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Abstract 
A recently published macrogenetic dataset of California’s flora and fauna, CaliPopGen, comprehensively summarizes population genetic re-
search published between 1985 and 2020. Integrating these genetic data into the requisite “best available science” upon which conservation 
professionals rely should facilitate the prioritization of populations based on genetic health. We evaluate the extent to which the CaliPopGen 
Dataset provides genetic diversity estimates that are 1) unbiased, 2) sufficient in quantity, 3) cover entire species’ ranges, and 4) include poten-
tially adaptive loci. We identified genetic diversity estimates for 4,462 spatially referenced populations of 432 species, confirming California’s 
rich published history of population genetics research. Most recent studies used microsatellites markers, which have uniquely high levels of 
variation, and estimates of all genetic metrics varied significantly across marker types. Most studies used less than 10 loci for inferences, rend-
ering parameter estimates potentially unreliable, and covered small spatial extents that include only a fraction of the studied species’ California 
distribution (median 16.3%). In contrast, the ongoing California Conservation Genomics Project (CCGP) aims to cover the full geographical and 
environmental breadth of each species’ occupied habitats, and uses a consistent approach based on whole-genome data. However, the CCGP 
will sequence only 12% of the number of individuals, and covers only about half the evolutionary diversity, of the CaliPopGen Database. There is 
clearly a place in the evaluation of the genetic health of California for both approaches going forward, especially if differences among studies can 
be minimized, and overlap emphasized. A complementary use of both datasets is warranted to inform optimal conservation decision-making. 
Finally, a synopsis of the available population genetic data for California, all other US states and 241 other countries, allows us to identify states 
and countries for which meaningful data summaries, such as CaliPopGen, could be collated and others, which have limited published data avail-
able and are prime targets for future, empirical work.
Key words: California Conservation Genomics Project, California Floristic Provence, CaliPopGen, CCGP, landscape genomics, multispecies conservation, 
spatial conservation prioritization

Introduction
Conservation practitioners, from federal and state agencies to 
local nonprofits, protect and enhance habitats that sustain spe-
cies over the long term. This requires identifying ecosystems 
that are necessary to protect, habitats that require restoration, 
and populations that are at risk of extinction (Soulé 1985). 
Increasingly, conservation management includes information 
about the genetic health of populations (Murphy and Weiland 
2016), ranging from measures of genetic diversity and het-
erozygosity, to determining genetic effective population size, 
to the estimation of the effects of landscape features, both 
natural and anthropogenic, on levels of gene flow between 
populations (Holderegger et al. 2019). Integrating genetic 
data into the requisite “best available science” upon which 

conservation professionals rely provides a unique benefit to 
the decision-making process by allowing practitioners to pri-
oritize land for acquisitions based on the genetic health of 
populations, and to identify source populations for genetic 
rescue (Frankham et al. 2019). This information is also cru-
cial for establishing baselines for conservation, assessing the 
success of recovery actions, and identifying barriers to species 
recovery (Kardos 2021).

Several recent efforts have synthesized genetic metrics for 
hundreds of species and thousands of spatially georeferenced 
populations, including the MacroPopGen Database for 
the Americas (Lawrence et al. 2019), and the CaliPopGen 
Database for California (Beninde et al. 2022). The CaliPopGen 
Database provides an extensive database of spatially 
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referenced population genetic data from the peer-reviewed 
literature published over the last 35 yr for populations in 
California. This historical database encompasses the shifting 
baselines of population genetics research from its infancy to 
the present, an astonishing progression of advances in ge-
nomic technologies, statistics, and geospatial analyses, and 
more generally, tracks our understanding of genomic struc-
ture and function over time (Allendorf et al. 2010; Schweizer 
et al. 2021). As a result of these changes in technology and 
approach, the “best available science” for one species may 
be based on entirely different data types and analyses than 
for another, although both are used to make conservation 
decisions.

This variability can lead to great disparities in the quality, 
reliability, and utility of genetic data, although many data users 
may be unaware that such variation exists or is important 
(Shafer et al. 2015). For example, it has been demonstrated 
that population-level estimates of genetic diversity can vary 
substantially, both quantitatively and in rank order, depending 
on the marker type used, and markers have gone through sev-
eral complete turnovers in the last few decades (Allendorf et al. 
2010; Beninde et al. 2022). In one thorough example, estimates 
of expected heterozygosity generated using microsatellites and 
genome-wide single nucleotide polymorphisms (SNPs) were not 
significantly correlated in the model plant species Arabidopsis 
halleri (Fischer et al. 2017). The same study found correlated 
estimates of FST between microsatellite and SNP markers, al-
though microsatellite estimates were generally higher than 
those based on SNPs. A similar study in the brown trout, Salmo 
trutta, revealed that among-population FST estimates were sim-
ilar between microsatellites and SNPs, as were the rank order 
of populations for allelic richness and heterozygosity, while 
effective population size estimates based on the 2 marker 
types were uncorrelated (Lemopoulos et al. 2019). Similarly, 
a reexamination of genetic variation in the critically endan-
gered Magdelena River turtle Podocnemis lewyana across 
its range in Columbia by Gallego-García et al. (2021) found 
that the long-held inference of the species as an extreme out-
lier for low genetic diversity based on microsatellites did not 
hold up when thousands of SNPs were examined: P. lewyana 
diversity was still low, but not lower than other endangered 
turtles. What these and many other studies demonstrate is the 
importance of marker type when evaluating raw estimates 
of genetic diversity for any given species or population. Even 
within the same marker types, the number of loci can be im-
portant when quantifying spatial population structure using 
microsatellites (Rosenberg et al. 2002), or SNPs (Willing et al. 
2012; McCartney-Melstad et al. 2018).

To best inform conservation decision-making, genetic data 
need to conform to a number of assumptions and prerequisites. 
Data should 1) be unbiased and comprehensive with respect 
to collection locations to allow for accurate spatial prioritiza-
tion; 2) provide genetic metrics that can be used directly for 
prioritization of populations, such as heterozygosity, allelic 
richness, and effective population size; 3) be available across 
the entire species’ range to capture genetic patterns across all 
environmental gradients; and 4) include potentially adaptive 
loci that may inform future genetic rescue efforts.

Here, we make use of the CaliPopGen Database, a com-
prehensive compilation of studies published on the popula-
tion genetics of California flora and fauna between 1985 and 
2020, and explore the utility of this dataset, and the litera-
ture on which it is based, for conservation decision-making. 

The publication by Beninde et al. (2022) primarily describes 
the creation and organization of the database for those 
members of the community who can utilize it for diverse re-
search questions. More detailed analyses of patterns of ge-
netic diversity, the spatial distribution of sampling within and 
between species across California, as well as more focused 
comparisons across related taxa and ecosystems, remain to 
be explored.

At the center of the analyses presented here are the raw 
estimates of several standard genetic metrics, including het-
erozygosity and allelic richness, which we assess for their 
ability to deliver comprehensive and comparable information 
within and between species. Specifically, we quantify both the 
total number of population-level estimates of genetic metrics, 
and the differences among these estimates depending on the 
genetic marker type used, to summarize our current state of 
population genetic knowledge across California. We also cal-
culate the proportion of the geographic range for each species 
that is covered by these earlier studies, the number of listed 
(under federal and state regulatory acts) species for which ge-
netic data are available, and the distribution of sampling sites 
by land use type and accessibility. Because California is the 
most populous state in the United States, has a high density of 
research institutions, and is located in a biodiversity hotspot, 
we tested the expectation that California ranks highly in 
the number of population genetics publications produced 
among all 50 US states and 241 countries globally. This syn-
opsis of the available population genetic data also allows us 
to identify states and countries for which meaningful data 
summaries, such as CaliPopGen, could be collated and other 
states and countries, which have limited published data avail-
able and are prime targets for future work. Finally, we con-
trast identified shortcomings in the CaliPopGen Database to 
the aims of the ongoing California Conservation Genomics 
Project (CCGP, Shaffer et al. 2022) and assess its potential to 
generate these missing genetic data.

Materials and methods
Genetic metrics and marker types
We compared the estimates of 8 commonly used metrics of ge-
netic diversity summarized in the Population Genetic dataset 
of CaliPopGen: expected and observed heterozygosity, al-
lelic richness, nucleotide diversity, genetic effective popula-
tion size, percent polymorphic loci, haplotype diversity, and 
inbreeding coefficients across the 4 most commonly em-
ployed marker types: allozymes (allozy.), mitochondrial DNA 
sequences (mtDNA), nuclear DNA sequences (nDNA), and 
microsatellites (microsat.). We restricted our analysis to this 
subset of marker types because there were data for fewer than 
100 populations for each of the other marker types (amplified 
fragment length polymorphism [AFLP] = 92, chloroplast DNA 
[cpDNA] = 3, plastid DNA [ptDNA] = 39, random amplified 
polymorphic DNA [RAPD] = 16, ribosomal DNA [rDNA] 
= 52, restriction fragment length polymorphism [RFLP] = 5, 
sex-linked loci = 2, and single-strand conformation polymor-
phism [SSCP] = 4). We calculated the number of populations, 
species, and published studies available for each of the marker 
types, for the full dataset as well as for a subset that only in-
cluded studies with a minimum of 10 loci to at least partially 
guard against variance derived from a limited number of loci 
(Rosenberg et al. 2002). We collapsed the estimates of “allelic 
richness” and “alleles per locus” as reported in CaliPopGen 
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into one metric because they are highly correlated: comparing 
data for 174 populations that had both metrics available 
returned a strongly positive association that was highly sig-
nificant (Pearson’s correlation r = 0.894, df = 173, P < 0.001). 
We tested for differences of genetic diversity estimates by 
marker type using Kruskal–Wallis tests and used Dunn’s tests 
for pairwise comparisons. All analyses were conducted using 
R Statistical Software (v4.1.2; R Core Team 2021).

Spatial distribution and extent of studies
Species are very often nonhomogeneous across their entire 
range, which may limit the utility of local scale landscape ge-
nomics studies for making inferences about a species across 
its broader range (Trumbo et al. 2013). We examined the de-
gree to which study extents of CaliPopGen covered the range 
of species in California. We first calculated the area of each 
study extent for a species as the minimum convex polygon 
(MCP) of all sampling locations in a study via the mcp() 
function in the r-package “adehabitatHR” (v0.4.19; Calenge 
2006). If multiple species were part of a single study, we 
generated separate study extents for each. Similarly, if a single 
species was included in 2 or more publications, study extents 
were generated separately for each of the studies and their 
areas calculated separately. We then estimated the California 
range of all species contained in CaliPopGen, as the MCP of 
georeferenced (≤250 m accuracy), research-grade observations 
(up to 10,000 per species) from iNaturalist (www.iNaturalist.
org), retrieved using the get_inat_obs() function in the “rinat” 
package (v0.1.9; Barve et al. 2022). We express the fraction 
of the range of species covered by study extents as the pro-
portion of a study’s MCP divided by the MCP of the full 
range of the given species in California. We excluded species 
for which there were less than 4 localities available in either 
the CaliPopGen Database or iNaturalist (this is the minimum 
number of points required by the mcp() function). We note 
that this approach is specifically quantifying the fraction of 
a species’ range covered by individual studies, rather than 
the composite of several studies that may focus on a given 
taxon. To evaluate the efficacy of our approach in estimating 
the range of a species based on iNaturalist observations, we 
used Pearson’s correlations to evaluate the potential influ-
ence of the number of iNaturalist observations on the area of 
MCPs. Calculating species ranges from iNaturalist data likely 
underestimates the full area of the range, as observations on 
iNaturalist are unlikely to cover the full range of species.

Previous summaries of the ecological literature have 
demonstrated that sample availability varies with land use 
type, and sites that are easily accessible, such as those along 
roads and close to cities, are often overrepresented (Martin et 
al. 2012; Zizka et al. 2021). To evaluate such spatial biases in 
the distribution of CaliPopGen localities, we quantified the 
accessibility of sites as the value of the human influence index 
at each site. This index summarizes human population size 
and access infrastructure, including roads, rivers, and railway 
tracks (Sanderson et al. 2002). We also evaluated the distribu-
tion of CaliPopGen localities among USGS land cover classes 
(U.S. Geological Survey 2014) to determine whether certain 
land cover classes were over- or underrepresented in the liter-
ature. We tallied the observed number of study sites in each 
land cover class and compared it to the number of expected 
sites, if sampling sites were distributed in proportion to the 
relative area of each land cover class in California.

Endangered species in California
We cross-referenced the list of federally listed species and 
populations (U.S. Fish & Wildlife Service 2022) to the 
CaliPopGen Database to quantify how many of the 287 listed 
populations and species have been studied to date using pop-
ulation genetics.

Estimated availability of population genetic data in 
other US states and countries
Our expectation is that California may be over-studied rela-
tive to many other states and countries, given its high human 
populations size, high concentration of universities and re-
search funding, its location within a biodiversity hotspot (the 
California Floristic Provence), and its generally proactive ap-
proach to environmental stewardship. To estimate how much 
published information similar to that in the CaliPopGen 
Database is likely available for other US states and for other 
countries, we compared the results obtained from the Web 
of Science (WOS) Core Collection (https://webofknowledge.
com/) using the same search criteria as was used to generate 
CaliPopGen from 1900 to 2022 (topic = (California*) AND 
topic = (genetic* OR genomic*) AND topic = (species OR 
taxa* OR population*, see Beninde et al. (2022) for a full 
description of the search criteria). We replaced “California*” 
with each of the other US states and with 241 countries (in-
cluding constituent countries and territories).

We gathered additional information on all 50 US states 
to explore variation in the number of publications retrieved 
by the WOS searches, and, by inference, the intensity of past 
population genetic research efforts, including the number of 
research institutions (U.S. Department of Education 2020), 
National Science Foundation funding (NSF 2020), Gross 
Domestic Product (GDP, U.S. Department of Commerce 
2022), electoral votes of states in the 2020 presidential elec-
tion (Federal Election Commission 2021), and the number 
of federally listed species under the US Endangered Species 
Act (U.S. Fish & Wildlife Service 2022). We used random 
forest models (Breiman 2001), implemented in the r-package 
“randomForest” (v4.7-1.1; Liaw and Wiener 2022), to quan-
tify the importance of each of these variables as predictors for 
our primary response variable, the number of publications 
retrieved by WOS searches. The importance of predictors is 
quantified by the % increase in the mean squared error of 
prediction (%IncMSE) after permuting this variable in the 
out-of-bag cross-validation.

Relevance of the published literature to 
conservation in California
We quantified how many CaliPopGen studies used the word 
“conservation” in their title to assess the original intent of 
studies with respect to conservation questions.

Results
The original intended application of the existing literature 
to conservation questions was relatively modest, and only 
20 publications included the term “conservation” in their 
title, out of the total 450 publications that constitute the 
CaliPopGen Database.

In total, the subset of the CaliPopGen Database explored 
here contains data on 4,462 populations with informa-
tion for at least one of the 8 genetic metrics derived from 
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allozymes, nDNA, mtDNA, or microsatellites. The number 
of population-level estimates available for each marker type 
and each of the 8 genetic diversity estimates is summarized 
in Table 1. Estimates for all genetic metrics were signifi-
cantly different between marker types (Table 2). All pair-
wise comparisons of expected and observed heterozygosity 
and allelic richness, the most commonly reported variables, 
were significantly different among marker types, with the ex-
ception of the mtDNA–nDNA comparison of allelic richness 
(Table 2). Significance of pairwise differences between marker 
types was more variable for the other genetic metrics (Table 
2). For the 2 most commonly reported variables (Fig. 1), me-
dian values of expected heterozygosity were 0.13 (allozymes), 
0.16 (nDNA), 0.49 (mtDNA), and 0.59 (microsatellites), 
while median values of allelic richness were 1.4 (allozymes), 
1.9 (nDNA), 2.7 (mtDNA), and 4.5 (microsatellites). More 
than half of all populations were studied using 9 or fewer 
loci, and the dataset was reduced to 2,069 populations when 
setting a minimum threshold of 10 loci.

The study extent of the 255 CaliPopGen studies with at 
least 4 unique sample sites had a median area = 9,365 km2, 
while the range extent of the 339 species with at least 4 
unique occurrence records in iNaturalist had a median area 
= 98,292 km2, or roughly 10-fold larger (Fig. 2A). Of those 
studies, 217 corresponded to species we quantified ranges for 
(as estimated in iNaturalist), and the median proportion of 
the species range covered by study extents was 16.3%. The 
genetic study extent of only 10 species covered >100% of the 
species range, and most of these were from freshwater or ma-
rine studies with a low corresponding number of observations 
on iNaturalist (median iNaturalist occurrences = 10 vs. me-
dian iNaturalist occurrences of other species = 261). In ad-
dition, the MCP calculated from iNaturalist observations 

Table 1. The number of population-level estimates available from the 
CaliPopGen Database, for all genetic metrics and the most commonly 
reported marker types, and the total number of populations, species, and 
studies per marker type.

Genetic metric Allozyme nDNA mtDNA Microsatellite 

Expected  
heterozygosity

489 240 130 2,138

Observed  
heterozygosity

575 155 74 2,021

Nucleotide  
diversity

2 173 684 12

Effective  
population size

1 19 24 236

Percent  
polymorphic loci

216 15 16 54

Haplotype di-
versity

0 39 367 0

Inbreeding  
coefficient value

90 169 5 953

Allelic richness 339 95 65 1,916

Total number of 
populations

670 450 896 2,473

Total number of 
species

93 59 164 192

Total number of 
studies

69 42 109 200

Table 2. Results of Kruskal–Wallis tests of estimates of genetic metrics 
by marker type (first row per genetic metric, in bold) and results of 
Dunn’s test for significant differences between pairwise comparisons by 
marker type (the following rows per genetic diversity metrics, in italics).

Genetic metric Chi2/pairwise 
comparison 

df/Z P adj. 

Expected heterozygosity 1,234.8 3 <0.0001*

Expected heterozygosity allozy.–microsat. −31.34 <0.0001*

Expected heterozygosity allozy.–mtDNA −13.11 <0.0001*

Expected heterozygosity microsat.–
mtDNA

3.07 0.0043*

Expected heterozygosity allozy.–nDNA −2.66 0.0078*

Expected heterozygosity microsat.–nDNA 20.00 <0.0001*

Expected heterozygosity mtDNA–nDNA 9.96 <0.0001*

Observed heterozygosity 1,105.6 3 <0.0001*

Observed heterozygosity allozy.–microsat. −32.41 <0.0001*

Observed heterozygosity allozy.–mtDNA −7.37 <0.0001*

Observed heterozygosity microsat.–
mtDNA

5.26 <0.0001*

Observed heterozygosity allozy.–nDNA −6.67 <0.0001*

Observed heterozygosity microsat.–nDNA 11.13 <0.0001*

Observed heterozygosity mtDNA–nDNA 2.16 0.0305*

Nucleotide diversity 38.974 3 <0.0001*

Nucleotide diversity allozy.–microsat. 0.49 1.0000

Nucleotide diversity allozy.–mtDNA 1.39 0.6555

Nucleotide diversity microsat.–
mtDNA

2.10 0.1776

Nucleotide diversity allozy.–nDNA 0.69 1.0000

Nucleotide diversity microsat.–nDNA 0.38 0.7038

Nucleotide diversity mtDNA–nDNA −5.86 <0.0001*

Effective population size 47.042 3 <0.0001*

Effective population size allozy.–microsat. −0.94 0.3478

Effective population size allozy.–mtDNA −1.79 0.2214

Effective population size microsat.–
mtDNA

−4.13 0.0002*

Effective population size allozy.–nDNA −2.24 0.1005

Effective population size microsat.–nDNA −5.69 <0.0001*

Effective population size mtDNA–nDNA −1.54 0.2469

Percent polymorphic loci 30.296 3 <0.0001*

Percent polymorphic loci allozy.–microsat. −4.37 0.0001*

Percent polymorphic loci allozy.–mtDNA 1.98 0.0948

Percent polymorphic loci microsat.–
mtDNA

4.14 0.0002*

Percent polymorphic loci allozy.–nDNA −2.56 0.0314*

Percent polymorphic loci microsat.–nDNA −0.06 0.9482

Percent polymorphic loci mtDNA–nDNA −3.33 0.0035*

Haplotype diversity 5.0507 1 0.0246*

mtDNA–nDNA

Inbreeding coefficient 24.505 3 <0.0001*

Inbreeding coefficient allozy.–microsat. 2.89 0.0154*

Inbreeding coefficient allozy.–mtDNA 0.67 1.0000

Inbreeding coefficient microsat.–
mtDNA

−0.02 0.9834

Inbreeding coefficient allozy.–nDNA 4.78 <0.0001*

Inbreeding coefficient microsat.–nDNA 3.66 0.0012*

Inbreeding coefficient mtDNA–nDNA 0.69 1.0000

Allelic richness 701.6 3 <0.0001*
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was significantly and positively correlated to the total 
number of available iNaturalist observations (r = 0.55, df = 
335, P < 0.0001), suggesting that range size as estimated by 
iNaturalist does, to some extent, reflect the number of avail-
able observations, and may well be a lower estimate of the 
true species range for species with few observations.

Studied populations in the California population genetics 
literature were located in easily accessible areas more fre-
quently than expected, while less accessible areas were under-
sampled, clearly indicating some form of access bias present 
in the dataset (Fig. 2B). Studied populations were also more 
frequently located in developed land cover classes, open water 
and wetlands than expected, while shrub/scrub, cultivated 
crops, barren land, and evergreen forest are underrepresented 
(Fig. 2C).

Of the 287 federally listed species and populations 
known to occur in California, 49 (17%) are contained in 
the CaliPopGen Database. Another 9 listed species are also 
contained in CaliPopGen, but it is unclear from the records 
if the data covers the specific, listed population. Thus, at a 
maximum, 20% (58/287) of the federally listed species in 
California have received some attention from population ge-
netics research.

Querying the WOS, California has the highest total 
number of publications of all US states and ranks 8th 
among US states in a comparison of the proportion of 
publications per surface area (Fig. 3; Table 3). In compar-
ison to other countries of similar size (area of California 
±20%), California ranks 2nd behind Japan both in the total 
number of publications and the proportional number of 
publications per surface area (Table 4). In comparison to all 
other countries California ranks 10th in the total number of 
publications (Fig. 4), behind China, Japan, India, Brazil, the 
United States, Australia, Mali, Mexico, and South Africa, in 
descending order. The total number of publications retrieved 
for the United States is 12,003, which is equal to only 34.5% 
of the sum of all publications of US states queried separately, 
at 34,797 (Table 3).

Random forest models explained 33.1% of the variation 
in the total number of publications obtained by querying the 
WOS for US states. The most important predictors were the 
number of listed species (44.7%IncMSE), human population 
size (35.1%IncMSE), surface area (34.7%IncMSE), amount 
NSF funding (32.6%IncMSE) and GDP (28.7%IncMSE). 
Predictors summarizing the number of research institutions, 
i.e. only R1, R1–R3, all 4-yr program institutions and all 

institutions, or the political convictions of states were less im-
portant (all <16%IncMSE).

Discussion
California has a rich history of research on the population 
and landscape genetics of its native flora and fauna. Most 
of the work thus far conducted in the state has focused on 
a single species, or at most a handful of species (with the 
exception of Dawson 2001; Kelly and Palumbi 2010), and 
drew inferences from a variety of marker types and analyt-
ical techniques that have evolved over time. The popula-
tion genetics research community has carried out hundreds 
of genetic studies for hundreds of taxa in California, but no 
comprehensive synthesis has yet been produced for this vast 
collection of studies. Where do we stand with conservation 
genomic data for California? And what does that data sum-
mary imply about the state of knowledge for other states in 
the US and other countries around the world?

The CaliPopGen Database (Beninde et al. 2022) is a com-
prehensive collection of population genetic data for studies 
in California. The full database includes primary popu-
lation genetic information for 5,453 populations of 448 
species from 4 main marker types. In comparison to other 
macrogenetic databases (Miraldo et al. 2016; Lawrence et al. 
2019; Manel et al. 2020; Millette et al. 2020; Theodoridis et 
al. 2020), when expressed as a proportion of the study area, 
CaliPopGen contains at least an order of magnitude more 
species (0.83/1,000 km2), populations (9.59/1,000 km2), and 
individuals (284.04/1,000 km2) than those previous analyses, 
making it one of the richest regional data compilations in the 
world. However, most studies in the CaliPopGen Database 
were motivated by evolutionary or landscape genetic 
questions, rather than conservation per se. Only 20 of 450 
total publications in the CaliPopGen Database include the 
term “conservation” in their title. This may explain the low 
number of estimates of some genetic metrics, especially essen-
tial metrics for conservation such as effective population size, 
which was only reported for 280, or 6.3% of populations 
(Table 1). It also may explain why so few federally listed spe-
cies, between 17% and 20% of the 287 in the state, have any 
population genetic data available in the published literature. 
In the past, evolutionary and ecological scientists have often 
eschewed working on threatened species (Britt et al. 2018), 
potentially due to difficulties in obtaining permits and limita-
tions on sampling imposed by regulatory agencies. Although 
we lack data on this, our sense is that this is changing—as the 
biodiversity crisis continues to grow in California and glob-
ally, a greater research effort is being focused on threatened 
and endangered taxa.

The subset of the CaliPopGen Database analyzed here 
contains genetic information for 4,462 populations of 432 
species and most commonly reported genetic metrics were 
estimates of heterozygosity, both expected and observed, and 
allelic richness, which each comprised estimates for several 
hundred populations across multiple marker types. A critically 
important result from our analysis is that the greatest number 
of population estimates were derived from microsatellites 
(55.1%), followed by mtDNA (20%), allozymes (14.9%), 
and nDNA (10%). Estimates of all genetic metrics were sig-
nificantly different across marker types and for most pair-
wise comparisons of marker types (Table 2). Among markers, 

Genetic metric Chi2/pairwise 
comparison 

df/Z P adj. 

Allelic richness allozy.–microsat. −25.19 <0.0001*

Allelic richness allozy.–mtDNA −5.71 <0.0001*

Allelic richness microsat.–
mtDNA

5.64 <0.0001*

Allelic richness allozy.–nDNA −4.24 <0.0001*

Allelic richness microsat.–nDNA 9.44 <0.0001*

Allelic richness mtDNA–nDNA 1.74 0.0815

Significance of tests is denoted with an asterisk (*); allozy. = allozymes and 
microsat. = microsatellites.

Table 2. Continued
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microsatellite markers, and sometimes mtDNA, were the con-
sistent outliers. Microsatellites yielded higher estimates for 
both expected heterozygosity and allelic richness, followed, in 

descending order, by mtDNA, nDNA, and allozymes (Fig. 1). 
This is in line with previous direct comparisons of estimates 
from different marker types; microsatellite markers specifically 

Fig. 1. Histograms showing the distribution of estimates of expected heterozygosity (A) and allelic richness (B) by marker type. Gray bars in the 
background show counts of estimates of all marker types and dashed lines indicate the median estimate, separately for each marker type.



610 Journal of Heredity, 2022, Vol. 113, No. 6 

tend to have higher estimates of heterozygosity than nDNA 
(Fischer et al. 2017; Lemopoulos et al. 2019). While there is 
nothing inherently wrong with such estimates, the predom-
inance of microsatellite studies, combined with their very 
high estimates of genetic variation, suggest that great caution 

should be used when comparing them to studies conducted 
using other marker types. In a conservation context, these in-
herent differences could have considerable consequences for 
prioritization of populations based on levels of standing ge-
netic variation if study-specific differences, such as marker 

Fig. 2. (A) The area of study extents of all CaliPopGen studies (in red) and the size of study species entire ranges within California (dark gray). On 
average study extents covered 16.3 % of species ranges; (B) Distribution of the human influence index across California (in gray), as a proxy for 
accessibility of sites, where low values indicate little human influence and high values great human influence, and for CaliPopGen sample sites (in red); 
(C) the distribution of CaliPopGen sampling sites (in red) compared with their expected frequency (in gray) across 16 land use types.

Fig. 3. The number of publications resulting from searching the Web of Science (WOS) using the same search string as used in CaliPopGen, but 
replacing “California” with each US state: the total number of publications (A) and the number of publications per 1,000 km2 (B). Hawaii and Alaska 
were omitted from maps. Hawaii ranked 4th by the total number of publications (1,578; see Table 3) and 1st by the number of publications per 1,000 
km2 (55.7). Alaska ranked 5th by the total number of publication (1,483) and 48th by the number of publications per 1,000 km2 (0.9).
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type, are not accounted for—Gallego-García et al. (2021) is a 
case in point for endangered turtles. A results of studies across 
marker types is to standardize to a mean of 0 and a variance 
of 1, which at least places them on a comparable scale of var-
iation (Kort et al. 2021). However, this cannot compensate 
for differences in spatial scale and sample densities between 
studies (Leigh et al. 2021), nor for the uniquely high mutation 
rate of microsatellites that may result in different rank orders 
of genetic variation across populations and species compared 
with more standard nuclear DNA markers (Gallego-García 
et al. 2021).

Despite a higher density of population genetic data avail-
able from CaliPopGen than from other macrogenetic dataset, 
the coverage of species ranges is limited: on average, each 
study covers 16.3% of a species range in California (Fig. 2A). 
Again, when the goals of a study are to quantify regional ge-
netic variation on a specific landscape, or learn about realized 

migration or gene flow, there may not be a need to cover the 
full range of a species. However, conservation actions benefit 
from comprehensive, species-wide analyses to prioritize man-
agement units, or species, for management actions (Frankham 
et al. 2019), and the existing data fall short of this objective 
for most taxa. However, summaries of genetic diversity across 
species and the entire state are a more achievable goal with the 
existing data. One of the major impediments to comprehen-
sive analyses, in California and elsewhere, is spatial sampling 
biases. Across species, we detected considerable sampling 
bias, similar to other summaries of sample site locations in 
ecological research (Martin et al. 2012; Zizka et al. 2021). 
Samples tended to be collected at locations that are easily 
accessible with a higher-than-expected frequency, and were 
likely to come from developed land, open water, or wetlands 
(Fig. 2B and 2C). More remote areas, especially shrub/scrub, 
barren land and evergreen forests are underrepresented in the 
existing data, highlighting spatial knowledge gaps. Whether 
this is driven by the distribution of private and public lands, 
proximity to urban areas and research institutions, or other 
factors is still unclear. However, this legacy of working in 
convenient, rather than more ecologically intact landscapes, 
is striking and implies that we systematically under sample 
those landscapes that may tell us the most about populations 
in least-impacted, more natural settings. Similar to findings for 
agricultural areas in a global analysis of ecological research 
activities (Martin et al. 2012), cultivated crops in California 
(Fig. 2C), were underrepresented in the existing data. This 
is especially surprising when considering the high levels of 
human infrastructure and thus accessibility in most agricul-
tural areas, and probably indicates that researchers either are 
less interested in agricultural areas than in any other accessible 
land use types, in fact have less access than assumed given 
that private ownership predominates agricultural landscapes, 

Table 3. The 20 US states with the highest number of Web of Science 
(WOS) publications per surface area, using the same search criteria as for 
California but replacing for State names (WOS hits = the raw number of 
results; WOS per 1,000 km2 = the number of WOS hits per 1,000 km2).

State Population Total km2 WOS 
hits 

WOS per 
1,000 km2 

N listed 
species 

Hawaii 1,415,872 28,313 1,578 55.7 474

Rhode 
Island

1,059,361 4,001 153 38.2 9

Delaware 973,764 6,446 153 23.7 14

Florida 21,477,737 170,312 2,606 15.3 133

Connecticut 3,565,278 14,357 217 15.1 12

New Jersey 8,882,190 22,591 301 13.3 17

Massachu-
setts

6,892,503 27,336 345 12.6 18

California 39,512,223 423,967 5,202 12.3 287

Virginia 8,535,519 110,787 1,109 10.0 76

New York 19,453,561 141,297 1,239 8.8 24

Maryland 6,045,680 32,131 256 8.0 23

Georgia 10,617,423 153,910 1,032 6.7 76

North  
Carolina

10,488,084 139,391 899 6.4 69

Washington 7,614,893 184,661 1,153 6.2 31

New  
Hampshire

1,359,711 24,214 145 6.0 12

Mississippi 2,976,149 125,438 684 5.5 52

New Mexico 2,096,829 314,917 1,640 5.2 58

South  
Carolina

5,148,714 82,933 416 5.0 39

Oregon 4,217,737 254,799 1,051 4.1 45

Wisconsin 5,822,434 169,635 670 3.9 24

Ohio 11,689,100 116,098 410 3.5 27

Pennsylvania 12,801,989 119,280 340 2.9 16

Illinois 12,671,821 149,995 417 2.8 33

Texas 28,995,881 695,662 1,434 2.1 105

Alaska 731,545 1,723,337 1,483 0.9 8

Additionally, we included States that have a large population (>10 million) 
and/or have a high number of publications (>1,000). The table is sorted by 
the number of publications per unit area. California is highlighted in italics 
for reference.

Table 4. The number of WOS hits for countries with a comparable size to 
California (±20% of surface area), using the same search criteria as for 
California but replacing for country names.

Countries Total 
km2 

WOS 
hits 

WOS per 
1,000 km2 

GDP 
(millions) 

Japan 377,976 17,412 46.1 4,937,421.88

California 423,967 5,202 12.3 3,513,347.50

Spain 505,992 5,112 10.1 1,425,276.50

Germany 357,114 3,375 9.5 4,223,116.21

Norway 385,207 2,559 6.6 482,437.02

Sweden 450,295 2,319 5.1 627,437.90

Congo 342,000 849 2.5 12,523.96

Morocco 446,550 1,076 2.4 132,725.26

Cameroon 475,442 860 1.8 45,238.61

Papua New 
Guinea

462,840 728 1.6 26,594.28

Paraguay 406,752 383 0.9 38,986.81

Iraq 438,317 411 0.9 207,889.33

Zimbabwe 390,757 345 0.9 26,217.73

Uzbekistan 447,400 122 0.3 69,238.90

Turkmeni-
stan

488,100 83 0.2 45,231.43

The table is sorted by the number of publications per unit area. California 
is highlighted in italics for reference.
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or that many species simply are no longer found in agricul-
tural areas. However, given the enormous acreage devoted to 
agriculture (according to the California Department of Food 
and Agriculture, roughly 43 million of California’s 100 mil-
lion acres are devoted to agriculture, see https://www.cdfa.
ca.gov/agvision/docs/Agricultural_Loss_and_Conservation.
pdf), the potential for agricultural landscapes to harbor many 
components of local species assemblages is an important con-
servation question that certainly deserves additional, imme-
diate research attention.

In comparison to other US states as well as comparable 
countries globally, California has among the richest literature 
on population genetics (Fig. 3; Tables 3 and 4). The state has 
almost double the number of publications (using our search 
criteria in WOS) as compared with Florida, the second ranked 
state. When ranked by the number of publications per unit of 
land area of each state, California ranks 8th, and all higher-
ranking states are considerably smaller in size (0.9% to 
40.2% of California; Table 3). In comparison to countries of 
similar geographic size, California ranks second, with Japan 
having both the highest absolute number of publications 
as well as the highest number of publications per unit area 
(Table 4; Fig. 4). This implies that, from a historical research 
perspective, California represents essentially a best-case 
scenario in terms of our current levels of knowledge, and 
emphasizes the generally sparse spatial coverage of popula-
tion genetic data across other parts of the United States and 
many other countries. Economic status of states and coun-
tries seems to be linked to the number of publications; GDP 
accounted for 28.7%IncMSE in analysis of states, and only 
one of the lowest publishing countries that is similar in size 
to California (Uzbekistan) does not belong to the UN defined 
list of countries of the Global South. However, there is also 
considerable variation in countries of the Global North (Fig. 
4) and within the states of the United States. For US states, 
the number of endangered species present was the most im-
portant factor to explain the total number of publications, 

while, surprisingly, the number of research institutions or 
political orientation of states played only minor roles. We 
note that while California does reside in one of the world’s 
biodiversity hotspots (Mittermeier et al. 2005), there are also 
well-documented biases associated with listing status among 
taxonomic groups as well as differences in listing propensities 
among states, all of which contribute to regional differences 
in the density of endangered species (Puckett et al. 2016).

CaliPopGen showcases the vast amount of data that can be 
retrieved from the primary literature and analyzed for current 
and historical trends. California has among the richest pop-
ulation genetic literature available, both within the United 
States and globally. Even so, the genetics are not “done” for 
California, and we have delineated key data gaps that need 
addressing. Older markers are idiosyncratic, and coverage 
across groups is spotty at best. There are certainly valuable 
single-species studies, and with more sophisticated analyses, 
there may well be statewide patterns to be resolved across 
taxonomic groups. However, persistent differences in spatial 
scale and sample numbers/densities across studies probably 
cannot be corrected for statistically, and going forward, we 
should also be looking for new opportunities to generate ge-
netic data using consistent, repeatable methodologies and 
sampling schemes.

The CCGP (Shaffer et al. 2022, www.ccgproject.org), 
and the Los Angeles Genomics Project (LAG, Beninde et 
al. unpublished data) are 2 such initiatives that are being 
spearheaded in California. As described in this issue of 
the Journal of Heredity, there are a number of distinct 
advantages of the CCGP over a compilation of histor-
ical data as embodied in CaliPopGen, as well as some 
disadvantages. On the plus side, projects like the CCGP can 
be planned with common goals and objectives that cannot 
be achieved with post hoc meta-analyses. Given its goals 
and objectives, all of the 153 species projects in the CCGP 
aim to cover the geographical and environmental breadth 
of occupied habitats, avoiding the problem of partial range 

Fig. 4. The number of publications resulting from searching the WOS using the same search string as used in CaliPopGen, but replacing “California” 
with each country. This map shows the total number of publications only (not corrected for unit area).

https://www.cdfa.ca.gov/agvision/docs/Agricultural_Loss_and_Conservation.pdf
https://www.cdfa.ca.gov/agvision/docs/Agricultural_Loss_and_Conservation.pdf
https://www.cdfa.ca.gov/agvision/docs/Agricultural_Loss_and_Conservation.pdf
http://www.ccgproject.org
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coverage that characterizes the existing literature. The 
CCGP also uses a unitary approach to data collection and 
analysis—all species have a very high-quality reference ge-
nome, all resampling is exclusively with whole-genome 
resequencing at a target 10× coverage, and all bioinfor-
matics and landscape genomic analyses are run through the 
same pipelines with the same filters and summary statistics. 
This uniformity of approach should allow the CCGP to in-
corporate adaptive genetic diversity into spatial analyses 
and prioritization recommendations consistently across the 
state, information that CaliPopGen is lacking. Using the 
same, whole-genome methodology also allows for unbi-
ased estimates of genetic metrics, which are indispensable 
for spatially prioritizing populations with high levels of ge-
netic diversity. The disadvantages primarily center on the 
number of species and populations that can be covered. The 
CCGP has covered roughly half of the evolutionary diver-
sity contained in the historical database (Toffelmier et al. 
2022), and doing so required a level of funding and coordi-
nation that has never been available previously.

Finally, the CCGP achieves high geographic coverage of 
species ranges by implementing an individual-level sampling 
scheme for all projects. This type of sampling is optimally 
suited for inferences of landscape connectivity (Prunier et 
al. 2013) and greatly reduces the number of samples neces-
sary and the field and molecular bench workloads. In total, 
CCGP aims to sequence about 20,000 individuals from as 
many unique locations. On the other hand, the population-
level sampling schemes employed by studies summarized in 
CaliPopGen, stem from a more modest 4,462 sites sampled 
for 168,240 individuals (these numbers are true for the subset 
of the dataset created for this study, the full CaliPopGen 
Database contains higher numbers). Population-level samples 
provide more robust estimates of population genetic diversity 
as they average across multiple individuals.

In conclusion, there is clearly a place for both single-species 
analyses at the population level, and synthetic ones like the 
CCGP going forward, and conservation science needs both. 
The key is to develop future studies so that multiple lines of 
evidence can be brought together seamlessly to enhance con-
servation actions. Doing so requires coordination, across the 
research community and the agency–university nexus.
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