), they also cause the
loss of ChIP-seq peaks found in orthogonal datasets for the

same factor. Because of this and their low overall signal and
high variability, we conclude that mock ChIPs are not a
suitable control for ChIP-seq peak calling in MACS2.
However, mock ChIP datasets are important controls be-
cause they are very sensitive to potential contamination,
another common Type I error in ChIP-seq datasets.
Removing all duplicates does not effectively remove artifac-
tual signal and leads to the loss of ChIP-seq peaks that
overlap with orthogonal datasets for the same factor, which
is in agreement with prior studies showing that duplicate
reads contribute to ChIP-seq signal (Chen et al., 2012; Bailey
et al., 2013; Carroll et al., 2014). The improved ChIP-seq
pipeline, which includes the greenscreen filter, calls more
significant peaks compared with other analyses. The addi-
tional peaks show strong overlap with other ChIP-seq data-
sets for the same factor and are linked to functionally
important, differentially expressed genes and pathways.

In summary, our ChIP-seq pipeline, which incorporates
greenscreen, removes false positive peaks as effectively as
benchmarked approaches and displays high sensitivity for
true peak detection. Moreover, greenscreen filters are gener-
ated with common ChIP-seq analysis tools and using very
few inputs. Hence, greenscreen can readily be adapted to
any organism or genome, as shown here with rice.

Materials and methods

Identification of artifactual signals in ChIP-seq
Single-end reads from 20 ChIP-seq input controls in A. thali-
ana were retrieved from different experiments (Supplemental
Table S1). FASTQC (version 0.11.5) (Simon, 2012) was used
to assess the quality of each sample. Inputs were not consid-
ered for downstream analysis if the average reads did not
have sequencing qualities above Phred33 score 30. After
passing the sequencing quality criteria, inputs were cleaned
with Trimmomatic version 0.39 (LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36) (Bolger et al., 2014). If
needed, the remaining adaptor sequence was removed us-
ing the Trimmomatic ILLUMINACLIP function (2:30:10).
Trimmed reads were then mapped with bowtie2 version
2.4.1 (Langmead and Salzberg, 2012, p. 2) to the TAIR10
(Berardini et al., 2015) Arabidopsis genome using default
parameters. Reads that did not map, did not generate a pri-
mary alignment, did not pass quality checks, did not map
to a nuclear chromosome, or had MAPQ5 30 were elimi-
nated from downstream analyses using samtools version 1.7
(htslib version 1.7) (Li et al., 2009) view (-F 772 -q 30).

To ensure that the samples were in fact ChIP-seq input
controls, we generated SCC plots using the MACS2 version
2.2.7.1 predict function (Zhang et al., 2008) and ChIPQC
1.26.0 (Carroll et al., 2014) for each input and removed any
sample that returned a ChIP-seq experiment signature from
a Watson and Crick strand correlation test (Supplemental
Figure S13). SCC metrics are typically used for quality con-
trol of ChIP-seq to quantify an experiment’s signal-to-noise
ratio (Carroll et al., 2014; Wimberley and Heber, 2020). In
ChIP-seq, distinct Watson and Crick strand read enrichment
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occurs on opposite sides of a factor binding site at a dis-
tance of at least a DNA fragment length apart. Since input
does not include immunoprecipitation of factor-bound
DNA sequences, the input should not show enrichment at
the fragment size or above on a strand-cross correlation
plot (Carroll et al., 2014).

Blacklist generation
Blacklist generation requires both uniquely mappable regions
in the genome and mapped input reads (Supplemental
Figure S2). Uniquely mappable sites were annotated using
UMap (version 1.1.0) (Karimzadeh et al., 2018) (–kmer 8 12)
on the TAIR10 A. thaliana genome assembly (Berardini
et al., 2015). In parallel, high-quality mapped reads
(MAPQ5 30) from our 20 input samples (Supplemental
Table S1) were retained for import into the blacklist tool
and employed in the greenscreen pipeline (described below).
The blacklist tool is hard-coded for blacklist regions in the
human genome. To account for the smaller genome size of
Arabidopsis, we manually modified the code (blacklist.cpp,
line 469) to merge regions within 5 kb rather than 20 kb, as
is done for Drosophila (Amemiya et al., 2019), which shares
a comparable genome size with Arabidopsis. To apply the
blacklist for ChIP-seq analyses, mapped reads overlapping
with blacklist regions are removed with the samtools view
function.

Greenscreen generation
Utilizing the same mapped input reads that we used to gen-
erate the blacklist, we identified peaks from each input sam-
ple individually using MACS2 version 2.2.7.1 (Zhang et al.,
2008, 2) (—keepdup “auto” —no model –extsize [READ
LENGTH] —broad –nolambda -g 101274395). By default,
MACS2 identifies significant signals with a dynamic Poisson
distribution by capturing the local backgrounds in its
lambda parameter (Zhang et al., 2008, p. 2). We set “–
nolambda” to ensure that we specifically capture ultra-high
signals above the global background. Additionally, bypassing
the default MACS2 shifting model, which extends reads
based on what MACS2 estimates to be the samples frag-
ment length, reads were extended in the 50–30 direction
based on each sample’s read length, as determined by
ChIPQC 1.26.0 (Carroll et al., 2014). The effective genome
size was fixed to 85% of the full Arabidopsis genome size
(Chen and Kaufmann, 2017).

To optimize the greenscreen mask, we strove to minimize
Type I error (i.e. false positive) ChIP peaks called by MACS2
while also minimizing the percent of the genome and the
number of genes masked (Supplemental Table S3).
Improvement of ChIP-seq was measured as the enrichment
of peak overlap between ChIP-seq and ChIP-chip datasets
for the same transcription factor (Supplemental Table S3).
In addition, we quantified the result of unsupervised cluster-
ing of pairwise Pearson correlations between ChIP-seq
replicates for the same factors from different laboratories
with that based on biological expectation by calculating
Rand index values (see Figure 3). These combined

investigations defined optimal greenscreen artifactual peaks
as those with an MACS2 q-value5 10–10 and optimal input
peak merging with a maximum merge distance of 5 kb.
After removing peaks with q-value5 10–10 (column 9 in
the broadPeak output file) from each of the 20 inputs, we
concatenated all input peak regions. Lastly, we removed
those regions that did not have significant artifactual peaks
in at least half of the 20 inputs analyzed. To apply the
greenscreen for ChIP-seq analyses, ChIP peaks overlapping
with greenscreen regions are removed with the bedtools in-
tersect function.

ChIP-seq peak calling with blacklist or greenscreen
filters
Raw Arabidopsis ChIP-seq read data were obtained and
cleaned using Trimmomatic version 0.39 (LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 ILLUMINACLIP:TruSeq3-
SE.fa:2:30:10 MINLEN:36). After trimming, the reads were
mapped to the TAIR10 Arabidopsis genome using default
parameters in bowtie2 version 2.4.1. Reads were then filtered
for mapped primary alignments that passed quality checks
and MAPQ5 30 using samtools view (-F 772 -q 30).
Blacklist and greenscreen are two different approaches to re-
move noise from ChIP-seq data. Unlike greenscreen masking,
blacklist masking is performed before peak calling. To imple-
ment blacklist masks, the reads in ChIP-seq and control
samples that overlapped with blacklist regions were re-
moved from downstream analysis using samtools view (-U
[MASKED_READS] -o [ARTIFACT_READS] -L [BLACKLIST]).
BLACKLIST is a bed file containing the blacklist regions. The
two outputs, MASKED_READS and ARTIFACT_READS, con-
tain reads that map outside or inside of blacklist regions,
respectively.

To pool controls or ChIP-seq replicates, reads were ran-
domly down-sampled using biostar145820 (Wang et al.,
2019, p. 201) (–seed 42 -n [DOWNSAMPLED READ
DEPTH]) to match the read-depth of the replicate with the
lowest read depth. Downsampled reads from each replicate
were input to MACS2. When pooling ChIP-seq replicates,
use of high-quality replicates is recommended defined as
replicates that have peak signals with Pearson correlation
coefficient 40.7 after applying the greenscreen filter.

Next, MACS2 version 2.2.7.1 (Zhang et al., 2008, 2) (-t
[CHIP(s)] -c [CONTROL(s)] —keepdup “auto” —nomodel
–extsize [fragment_length] -g 101274395) was utilized to
perform peak-calling on the ChIP-seq samples. For blacklist,
reads that did not overlap with the blacklist mask were
used for ChIP-seq peak calling in MACS2. For greenscreen,
unfiltered reads were employed. In both cases, peaks were
called relative to experiment-matched normalization controls:
input when available; otherwise mock control (Zhang et al.,
2008, p. 2). Reads were extended within MACS2 software in
the 50–30 direction based on each sample’s fragment size de-
termined by ChIPQC 1.26.0 (Carroll et al., 2014). To balance
removing duplicates generated from PCR amplification versus
duplicate reads that originate from independent fragments,
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it is recommended that instead of eliminating all duplicates,
a duplicate threshold per genomic location should be set
based on an experiment’s sequencing depth (Chen et al.,
2012; Bailey et al., 2013; Carroll et al., 2014; Tian et al., 2019).
Therefore, duplicate reads were managed in MACS2 v2.2.7.1
by setting “–keepdups auto.” Peaks with a summit q-value
(column 9 in MACS2 narrowPeak output) less than 10–10

were retained (awk “$94=10”). Additional ChIP-seq quality
measures were discussed previously (Schmitz et al., 2022).

To apply the greenscreen after identification of significant
ChIP-seq peaks as described above, we masked peaks that
overlap with greenscreen regions using bedtools (version
2.26.0) (Quinlan and Hall, 2010) intersect (-wa -v -a
[UNMASKED PEAKS] -b [GREENSCREEN]). UNMASKED
PEAKS refers to the q-value filtered output of MACS2 in
narrowPeak format. GREENSCREEN is a bed file containing
the greenscreen regions.

To assign peaks to genes, we used Araport11 gene annota-
tion of the Arabidopsis genome (Cheng et al., 2017, 1).
Peaks with intragenic summits were first assigned to the
genes to which they were intrinsic. Remaining peaks with
summits at least 4-kb upstream of a gene were then
assigned to the closest upstream peak. If data were available
for rapid (immediate early) gene expression changes after
factor binding, we mapped the remaining orphan peaks
within 10 kb (upstream or downstream) of significantly dif-
ferentially expressed genes (round two annotation) (Zhu
et al., 2020; Jin et al., 2021).

ChIP-seq Pearson correlation and PCA plots
Pearson correlation and PCA plots assess the signal within
regions of interest. All of the ChIP peaks called in each
replicate (Figure 3) or pooled samples (Figure 9) were
concatenated and merged to a final bed file to be used as
regions of interest. Signal files were generated after read ex-
tension to the respective sample’s fragment size and normali-
zation over all mapped ChIP-seq reads or over all reads left
after blacklist masking. Blacklist masking requires read re-
moval, while greenscreen relies on peak removal.

The normalized signal within each of the selected regions
was arranged into a matrix. Pairwise Pearson’s correlation
was calculated across the columns, and unsupervised hierar-
chical clusters (k = 2) were then generated using Ward’s clus-
tering methods (Pearson, 1896; Batagelj, 1988). Heatmaps
and dendrograms were plotted to display these results. To
quantify how well the unsupervised clusters match our hy-
pothesis of how they should cluster based on the known bi-
ology, we calculated the Rand index (Rand, 1971).

Similarly, to visualize the samples using the top two prin-
cipal components, the signals within each of the sample’s
peak regions were also measured using deeptools (3.5.1)
multiBigwigSummary (Ram�ırez et al., 2014). Values for each
sample in the top two principal components were plotted
with the deeptools (3.5.1) plotPCA function (Ram�ırez et al.,
2014).

Generation of the human greenscreen filter
To identify inputs suitable for greenscreen analysis, we ap-
plied ChIPQC to the hg38 mapped inputs used for the hu-
man blacklist (Amemiya et al., 2019) and selected those that
showed a high cross-coverage score at a shift size equal to
the read length (RSC5 3.5, see Supplemental Figure S11).
We optimized the MACS2 q-value to maximize overlap be-
tween EZH2_R1 and EZH2_R2, minimize the overlap be-
tween EZH2_R1/R2 and FUS_R1/R2, and minimize the
percentage of the genome covered (Supplemental Table S4).
The optimal MACS2 q-value was 510–10. We merged peaks
with a distance of less than 20 kb, as was done for the hu-
man blacklist (Amemiya et al., 2019), and removed any
regions that did not show significant artifactual peaks in at
least half of the inputs analyzed.

Generation of the rice greenscreen filter
Single- and paired-end reads from 20 ChIP-seq input con-
trols in O. sativa (cv. Nipponbare) were retrieved from differ-
ent experiments (Supplemental Table S5). Trimmed reads
were mapped to the RGAP version 7.0 rice genome
(Kawahara et al., 2013) with bowtie2 version 2.4.1
(Langmead and Salzberg, 2012) using default parameters.
Reads that did not map, did not generate a primary align-
ment, did not pass quality checks, did not map to a nuclear
chromosome, or had MAPQ5 30 were eliminated from
downstream analyses using samtools version 1.7 (htslib ver-
sion 1.7) (Li et al., 2009) view (-F 772 -q 30).

As for Arabidopsis and human, ChIPQC 1.26.0 and the
MACS2 version 2.2.7.1 predict function (Zhang et al., 2008;
Carroll et al., 2014) were applied to the mapped inputs to
confirm the input features of the samples. Peaks from each
input sample were called using MACS2 version 2.2.7.1
(—keepdup “auto” —no model –extsize [READ LENGTH]
—broad –nolambda -g 373128865, or, —keepdup “auto”
—no model -f BAMPE —broad –nolambda -g 373128865,
for single or paired-end reads, respectively). Peaks with a q-
value 510–10 (Column 9 in the broadPeak output file) were
removed. Taking into account the intermediate size of the
rice genome compared with Arabidopsis and human
(Jackson 2016), input “peaks” were merged that were less
than 10 kb apart. Finally, we removed regions that did not
have significant artifactual peaks in at least half (10) of the
inputs analyzed.

Statistical analyses
Assuming the central limit theorem (Fischer, 2011; Rouaud,
2013), metrics from a sufficiently large sample size (n4 30)
of independent identically distributed values follow a normal
distribution. Otherwise, we applied the Shapiro–Wilk test
(Shapiro and Wilk, 1965) (a4 0.05) to test whether calcu-
lated metrics were normally distributed. If the sample size
was sufficient or the values failed to reject the Shapiro–Wilk
test, parametric statistical tests were applied. To test if more
than two groups’ values originated from a statistically equal
population mean, an analysis of variance (ANOVA) (Girden,
1992) (a4 0.001) test was applied if all group values
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showed a normal distribution. Otherwise, a nonparametric
Kruskal–Wallis H test (Kruskal and Wallis, 1952) was per-
formed, and we proceeded with the analysis if the null hy-
pothesis (no difference between the medians) was
rejected. A Student’s t test (Student, 1908) was used to
compare two groups from normal distributions with equal
variance. A Welch t test (Welch, 1947) was applied to
compare two groups from normal distributions with un-
equal variance. One sample t tests were applied if one
group value was invariant, and two sample t tests were
used for all other comparisons. The Mann–Whitney U
rank (Mann and Whitney, 1947) was conducted on paired
groups, such as metrics before and after masking artifac-
tual regions, which was not assumed to show a normal
distribution. Note that to correct for the fact that the
Mann–Whitney U rank compares a discrete statistic
against a continuous distribution, a 0.5 continuity correc-
tion was applied to the z-score. We applied one-sided sta-
tistical tests when we expected a difference in one
direction only; otherwise two-sided tests were employed.
To account for multiple statistical tests, P-values were ad-
justed using Holm’s correction (Holm, 1979; Supplemental
Data Set S1).

Accession numbers
Sequence data from this article can be found in The
Arabidopsis Information Resource (https://www.arabidopsis.
org) under the following accession numbers: TFL1
(At5g03840), FD (At4g35900), LFY (At5g61850), and FIE
(At3g20740).

Sequence data from this article can be found in the
GenBank/EMBL libraries under the following accession num-
bers: The Arabidopsis ChIP-seq data we analyzed were from
the following publication ids: PRJNA132641 (Moyroud et al.,
2011), PRJNA270526 (Sayou et al., 2016), PRJNA594407(Jin
et al., 2021), PRJNA560053 (Romera-Branchat et al., 2020),
PRJEB24874 (Collani et al., 2019), PRJEB28959 (Goretti et al.,
2020), PRJNA595112 (Zhu et al., 2020), and PRJNA377528
(Xiao et al., 2017). The Cut&Run data we analyzed were from
PRJNA509360 (Zheng and Gehring, 2019). The rice ChIP-seq
data we analyzed were from the following publication ids:
PRJNA588458 (Ren et al., 2021), PRJNA399280 (Chung et al.,
2018), and PRJNA527848 (Li et al., 2019). The following 20
ENCODE input controls were used to generate the green-
screen for the hg38 genome assembly: ENCFF448TFZ,
ENCFF438KJC, ENCFF880UAU, ENCFF516YKX, ENCFF349KXI,
ENCFF251JQE, ENCFF495KCW, ENCFF881SJD, ENCFF433SPB,
ENCFF352RKQ, ENCFF299YGP, ENCFF522TXM, ENCFF272RAI,
ENCFF019HKT, ENCFF908NWF, ENCFF383ZXS,
ENCFF695MWS, ENCFF048BXG, ENCFF295VUB, and
ENCFF476YAR. The source for the 20 Arabidopsis and rice
inputs is listed in Supplemental Tables S1 and S2, respectively.

A github repository is available at: https://github.com/sklas
feld/GreenscreenProject and contains all scripts and files
used to generate Greenscreen and analyze ChIP-Seq experi-
ments, as well as a detailed tutorial.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Artifactual signals are present in
input and ChIP samples.

Supplemental Figure S2. Workflow for generating a
blacklist.

Supplemental Figure S3. Relationship between regions of
artifactual ChIP-signal and supporting experiments.

Supplemental Figure S4. ChIP-seq artifactual signal
distribution.

Supplemental Figure S5. Unsupervised clustering and
heatmaps of signals in FUS, HNRNPK, and PCBP2 human
ChIP-seq samples.

Supplemental Figure S6. Rice greenscreen mask enhances
clustering in ChIP-seq datasets based on biological expectation.

Supplemental Figure S7. Optimizing ChIP-seq peak call-
ing by filtering.

Supplemental Figure S8. SCC plots of LFY and FD ChIP-
seq reads within greenscreen regions show enrichment at a
shift size equal to the read length.

Supplemental Figure S9. Improved ChIP-seq pipeline
results in more true peaks.

Supplemental Figure S10. Significant peaks found in LFY
ChIP-seq data that overlap with blacklist regions but are not
masked by the greenscreen pipeline.

Supplemental Figure S11. Significant peaks found in FD
ChIP-seq data that overlap with blacklist regions but are not
masked by the greenscreen pipeline.

Supplemental Figure S12. Properties of new peaks identi-
fied by our updated ChIP-seq pipeline.

Supplemental Figure S13. SCC profiles of published inputs.
Supplemental Table S1. Inputs used for Arabidopsis

greenscreen and blacklist.
Supplemental Table S2. Arabidopsis greenscreen regions.
Supplemental Table S3. Optimization of greenscreen

parameters.
Supplemental Table S4. Optimization of the human

greenscreen mask.
Supplemental Table S5. Inputs used for rice greenscreen.
Supplemental Table S6. Rice greenscreen regions.
Supplemental Table S7. Overlap between ChIP-seq data-

sets analyzed using the pipeline proposed here compared
with published datasets.

Supplemental Data Set S1. Statistical tests used in
figures.

Acknowledgments
We thank Tian Huang for help with the development of the
improved ChIP-seq pipeline and Dr. Roberto Bonasio for
comments on the manuscript.

Funding
This work was supported by the National Science
Foundation Division of Integrative Organismal Systems
grants 1953279 and 1905062.

Tool to remove noise from ChIP-seq data THE PLANT CELL 2022: 34; 4795–4815 | 4813

https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://www.arabidopsis.org
https://www.arabidopsis.org
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://github.com/sklasfeld/GreenscreenProject
https://github.com/sklasfeld/GreenscreenProject
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koac282#supplementary-data


Conflict of interest statement. All authors declare no conflict
of interest.

References

Amemiya HM, Kundaje A, Boyle AP (2019) The ENCODE blacklist:
identification of problematic regions of the genome. Sci Rep 9:
9354

Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, Madrigal
P, Taslim C, Zhang J (2013) Practical guidelines for the compre-
hensive analysis of ChIP-seq data. PLoS Comput Biol 9: e1003326

Ballouz S, Dobin A, Gillis JA (2019) Is it time to change the refer-
ence genome? Genome Biol 20: 159

Batagelj V (1988) Generalized ward and related clustering problems.
In HH Bock, ed, Classification and Related Methods of Data
Analysis. Springer Berlin Heidelberg, Berlin, Germany, pp 67–74

Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E,
Huala E (2015) The Arabidopsis information resource: making and
mining the “gold standard” annotated reference plant genome.
Genesis 53: 474–485

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trim-
mer for illumina sequence data. Bioinformatics 30: 2114–2120

Carroll TS, Liang Z, Salama R, Stark R, de Santiago I (2014)
Impact of artifact removal on ChIP quality metrics in ChIP-seq and
ChIP-exo data. Front Genet 5: 75

Chen D, Kaufmann K (2017) Integration of genome-wide TF binding
and gene expression data to characterize gene regulatory networks
in plant development. Methods Mol Biol 1629: 239–269

Chen Y, Negre N, Li Q, Mieczkowska JO, Slattery M, Liu T, Zhang
Y, Kim TK, He HH, Zieba J, et al. (2012) Systematic evaluation of
factors influencing ChIP-seq fidelity. Nat Methods 9: 609–614

Chèneby J, Ménétrier Z, Mestdagh M, Rosnet T, Douida A,
Rhalloussi W, Bergon A, Lopez F, Ballester B (2020) ReMap
2020: a database of regulatory regions from an integrative analysis
of human and Arabidopsis DNA-binding sequencing experiments.
Nucleic Acids Res 48: D180–D188

Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel
S, Town CD (2017) Araport11: a complete reannotation of the
Arabidopsis thaliana reference genome. Plant J 89: 789–804

Chung PJ, Jung H, Choi YD, Kim JK (2018) Genome-wide analyses
of direct target genes of four rice NAC-domain transcription fac-
tors involved in drought tolerance. BMC Genomics 19: 40

Collani S, Neumann M, Yant L, Schmid M (2019) FT modulates
genome-wide DNA-binding of the bZIP transcription factor FD.
Plant Physiol 180: 367–380

Fischer H (2011) A History of the Central Limit Theorem: From
Classical to Modern Probability Theory. Springer, Berlin, Germany

Gan ES, Xu Y, Wong JY, Goh JG, Sun B, Wee WY, Huang J, Ito T
(2014) Jumonji demethylases moderate precocious flowering at ele-
vated temperature via regulation of FLC in Arabidopsis. Nat
Commun 5: 5098
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Blanchet S, Bastien O, Thévenon E, Weigel D, et al. (2011)
Prediction of regulatory interactions from genome sequences using
a biophysical model for the Arabidopsis LEAFY transcription factor.
Plant Cell 23: 1293–1306

Park PJ (2009) ChIP-seq: advantages and challenges of a maturing
technology. Nat Rev Genet 10: 669–680

Pearson K (1896) VII. Mathematical contributions to the theory of
evolution—III. Regression, heredity, and panmixia. Phil Trans R Soc
Lond A 187: 253–318

Planet E, Attolini CSO, Reina O, Flores O, Rossell D (2012)
htSeqTools: high-throughput sequencing quality control, process-
ing and visualization in R. Bioinformatics 28: 589–590

Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26: 841–842

Ram�ırez F, Dündar F, Diehl S, Grüning BA, Manke T (2014)
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