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Abstract 

Background:  Chronic conditions place a considerable burden on modern healthcare systems. Within New Zealand 
and worldwide cardiovascular disease (CVD) affects a significant proportion of the population and it is the leading 
cause of death. Like other chronic diseases, the course of cardiovascular disease is usually prolonged and its manage-
ment necessarily long-term. Despite being highly effective in reducing CVD risk, non-adherence to long-term medica-
tion continues to be a longstanding challenge in healthcare delivery. The study investigates the benefits of integrat-
ing patient history and assesses the contribution of explicitly temporal models to medication adherence prediction in 
the context of lipid-lowering therapy.

Methods:  Data from a CVD risk assessment tool is linked to routinely collected national and regional data sets 
including pharmaceutical dispensing, hospitalisation, lab test results and deaths. The study extracts a sub-cohort from 
564,180 patients who had primary CVD risk assessment for analysis. Based on community pharmaceutical dispensing 
record, proportion of days covered (PDC) ≥ 80 is used as the threshold for adherence. Two years (8 quarters) of patient 
history before their CVD risk assessment is used as the observation window to predict patient adherence in the subse-
quent 5 years (20 quarters). The predictive performance of temporal deep learning models long short-term memory 
(LSTM) and simple recurrent neural networks (Simple RNN) are compared against non-temporal models multilayer 
perceptron (MLP), ridge classifier (RC) and logistic regression (LR). Further, the study investigates the effect of length-
ening the observation window on the task of adherence prediction.

Results:  Temporal models that use sequential data outperform non-temporal models, with LSTM producing the best 
predictive performance achieving a ROC AUC of 0.805. A performance gap is observed between models that can 
discover non-linear interactions between predictor variables and their linear counter parts, with neural network (NN) 
based models significantly outperforming linear models. Additionally, the predictive advantage of temporal models 
become more pronounced when the length of the observation window is increased.

Conclusion:  The findings of the study provide evidence that using deep temporal models to integrate patient his-
tory in adherence prediction is advantageous. In particular, the RNN architecture LSTM significantly outperforms all 
other model comparators.
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Background
The management of CVD risk is necessarily longterm. 
Such management typically involves disease modifying 
life style adjustments such as smoking cessation, weight 
management, diet and physical activity as well as long-
term drug therapy for patients assessed to be above the 
threshold for pharmacological intervention. Studies in 
the United States have found that among adult popu-
lations only a small fraction (2% and 3%) maintain a 
healthy lifestyle as indicated by nonsmoking, ideal BMI, 
daily consumption of fruits and vegetables and regular 
physical exercise [1, 2]. This signals that from a popula-
tion health perspective, it is insufficient to rely on lifestyle 
intervention alone in CVD risk management. For patients 
assessed to be above the threshold for pharmacological 
treatment, effective drugs exist [3]. Lipid-lowering treat-
ment forms a key component of CVD management and 
statins are the preferred lipid-lowering drug [4, 5] with 
strong evidence of effectively lowering CVD risk in pri-
mary and secondary prevention [3, 6]. However, main-
taining adherence to long-term medication presents a 
significant challenge to patients benefiting from treat-
ment, with non-adherence associated with risk of major 
adverse cardiovascular events and mortality [7, 8].

Medication adherence is defined by the International 
Society for Pharmacoeconomics and Outcomes Research 
(ISPOR) as “the extent to which a patient acts in accord-
ance with the prescribed interval and dose of a dosing 
regimen.” [9]. Commonly used CVD medications such as 
antiplatelets, statins, beta blockers, ACE inhibitors and 
angiotensin II antagonists are generally well tolerated 
with severe side effects occurring very rarely [10]. Despite 
the estimated 60–80% reduction to CVD risk provided by 
these preventive medicines [11] non-adherence to long-
term medication continues to be a longstanding chal-
lenge in healthcare delivery. Evidence from a number 
of studies have found non-adherence to common CVD 
medication to be up to 80% for antihypertensives, as high 
as 75% for statins and up to 29 % for antiplatelets [12–18].

Both international and New Zealand studies have 
found long-term adherence to statin (a class of lipid-
lowering drugs)—e.g. simvastatin, atorvastatin—to be 
low [12, 13]. In New Zealand, adherence to statin over 
the 3 years after an Acute Coronary Syndrome (ACS) was 
found to be 66%, although it was 82% for those on a sta-
tin prior to ACS admission [19]. In primary prevention in 
New Zealand, statin adherence in the first year after ini-
tiation of treatment was found to be 63% [20]. A US study 
found non-adherence to statin to be as high as 56.0% for 
secondary prevention patients and 56.4% for primary 
prevention patients [21]. Similarly, a UK based study 
found patterns of discontinuation of treatment for 41% 
of patients who are using statin as secondary prevention 

and 47% of patients who are using statin as primary 
prevention, although many of these patients restarted 
their treatment following discontinuation (75% and 72% 
respectively) [22].

The lack of adherence has dramatic clinical and eco-
nomic implications. Poor adherence has been associ-
ated with approximately twice the risk of death in CVD 
patients [23, 24]. In the United States, approximately 
125,000 deaths, at least 10% of all hospitalisation and 
significant increase in morbidity are attributed to lack 
of adherence, annually costing the healthcare system an 
estimated $100 billion to $289 billion [25]. As such, non-
adherence represents a large flaw in current healthcare 
delivery for chronic condition management. The ability 
to accurately identify patients at risk of non-adherence 
could provide a valuable component for clinical decision 
support to target adherence-promoting interventions.

Patients’ adherence to therapy can be measured in a 
number of ways; through direct means such as monitor-
ing a drug or its metabolite concentration in blood or 
urine, or through indirect means including patient self-
reporting, the use electronic monitoring devices that 
record the frequency and time pill bottles have been 
used, and pill counts [26–28]. A method for measuring 
adherence that is used with increasing prevalence is by 
leveraging pharmacy dispense data due to it being non-
invasive, low cost and its ability to cover a large popula-
tion. Although this method makes the assumption that 
patterns of dispensing are consistent with patterns of 
actual ingestion/consumption, studies have validated 
the approach and have shown that this assumption is an 
acceptable estimate [29, 30]. Adherence measures based 
on pharmacy dispensing data are numerous; two widely 
used measures are medication possession ratio (MPR) 
and proportion of days covered (PDC) [31, 32]. Formally, 
MPR is defined as

and PDC is defined as

The notion of “covered” stands for days in the period 
where the patient can reliably be in possession of their 
medication. For example, the interval between the dis-
pense date and the number of days supplied after it are 
considered to be “covered”. Alternatively, if there exists 
a gap between when the supply runs out and the sub-
sequent dispense this gap will be considered not “cov-
ered”. Both measures calculate a percentage value for 
adherence. Often, the implementation of MPR does not 

(1)MPR =

(

Sum of days’ supply in period

Number of days in period

)

× 100

(2)PDC =
Number of days in period “covered”

Number of days in period
× 100.
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account for gaps, allowing subsequent overlapping dis-
penses to close earlier gaps leading to overestimation of 
adherence and potentially a nonsensical value of larger 
than 100%. PDC is a more conservative measure that 
accounts for gaps and in addition captures the notion of 
“stockpile”. Stockpile can happen when there is an over-
lapping of days supplied between dispenses or when 
there is leftover medication from the previous periods 
assessed. For PDC, overlapping subsequent dispenses are 
shifted allowing succeeding gaps to be covered by sup-
ply in the stockpile. PDC avoids the type of overestima-
tion that MPR is prone to and is always ≤ 100%. Figure 1 
illustrates their differences. Here, two identical dispens-
ing patterns are shown where in the case of MPR, the 
presence of significant overlaps between supplies close 
off an earlier gap producing an MPR of >100%. Whereas 
in the case of PDC the earlier gap is maintained through 

shifting subsequent dispense to the end of the stockpile 
when overlaps of supplies occur, producing a PDC of 97%.

Logistic regression is a statistical method for modelling 
the relationship between one or more predictor variables 
and a dichotomous response variable of the values 1 or 0. 
It is a function of the odds ratio, and it models the pro-
portion of new incidents developed within a given period 
of time. Mathematically, the logistic regression model 
logit(p) is defined by

where β0 is the constant and β1, . . . ,βm−1 are the coeffi-
cients of the predictor variables x1, . . . , xm−1 , p is the 
probability of the event and p

1−p is the odds for an event 
[33]. The above equation can also be written as

(3)
p

1− p
= exp(β0 + β1x1 + · · · + βm−1xm−1)

Fig. 1  MPR and PDC of two identical dispense patterns. Each dispense represented by the red bar is of 90 days supply, with the left ending of the 
bar representing the dispense date and the right ending of the bar representing when the supply of the dispense will run out. Top: MPR sums days 
supply indiscriminately with respect to overlaps and gaps resulting in a value of > 100%. Bottom: PDC accounts for gaps and addresses overlaps by 
shifting subsequent dispense date to when supply runs out
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Equation  4 is referred to as the logit transformation of 
the probability of an event, showing that the natural log 
of the odds ratio is a linear function of predictor variables 
x [33, 34]. The probability of the event p can be calculated 
by [33]

Regression based analysis is widely used in epidemiologi-
cal studies to uncover the relationship between risk fac-
tors and an outcome of interest [35, 36]. In the context 
of CVD, logistic regression is commonly incorporated in 
research as a representative traditional statistical method 
to be compared against more recent methods such as 
decision tree, gradient boosting as well as less interpret-
able methods such as SVM, NN, and random forest [37–
40]. Researchers have shown the model is competitive 
and is a valuable tool for risk prediction under certain 
conditions: moderate sample size ( ∼  10,000 patients), 
small incident rates, and a limited number of predictors 
[39].

Ridge regression and its classification variant ridge 
classifier are linear models that address the problem 
of multicollinearity in the predictor variables [41]. The 
models are part of a family of penalised regression mod-
els including Lasso [42] and Elastic Net [43] that adds a 
penalty to the loss. This penalty constrains and shrinks 
the size of the model coefficients, which has a regulari-
sation effect and prevents overfitting. Formally, the ridge 
regression minimizes

Here, n is the number of samples, p is the number of 
model coefficients, Y is the response variable, X is the 
predictor variable and L2 ≥ 0 is the regularisation 
parameter. The left hand side of Eq. 6 is the sum of the 
squared estimate of error and the right hand side of the 
equation is the penalty term. Ridge regression places 
a quadratic constraint on β s, where the regularisation 
parameter L2 controls the amount of shrinkage [44]. 
L2 is a hyperparameter, the value of which needs to be 
searched, typically through a cross-validation procedure. 
For classification problems, ridge classifier first modifies 

(4)ln

(

p

1− p

)

= β0 + β1x1 + · · · + βm−1xm−1

(5)

p =
exp(β0 + β1x1 + · · · + βm−1xm−1)

1+ exp(β0 + β1x1 + · · · + βm−1xm−1)

=
exp(xβ)

1+ exp(xβ)

=
1

1+ exp(−xβ)

(6)
n

�

i=1



Yi −

p
�

j=1

Xijβj





2

+ L2

p
�

j=1

β2
j .

the binary response to − 1 and 1 and then treats the task 
as a regression task, minimising the loss in Eq.  6. The 
sign of the regressor’s prediction then represents the pre-
dicted class.

Ridge regression/classification has shown to be a prom-
ising modelling technique in the domain of epidemiology, 
particularly in high dimensional settings where the num-
ber of features is large, such as in genomic data analysis 
[45, 46]. As a comparatively more interpretable model, 
it has shown to be competitive against models with the 
capacity to model non-linear relationships such as Sup-
port Vector Machines (SVM) and neural networks (NN) 
[47].

A multilayer preceptron (MLP) is a densely connected 
feedforward neural network that in its most simple form 
consists of 3 layers: input, hidden and output. In con-
trast to a recurrent neural network, feedforward means 
information flows from one end of the network to the 
other without any feedback connections. A feedforward 
network defines a mapping of y = f (x; θ) where x is the 
input, y the output and θ the learnt parameters that best 
approximate the function. Commonly represented as a 
composite of functions f (x) = f (3)(f (2)(f (1)(x))) where 
f (i) represents the ith layer [48]. For a MLP, θ consists of 
the weight matrix W  and the bias vector b . Mathemati-
cally, a 3-layer MLP is defined as

Here, W (i) , b(i) and φ(i) are the weights, bias and activa-
tion for the ith layer. h(i) is the output of the layer i. The 
network can be trained end-to-end using backpropaga-
tion. Conventionally, with the exception of the output 
layer, φ is a non-linear activation, common among which 
are sigmoid, hyperbolic tangent also known as tanh or 
the more recently developed rectified linear unit (ReLU). 
It is the non-linear activation that provides the expres-
sive power of MLP. Even with only a single hidden layer, 
an MLP can be universal (represent arbitrary functions) 
under certain technical conditions [49]. Increasing the 
depth of the network allows the network to represent 
complex functions more compactly. The hidden layer(s) 
of MLP can be thought of as learning nonlinear feature 
mapping, transforming a nonlinearly separable represen-
tation of the features to one that is linearly separable [48, 
49]. This enables MLP to represent nonlinear relation-
ships, overcoming the limitations of linear models. MLP 
is often used as an NN comparator among a number of 
other classification approaches for prediction tasks in the 
biomedical domain [37–39, 50]. While some studies have 
shown the strength of MLP over other classical machine 

(7)

h(1) = φ(1)(W (1)x + b(1))

h(2) = φ(2)(W (2)h(1) + b(2))

y = φ(3)(W (3)h(2) + b(3)).
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learning techniques such as LR, classification and regres-
sion tree, gradient boosting, and random forest [37, 38], 
other studies have shown that MLP is not always superior 
[39, 50]. Primarily, MLP is known as a model that can 
capture complex non-linear relationships and interac-
tions among the predictor variables, and is the simplest 
manifestation of a class of machine learning algorithms 
(NN). Within the context of this study, the limitation of 
MLP is that the model is intrinsically non-temporal, and 
is unable to model temporal relationships and interac-
tions. While MLP is not explicitly a temporal model, it 
is flexible and will serve as a comparison for the perfor-
mance of other models.

Recurrent Neural Networks (RNNs) are connection-
ist models that include edges connecting across adjacent 
time steps. At time t the input to node h(t) is comprised 
of both the current input data x(t) and the hidden node 
values from the previous time step h(t−1) . At each t the 
hidden node’s value h(t) is then used to calculate the net-
work’s output ŷ(t) . The forward pass at each time step of a 
RNN can be fully specified by two equations.

where Whx is the weight matrix between the input and 
the hidden node, Whh is the recurrent weight matrix con-
necting the hidden layer between adjacent time steps and 
Wyh is the weight matrix between the hidden node and 
the output. bh and by are the bias vectors for the hidden 
node and output respectively. σ is a sigmoid activation 
function and softmax is a softmax activation function 
[51]. Other activation functions may be used, commonly 
used activations include, ReLU and tanh [52].

RNNs suffer from a problem known as ‘vanishing’ or 
‘exploding’ gradient. By unfolding the recurrent edges of 
the hidden layer, RNNs can be interpreted as deep NNs 
with one layer per time step where the weights are shared 
across time steps. The widely used algorithm backprop-
agation through time (BPTT) for training RNNs is the 
application of backpropagation through the (unfolded) 
network across time steps. However, as outlined by [53] 
training RNNs using gradient descend is difficult. The 
problems arise when the error signal propagated back-
wards in time vanishes or explodes as the evolution of 
the backpropagated error exponentially depends on 
the weights of the recurrent edge. Earlier experiments 
showed that backpropagation was unable to discover 
contingencies that span long temporal intervals, settling 
in suboptimal solutions that learnt short-range depend-
encies but failed to learn dependencies that are long-
range [53].

(8)h(t) = σ(Whxx(t) +Whhh(t−1)
+ bh)

(9)ŷ
(t)

= softmax(Wyhh(t) + by)

To address the difficulties in training RNNs, Hochreiter 
and Schmidhuber introduced Long Short-Term Memory 
(LSTM) [54]. LSTM features a constant error carrousel 
(CEC) to allow constant error to flow through the self-
connected units, a multiplicative input gate unit and a 
multiplicative output gate unit to protect the network’s 
memory from perturbation by irrelevant inputs as well as 
irrelevant memory perturbing other units. The extended 
unit is called a memory cell. The proposed LSTM solved 
numerous complex tasks requiring the learning of long-
range dependencies that were unable to be solved by pre-
vious RNN algorithms. Gers et al. further added a forget 
gate unit to LSTM so that it may overcome the weakness 
of the internal cells’ values growing without bounds when 
the network is learning from continual input streams that 
are not previously segmented into training sequences 
with clearly demarcated beginnings and ends [55]. The 
forget gates learn to reset the contents of the memory 
cells once they are no longer needed. Since its intro-
duction, forget gates have proven effective and are now 
standard in LSTM implementations [51]. The full algo-
rithm of LSTM with forget gate is given by the following 
equations:

Here g(t) is the input node that takes activation from the 
input layer x(t) and the hidden layer h(t−1) . The super-
scripts t and t − 1 indicate time steps, where t is the cur-
rent time step and t − 1 the previous time step. Wgx and 
Wgh are weights for the input layer to the input node and 
the hidden layer to the input node respectively. φ is a tanh 
activation function for the summed weighted input and 
bias vector bg . i(t) , f (t) and o(t) are the input, forget and 
output gate units. Each gate also takes activation from 
the summed weighted x(t) , h(t−1) and their respective 
bias vectors. Here, σ is a sigmoid function; if the value of 
the gate is one, all flow is passed through, if the value is 
zero, the flow is entirely blocked. s(t) is the internal state 
of the memory cell. ⊙ denotes pointwise multiplication. 
The value of the internal state is updated by the sum of 

(10)g(t) = φ(Wgxx(t) +Wghh(t−1)
+ bg )

(11)i(i) = σ(Wixx(t) +Wihh(t−1)
+ bi)

(12)f (t) = σ(Wfxx(t) +Wfhh(t−1)
+ bf )

(13)o(t) = σ(Woxx(t) +Wohh(t−1)
+ bo)

(14)s(t) = g(t) ⊙ i(t) + s(t−1)
⊙ f (t)

(15)h(t) = φ(s(t))⊙ o(t)
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the input node g(t) multiplied by the input gate unit i(t) 
and the internal state from the previous time step s(t−1) 
multiplied by the forget gate unit f (t) . The value of the 
hidden layer h(t) is then derived first by passing the inter-
nal state s(t) through a tanh function and then by multi-
plying the value of the output gate unit o(t).

Recently, a number of researchers have applied RNN, 
in particular, LSTM in the biomedical domain. The task 
of making predictions in the healthcare domain is influ-
enced by a recency effect akin to human memory as well 
as simultaneously requiring learning the dependencies 
of distant past events, for these reasons the architecture 
of LSTM is well suited. These studies include [56] where 
LSTM is used to model multivariate pediatric intensive 
care time series to predict diagnoses and [57] where 
LSTM is used to jointly analyse episodic clinical events 
and continuous monitoring data in the ICU settings to 
predict deterioration of patient conditions and their 
length of stay.

Pham et  al.  [58] proposed an extension to the LSTM 
model called DeepCare. The model regulates the input 
gate of LSTM with information on the patient’s diagnoses 
and admission method (planned or unplanned) and regu-
lates the forget and output gates with information about 
the patient’s diagnoses and procedures or medications 
received. DeepCare not only was able to learn long term 
dependencies in a patient’s disease trajectory, it can learn 
the confounding interaction between disease progression 
and treatment. The authors demonstrated the superior-
ity of DeepCare at the task of diagnosis and intervention 
prediction against a Markov model and a plain RNN for 
two distinct diseases; diabetes and mental health. In the 
same study, DeepCare was shown to be superior to Sup-
port Vector Machine (SVM) and Random Forest in pre-
dicting future risk of readmissions.

In one particular recent study LSTM was applied to the 
task of medication adherence prediction. In this study, 
patients who were on self-administered injection therapy 
were monitored through a internet of things (IoT)-con-
nected smart sharps bin. Data collected from the smart 
bin was then used to develop ensemble and deep learning 
machine learning models to predict patient adherence at 
the next scheduled injection [59]. Against model com-
parators including: extreme gradient boosting, extremely 
randomized trees, random forest, gradient tree boosting, 
MLP, and RNN; LSTM was found to be the best perform-
ing model on the held-out test set, achieving AUC of 
0.8902 [59].

Similar to the above mentioned study, other recent 
studies in medication adherence have also underscored 
the temporal patterns present in patient adherence 
behaviour and the relationships between clinical events 
in patients history to adherence [60, 61]. To the best of 

our knowledge, the prediction of long-term medication 
adherence using temporal deep learning models on a 
large routinely collected population data set has not been 
investigated. The current study integrates patient history 
into the analytics task and aims to identify individuals 
within a population who might be at risk of medication 
non-adherence. The experiment focuses on lipid-low-
ering pharmacological treatment. All patients included 
in the cohort of the study have had at least one dispense 
of lipid-lowering medication in the observation window, 
with a two week look ahead past the index date. Informed 
by clinical practice, the study makes the assumption that 
once the patient has been prescribed a lipid-lowering 
medication, the patient should continue to be prescribed 
lipid-lowering medication; thus the lack of dispensed 
medication supply indicates a flaw in the CVD risk man-
agement process, such as failure to get repeat prescrip-
tions or failure to have them dispensed.

Given the prolonged nature of pharmacological therapy 
for CVD, the hypothesis for this study is that computa-
tional methods that allow the integration of patient his-
tory including the history of pharmaceutical dispensing, 
hospitalisation, and lab test results (indicating patients’ 
physiological changes), through temporal modelling will 
aid predictive performance. The study investigates explic-
itly temporal models for sequential modelling including 
Long short-term memory (LSTM) recurrent neural net-
work (RNN) architecture and simple recurrent neural 
networks (Simple RNN) as well as non-temporal models 
multilayer perceptron (MLP), ridge classifier (RC) and 
logistic regression (LR). LSTM contains internal mecha-
nisms that facilitate the learning of important events and 
discarding of unimportant events in the distant past, 
overcoming the problem known as vanishing and explod-
ing gradient suffered by Simple RNN [51, 54]. For this 
prediction task, the hypothesis that by lengthening the 
observation window temporal models, specifically LSTM, 
might gain a performance advantage is also investigated.

Methods
Adherence measure and medication switching
The current study uses PDC as the measure of adherence, 
but the commonly-observed phenomenon of medica-
tion switching in long-term therapy must be addressed. 
A frequent example in CVD management in New Zea-
land is the switching from simvastatin to atorvastatin. 
These two drugs constitute the majority of lipid-lowering 
medication prescribed in the country. Atorvastatin is a 
more potent drug at blocking target enzyme HMGCoA 
[62] and prior to September 2010 approval for atorvas-
tatin required first-line use of simvastatin [63]. During 
medication switching, the total days “covered” of a class 
of drugs could exceed 100% even if one uses PDC as the 
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measure. To apply the method of shifting the dispense 
date based on overlap across the two drugs is unrealistic 
as once the new drug is dispensed, the likely scenario is 
the patient will discontinue taking the older medication. 
In this study this issue is addressed by summing the PDC 
across any lipid-lowering drugs dispensed in the same 
quarter and set an upper-bound for the value to 100%. 
Figure 2 illustrates the method using simvastatin to ator-
vastatin switching as an example.

Data sources and cohort
PREDICT is a web-based CVD risk assessment and man-
agement decision support system developed for primary 
care in New Zealand. The system is integrated with the 
general practice electronic health record (EHR) and 
since its deployment in 2002 has produced a constantly 
growing cohort of CVD risk profiles. Through the use 
of encrypted National Health Identifier number (NHI), 
the de-identified cohort is annually linked to other rou-
tinely collected databases to produce a research cohort. 
The PREDICT cohort and its use in improving CVD risk 
assessment has been described in detail previously [64, 
65]. Vascular Informatics Using Epidemiology and the 
Web (VIEW) is a research programme with the goal of 
reducing inequities in vascular disease outcomes. The 
VIEW team has made a de-identified extract from the 
PREDICT cohort and linked data available for the pre-
sent study [66].

The current study links the PREDICT cohort to Test-
Safe (Auckland regional laboratory test results [67]) and 

national collections by the Ministry of Health - the Phar-
maceutical collection, the National Minimum Dataset 
(hospital events) and the Mortality Collection [68]. Test-
Safe is used to obtain lab test results of clinically relevant 
measures: high-density lipoproteins (HDL), low-density 
lipoproteins (LDL), triglyceride (TRI), total cholesterol 
(TCL), total cholesterol to high density lipoprotein ratio 
(TC/HDL), glycated hemoglobin (HbA1c) and estimated 
Glomerular Filtration Rate (eGFR). The Pharmaceutical 
collection is used to obtain dispensing history of medi-
cation relevant to the management of CVD including 
lipid-lowering, blood pressure lowering, antiplatelets, 
and anticoagulants as well as dispensings of drugs used 
in the management of important comorbidities e.g. insu-
lin. The National Minimum Dataset (NMDS) is used to 
identify hospitalisation with their dates of admission and 
discharge and diagnosis. The Mortality collection enables 
the identification of patients who died during the study 
period and their cause of death. From these sources, his-
tory of CVD, treatment trajectories, important comor-
bidities as well as CVD events can be derived.

A lookup table constructed by the VIEW research team 
is used to identify relevant chemical names from the 
Pharmaceutical collection. Identified chemical names 
using this lookup table are grouped into 3 broad catego-
ries Lipid-lowering, CVD and Other. Similarly, a lookup 
table constructed by the VIEW research team is used 
to identify ICD-10 codes in the hospitalisation collec-
tion that are related to CVD conditions: more specifi-
cally, International Statistical Classification of Diseases 

Fig. 2  Dispensing pattern of simvastatin to atorvastatin switching and their respective PDC measures. A Lipid-lowering PDC is calculated by 
summing their respective PDC and setting an upper bound of 100
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and Related Health Problems, Tenth Revision, Australian 
Modification, ICD-10-AM, which was used in New Zea-
land from 1999 to 2019 [69]. The conditions are broadly 
in two categories: history and outcome, with the addition 
of mortality. For the list of the CVD conditions and their 
respective categories see Table  1. For the definitions of 
listed conditions see https://​wiki.​auckl​and.​ac.​nz/​displ​ay/​
VIEW/​Compl​ete+​Varia​ble+​Names+​Index

The study cohort was selected through a number of 
exclusion criteria. First, patients having their PREDICT 
assessment prior to 01/01/2007 and after 30/12/2013 
are excluded as their pharmaceutical records are cen-
sored in the observation or prediction windows. Second, 
informed by our interest in integrating the temporal pat-
tern of disease states, patients without all components of 
cholesterol test results (HDL, LDL, TRI, TCL and TC/
HDL) reported in either the observation or prediction 
windows are excluded. Third, informed by our interest in 
integrating the temporal pattern of disease management 
process, patients without lipid-lowering medication dis-
pensed in the observation window with a 2-week look 
ahead post PREDICT assessment (to account for patients 
prescribed lipid-lowering medication in response to 
the PREDICT assessment) are excluded. Patients with 
infeasible data values and patients under the age of 18 
are excluded. Lastly, Ethnicity MELAA (Middle East-
ern, Latin American and African; which comprises only 
1.5% of the New Zealand population [70]) and Other are 
excluded due to small sample size. See Fig. 3 for the study 
cohort selection flowchart.

Of the 100,096 patients in the selected cohort, 25,419 
patients have prior history of CVD, defined as having a 
hospital admission prior to their PREDICT assessment 
date with an ICD-10-AM code matching the ‘broad CVD 
history’ category (HX_BROAD_CVD) defined by VIEW.

Study design
A study design is formulated using each patient’s PRE-
DICT assessment as the index date, and the ∼ 2 years (8 × 
90 day quarters) prior to the index date and the ∼ 5 years 
(20 × 90 day quarters) after the index date as the observa-
tion window and the prediction window respectively. (see 
Fig. 4). A time-step of a quarter (90 days) is used for the 
constructed time-series. This decision is informed by 90 
days being the most common value in the pharmaceuti-
cal record for DAYS_SUPPLY of Lipid-lowering medica-
tion, the CVD preventive treatment of principal interest. 
A ∼  5  years interval for the prediction window is cho-
sen because it aligns with MoH guildlines for CVD risk 
assessment and is underpinned by the fact that patients’ 
CVD risk and risk management can change considerably 
over a longer period (i.e. 10 years), most randomised con-
trolled trials of CVD medications are based on a period 

of 5 years or less and that practitioners are accustomed 
to this approach [3]. A ∼ 2 years interval for the observa-
tion window is chosen in the interest of retaining enough 
samples in the data set, as dispense data extracted from 
the pharmaceutical collection begins from 2005, the 
longer the observation window grows the larger the 
number of samples that will need to be excluded.

Descriptive statistics
Based on the study design outlined in the section Study 
design and the result of the cohort selection outlined 
in the section Data sources and cohort, quarterly time-
series based on 90-day quarters are constructed for each 
patient in the cohort using the linked data outlined in the 
section Data sources and cohort. The features of the data 
fall into 8 categories: Demographic, Lipids, Lipid-low-
ering drugs, CVD drugs, Other drugs, Hospitalisation, 
HbA1c and eGFR, and PREDICT. See Tables 2, 3, 4, 5 and 
6 for the features’ descriptive statistics, and Table  7 for 
the variable descriptions of the PREDICT variables.

Prediction outcome
The adherence prediction problem is formulated as a 
binary classification task: predicting adherent or non-
adherent. The feature LL_PDC is a time-series that 
sums over all lipid-lowering PDCs: simvastatin, bezafi-
brate, atorvastatin, ezetimibe, nicotinic acid, acipimox, 
cholestyramine, cholestipol hydrochloride, pravasta-
tin, ezetimibe with simvastatin and gemfibrozil, with an 
upper bound of 100 as described in the section Adher-
ence measure and medication switching. Thus, any sums 
of lipid-lowering PDCs exceeding the value of 100 are 
set to 100. This feature is used to assess patient adher-
ence using a historical and widely applied threshold of 
≥ 80 indicating adherence [71, 72]. Here, patients’ mean 
LL_PDC in the prediction window determines their class 
( ≥ 80 equals class label 1 for adherence, 0 for non-adher-
ence otherwise). Of the 100,096 patients included in the 
study cohort, 42,428 patients are classed as non-adherent 
and 57,668 patients are classed as adherent.

Prediction models and evaluation
The models LSTM, Simple RNN, MLP, RC and LR are 
compared. The input data for LSTM and Simple RNN are 
explicitly sequential, and the input data for MLP, RC as 
well as LR are flattened across the time-step dimension 
and concatenated. To examine the effect of multicollin-
earity as well as the effect of using history on RC and LR, 
two other input data sets are constructed. First, instead 
of concatenating the features across multiple time-steps, 
an input data set is constructed that uses the values of 
the last time-step in the observation window (quarter 
8) for features that are invariable across time (i.e. SEX, 

https://wiki.auckland.ac.nz/display/VIEW/Complete+Variable+Names+Index
https://wiki.auckland.ac.nz/display/VIEW/Complete+Variable+Names+Index
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Table 1  VIEW CVD categories: CVD history, CVD mortality and CVD outcome, feature names under the categories and feature 
descriptions

Feature names prefixed with MORTALITY or OUT are used to identify outcome events (with the exception of OUT_ATRIAL_FIBRILLATION)

Category Feature name Description

VIEW CVD categories

History HX_BROAD_CVD History of broad CVD

HX_ATHERO_CVD History of atherosclerotic CVD

HX_CHD_DIAGS History of coronary heart disease (diagnoses)

HX_ACS History of acute coronary syndrome

HX_MI History of myocardial infarction

HX_UNST_ANGINA History of unstable angina

HX_ANGINA History of angina

HX_OTHER_CHD History of other coronary disease

HX_CHD_PROCS History of coronary heart disease

HX_PCI History of percutaneous coronary intervention

HX_CABG History of coronary artery bypass graft

HX_OTHER_CHD_PROCS History of other coronary procedure

HX_PVD_DIAGS History of peripheral vascular disease

HX_PVD_PROCS History of peripheral vascular procedure

HX_HAEMORRHAGIC_STROKE History of haemorrhagic stroke

HX_CEVD History of cerebral vascular disease

HX_ISCHAEMIC_STROKE History of ischaemic stroke

HX_TIA History of transient ischaemic attack

HX_OTHER_CEVD History of other cerebral vascular disease

HX_HEART_FAILURE History of heart failure

HX_ATRIAL_FIBRILLATION History of atrial fibrillation

Mortality MORTALITY_BROAD_CVD_WITH Death involving broad CVD

_OTHER

MORTALITY_OTHER_RELATED Death involving other related CVD

_CVD_DEATHS

Outcome OUT_BROAD_CVD Outcome of broad CVD

out_athero_cvd Outcome of atherosclerotic CVD

OUT_CHD Outcome of coronary heart disease

OUT_MI Outcome of myocardial infarction

OUT_ACS Outcome of acute coronary syndrome

OUT_UNST_ANGINA Outcome of unstable angina

OUT_ANGINA Outcome of angina

OUT_OTHER_CHD Outcome of acute coronary syndrome

OUT_PVD_DIAGS Outcome of peripheral vascular disease

OUT_PVD_PROCS Outcome of peripheral vascular procedure

OUT_PCI_CABG Outcome of percutaneous coronary intervention

OUT_HAEMORRHAGIC_STROKE Outcome of haemorrhagic stroke

OUT_CEVD Outcome of cerebral vascular disease

OUT_ISCHAEMIC_STROKE Outcome of ischaemic stroke

OUT_TIA Outcome of transient ischaemic attack

OUT_OTHER_CEVD Outcome of other cerebral vascular disease

OUT_HEART_FAILURE Outcome of heart failure

OUT_ATRIAL_FIBRILLATION Outcome of atrial fibrillation
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Fig. 3  Flow chart of study cohort selection
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ETHNICITY, NZDEP) and the mean value of features 
that are variable across time (i.e. TC/HDL, LL_SIMVAS-
TATIN, HX_BROAD_CVD). Here, an exception is AGE 
where the value at the 8th quarter is used. This data set is 
from here on referred to as aggregated. Second, an input 
data set is constructed using only the values of the last 
quarter in the observation window. This data set is from 
here on referred to as last quarter.

All NN models are connected to a 2-unit densely con-
nected output layer. This layer uses the softmax activa-
tion from which the probability distribution of the two 
classes is derived. The RNN models (LSTM and Simple 
RNN) require an architecture that takes multiple inputs 
across the observation window and only outputs once at 
the last time-step. The unrolled view across the time-step 
dimension of the RNN models is shown in Fig. 5.

Software setup
Experiments are carried out using Python 3.6.8 [73], with 
neural network models using library Keras 2.2.4 [52] with 
Tensorflow 1.13.1 [74] backend and linear models RC 
and LR using library Scikit-learn 0.21.2 [75]. Experiments 
also used R version 3.6.0, package pROC 1.16.2 [76] for 
conducting DeLong’s test and SciPy library 1.5.4 for con-
ducting Kolmogorov–Smirnov test [77].

Procedures for hyperparameter search
This section outlines the procedures carried out to 
search for the optimal set of hyperparameters for the 
LSTM, Simple RNN and MLP models. The samples in 

Fig. 4  Study design showing date range from index date for the observation window (shaded in green) and the prediction window (shaded in red)

Table 2  Descriptive statistics: demographic variables

Number of patients in each category

ID 100096

Sex

 Male 56,557 (56.5%)

 Female 43,539 (43.5%)

AGE (at index date)

 Mean (SD) 61.82 (11.29)

  18–24 48

  25–34 691

  35–44 5690

  45–54 20,380

  55–64 32,885

  65–74 28,261

  75–84 10,379

  85+ 1762

NZDEP

 1 21,167

 2 19,074

 3 17,141

 4 18,903

 5 23,811

Ethnicity

 European 56,641

 Māori 9977

 Pacific 14,878

 Chinese/other Asian 8971

 Indian 9629

DIED (%) 6634 (6.6%)

Table 3  Descriptive statistics: cholesterols

TEST and TESTED are auxiliary binary features indicating whether the patient 
had a cholesterol test in this quarter (encompassing HDL, LDL, TRI, TCL and TC/
HDL), and whether the patient has ever had a cholesterol test respectively. If 
the patient has any of the listed elements tested in a quarter the value of TEST 
will be 1, otherwise 0. In a patient’s time-series, the value of TESTED will be 
0 prior to the patient having their first cholesterol test. Once the patient has 
had a cholesterol test, the value of TESTED will switch to 1 and stay at 1 for the 
remainder of the time-series. The statistics for TEST and TESTED are the number 
of quarters in the entire data set where the feature contained a 1 and its relative 
percentage

TEST (%) 885936 (31.6%)

HDL mean (SD) 1.28 (0.37)

LDL mean (SD) 2.62 (0.96)

TRI mean (SD) 1.74 (1.04)

TCL mean (SD) 4.69 (1.13)

TC/HDL mean (SD) 3.85 (1.15)

TESTED (%) 2,698,599 (96.3%)
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the data set are first randomly shuffled, and then from 
the entire data set, 10,096 samples are set aside as the 

test set and removed from the search process. The 
remaining data (90,000 samples) are used in the search 
process. For each combination of hyperparameters, a 
fivefold cross validation is carried out where while the 
proportion of data used for the train and validation sets 
are consistent, with 90% train (81,000 samples) and 10% 
validation (9000 samples), different splits of train and 
validation sets are used in the experiments. See Fig.  6 
for a visual illustration of how the data is split into train 
and validation sets across the 5 folds. In these experi-
ments, the validation error is monitored and the lowest 
mean validation error is used to determine the best set 
of hyperparameters.

For all experiments, the optimizer ADAM [78] is 
used due to its capacity to adaptively adjust the learn-
ing rate during the training process and because its 
default hyperparameters have been shown to work 
on a range of problems. The ADAM optimizer is 
used with the default hyperparameter values outlined 
in [78]. These hyperparameter values are, learning 
rate α = 0.001 , the exponential decay rate for the 1st 
moment estimate β1 = 0.9 , the exponential decay rate 
for the 2nd moment estimate β2 = 0.999 , and the small 
constant for numeric stability ǫ̂ = 1e − 7 [52]. See 
Table 8 for the found optimal hyperparameters of the 
NN models.

Scikit-learn’s RidgeClassifierCV class [75] provides 
an implementation of ridge classifier that uses a built-
in generalised cross-validation to search for the optimal 
L2 value from an array of values. For this experiment, 
the values 1e−6 , 1e−5 , 1e−4 , 1e−3 , 1e−2 , 0.1, 1 and 10.0 
were searched. See Table  9 for the found optimal L2 
values and their respective accuracy on the validation 
set.

Table 4  Descriptive statistics: hospitalisation

Number of patients who had acute hospital admission within their time-series 
and number of patients who had hospitalisations with clinical code mapping to 
the specified category in their time-series. See Table 1 for the descriptions of the 
features

NUMBER_OF_DAYS > 0
Mean (SD) 6.37 (11.87)

ACUTE_ADM 54,448

HX_BROAD_CVD 32,542

HX_ATHERO_CVD 30,259

HX_CHD_DIAGS 23,207

HX_ACS 16,777

HX_MI 13,799

HX_UNST_ANGINA 6596

HX_ANGINA 8489

HX_OTHER_CHD 20,416

HX_CHD_PROCS 12,771

HX_PCI 8646

HX_CABG 5659

HX_OTHER_CHD_PROCS 335

HX_PVD_DIAGS 5301

HX_PVD_PROCS 3551

HX_HAEMORRHAGIC_STROKE 1204

HX_CEVD 8403

HX_ISCHAEMIC_STROKE 5878

HX_TIA 3159

HX_OTHER_CEVD 772

HX_HEART_FAILURE 8079

HX_ATRIAL_FIBRILLATION 10,902

MORTALITY_BROAD_CVD_WITH_OTHER 17,463

MORTALITY_OTHER_RELATED_CVD_DEATHS 2416

OUT_BROAD_CVD 16,421

OUT_ATHERO_CVD 14,308

OUT_CHD 9689

OUT_MI 5944

OUT_ACS 7445

OUT_UNST_ANGINA 2104

OUT_ANGINA 3300

OUT_OTHER_CHD 3539

OUT_PVD_DIAGS 1537

OUT_PVD_PROCS 1922

OUT_PCI_CABG 5758

OUT_HAEMORRHAGIC_STROKE 521

OUT_CEVD 4364

OUT_ISCHAEMIC_STROKE 3011

OUT_TIA 1598

OUT_OTHER_CEVD 50

OUT_HEART_FAILURE 3096

OUT_ATRIAL_FIBRILLATION 3288

Table 5  Descriptive statistics: HbA1c and eGFR

TEST_HBA1C, TESTED_HBA1C, TEST_EGFR and TESTED_EGFR are auxiliary binary 
features indicating whether the patient had a HbA1c or a serum creatinine (from 
which eGFR is derived) test in this quarter, and whether the patient has ever had 
a HbA1c and serum creatinine test respectively. If the patient has a HbA1c or 
serum creatinine test in a quarter the value of their respective TEST_HBA1C or 
TEST_EGFR will be 1, otherwise 0. In a patient’s time-series, the value of TESTED 
will be 0 prior to the patient having their first HbA1c or serum creatinine test. 
Once the patient has had a HbA1c or serum creatinine test, the value of their 
respective TESTED_HbA1c or TESTED_EGFR will switch to 1 and stay at 1 for the 
remainder of the time-series. the statistics are the number of quarters in the 
entire data set where the feature contained a 1 and its relative percentage

HBA1C mean (SD) 47.98 (15.20)

TEST_HBA1C 810,747 (28.9%)

TESTED_HBA1C 2,268,295 (80.9%)

EGFR mean (SD) 77.85 (20.11)

TEST_EGFR 1,041,487 (37.2%)

TESTED_EGFR 2,694,767 (96.1%)
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Assessment of model performance
Once the optimal hyperparameters for each NN model 
have been found, the models are trained using the 
found hyperparameters with the data split shown in 
Fold 1 in Fig.  6. The test set that is held aside is then 
used to assess model performance. The linear models 
RC, LR and their respective aggregated and last quarter 

variants are trained using the same training samples in 
Fold 1 and use the same test samples to measure model 
performance. For RC, the value of L2 is estimated using 
the training samples, accuracy reported are calculated 
using the validation set and model performance is 
assessed based on prediction made using the test set.

Table 6  Descriptive statistics: PREDICT

PT_SMOKING, PT_DIABETES, PT_FAMILY_HISTORY, PT_GEN_LIPID, PT_RENAL, PT_ATRIAL_FIBRILLATION and PT_IMP_FATAL_CVD show number of patients in each 
category. See Table 7 for the variable descriptions

PT_SBP mean (SD) 132.25 (16.99) PT_GEN_LIPID

PT_SBP2 mean (SD) 132.57 (17.24)  0 (None) 92,492

PT_DBP mean (SD) 78.70 (10.25)  1 (Familial hypercholesterolaemia) 5569

PT_DBP2 mean (SD) 79.07 (10.30)  2 (Familial defective apoB) 20

PT_SMOKING  3 (Familial combined dyslipidaemia) 499

 0 (Never) 66,896  4 (Other genetic lipid disorder) 1516

 1 (Quit>12months) 20,162 PT_RENAL

 2 (Quit≤12months) 1901  0 (Missing value) 64,131

 3 (Up to 10/day) 6249  1 (No nephropathy) 27,585

 4 (11-19/day) 3046  2 (Confirmed microalbuminuria) 5996

 5 (20+/day) 1842  3 (Overt diabetic nephropathy) 1975

PT_EN_TCHDL mean (SD) 3.90 (1.22)  4 (Non-diabetic nephropathy) 409

PT_DIABETES PT_DIABETES_YR mean (SD) 8.19 (7.30)

 0 (No diabetes) 64,125 PT_ATRIAL_FIBRILLATION

 1 (Type 1) 1267  0 (Missing value) 21

 2 (Type 2) 32,754  1 (None) 95,292

 3 (Type unknown) 1950  2 (Confirmed atrial fibrilation) 4783

PT_FAMILY_HISTORY 20,162 PT_IMP_FATAL_CVD* 2998

Table 7  PREDICT variables and their descriptions

*This feature captures all patients with CVD as cause of death on their death 
certificate with or without hospitalisation. In addition, those without CVD 
recorded on their death certificate but who had a CVD hospital admission up to 
28 days before their date of death are included. The VIEW research group refers 
to this as the “the 28 day rule” for reclassifying non-CVD death as CVD death

Variable name Description

PT_SBP Current systolic blood pressure (sitting)

PT_SBP2 Previous systolic blood pressure (sitting)

PT_DBP Current diastolic blood pressure (sitting)

PT_DBP2 Previous diastolic blood pressure (sitting)

PT_SMOKING Smoking history or current status

PT_EN_TCHDL TC/HDL cholesterol result

PT_DIABETES Diabetes status

PT_FAMILY_HISTORY Family history of premature CVD

PT_GEN_LIPID Diagnosed Genetic Lipid Disorder

PT_RENAL Renal disease status

PT_DIABETES_YR Number of years since diabetes diagnosis

PT_PT_ATRIAL_FIBRILLATION ECG confirmed Atrial Fibrillation

PT_IMP_FATAL_CVD* Improved fatal CVD using mortality 
record and 28 day rule

Fig. 5  An unrolled view of RNN across the time-step dimension. 
Here, RNN can be a layer of Simple RNN or LSTM. NN is a layer of 
densely connected NN with softmax activation. xn are the inputs 
across n time-steps. ŷ is the output
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The performance of the models on the test set are 
compared by using the metric of receiver operating 
characteristic (ROC) area under the curve (AUC) score 
[75, 79]. To assess the statistical significance of the dif-
ference in performance between the models, DeLong’s 
test is used to conduct pairwise comparisons. DeLong’s 
test is a nonparametric test that can be used to obtain 
a p-value when two ROC AUC are compared [80]. The 
Bonferroni adjustment is used to address the increased 
likelihood of making a type I error when making multi-
ple comparisons [81]. Sensitivity analysis is conducted by 
randomly resampling the test set with replacement. Here, 
1000 (repeats) of 10,096 (resampled test sets) are used 
to assess model performance, with each model produc-
ing 1000 ROC AUC scores. The models’ scores are then 
compared using two-sample Kolmogorov-Smirnov test 
[77, 82].

A potentially important consideration for adherence 
analysis using dispensing data is the number of days the 
patient is hospitalised in the prediction window. Dur-
ing this time the patient is given their medication but is 
not recorded as part of the dispensing data (as inpatient 
medicine supply is not tracked within the community-
pharmacy based data source). However, in the extracted 
de-identified quarterly time-series it was difficult to accu-
rately track the number of days the patient is an inpa-
tient as, for instance, consecutive days of outpatient visits 
and a single inpatient stay could appear identical. It was 
determined that only 0.54% of the training set changed 
from non-adherent to adherent with a maximal estimate 
of in-patient hospitalisation days, and therefore hospitali-
sation was ignored in computing PDC in the observation 
period.

Post‑PREDICT experiment
Based on the hypothesis that the integration of patient 
history through temporal modelling will aid predictive 
performance, and that LSTM has the capacity to learn to 
retain relevant and ignore unimportant patient history, a 
further question is raised: Could lengthening the obser-
vation window demonstrate a more distinct advantage 

Fig. 6  Illustration of the procedure used in splitting data into test, 
train and validation sets across different folds

Table 8  NN model hyperparameters for the adherence 
prediction experiment

Models Hyperparameters

LSTM Layers: 1 LSTM and 1 Dense

Units: 4 (LSTM) and 2 (Dense)

Batch size: 1024

L2: 9.261e−3

Loss: categorical cross-entropy

Epochs: 100

Simple RNN Layers: 1 Simple RNN and 1 Dense

Units: 8 (Simple RNN) and 2 (Dense)

Batch size: 4096

L2: 1.202e−2

Loss: categorical cross-entropy

Epochs: 100

MLP Layers: 3 Dense and 2 Dropout

Units: 64, 64 and 2

Batch size: 256

Dropout rate: Layer 1 2.152e−1

Layer 2 1.758e−1

Loss: categorical cross-entropy

Epochs: 50

Table 9  Optimal L2 values found for RidgeClassifier for 
adherence prediction and their respective accuracy on the 
validation set

L2 Accuracy

RC 0.1 0.736

RC (aggregated) 0.01 0.713

RC (last quarter) 0.01 0.726
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of using LSTM? To answer this question, a further set of 
experiments is conducted. Using data after the PREDICT 
assessment/index date (20 quarters), a task is formulated 
to predict the adherence behaviour in the last year (quar-
ter 17 to quarter 20) using 1, 2, 3 and 4 years (4, 8, 12 and 
16 quarters) of patient history before and up to quarter 
16 (the new index date). See Fig. 7 for an illustration of 
the study design of this set of experiments. For this task, 
patients who died before quarter 16 (4897 individuals) 
are removed from the data. These experiments are from 
here on referred to as the Post-PREDICT adherence 
prediction experiments. For these experiments, models 
LSTM, Simple RNN, MLP and RC are compared.

Results
Table  10 shows the ROC AUC scores of the models on 
the task of adherence prediction. Figure 8 shows the ROC 
curves of the models. It can be observed LSTM, Simple 

RNN, MLP and in some regions RC compare favourably 
to other model comparators. Over the ROC space, the 
NN based models dominate over the regression based 
models with the exception that for a small region RC 
performed similarly well to MLP. Here, LSTM’s predic-
tive superiority is shown, dominating all other models 
for the most part of the ROC space. The performance 
strength of NN models are confirmed in Table 10 where 
there appears to be a performance gap between NN mod-
els and the regression based models, suggesting for this 
task the capacity to model complex nonlinear relation-
ships is advantageous. Here, the best performing regres-
sion models are RC and LR using full sets of features 
across the observation window. Interestingly, in Fig.  8, 
the aggregated variant of RC and LR dominates over their 
last quarter variants in the region where the false posi-
tive rate (FPR) is < 0.35, however, where the FPR is > 0.35 
the last quarter variants dominate over the aggregated 
variant.

The results of the pairwise comparison of ROC curves 
using DeLong’s test are shown in Table  11. The model 
comparisons of the adherence prediction experiments 
include 36 hypotheses (pairwise comparison of 9 indi-
vidual models). The significance level of 0.05 is chosen 

Fig. 7  Study design of the Post-PREDICT adherence prediction experiments showing the initial index date, new index date, the observation 
windows (shaded in green) and the prediction window (shaded in red)

Fig. 8  ROC curves of adherence prediction

Table 10  Model performance on adherence prediction

Model ROC AUC​

LSTM 0.805

Simple RNN 0.798

MLP 0.794

RC 0.784

RC (aggregated) 0.765

RC (last quarter) 0.766

LR 0.782

LR (aggregated) 0.764

LR (last quarter) 0.765
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for determining statistical significance. In Table  11, all 
p-values below the Bonferroni adjusted significance 
threshold of 0.00139 are in bold, the Bonferroni adjusted 
threshold is derived from 0.05/36 as there are 36 pairwise 
comparisons. Alongside the results shown in Table  10, 
these results supports our stated hypothesis that an inte-
gration of patient history through temporal modelling 
can aid predictive performance. Here, LSTM and Simple 
RNN are the top performing models with LSTM shown 
to perform significantly better than all model compara-
tors. Simple RNN ranking second performed significantly 
better than all other models except for MLP. The results 
of the sensitivity analysis are shown in Table 12. The pair-
wise comparison of ROC AUC scores using Kolmogorov-
Smirnov test shows that the models are robust against 
randomly resampled test sets.

The results of the experiments using data after the 
PREDICT assessment date with varying lengths of obser-
vation window is shown in Fig.  9. The corresponding 
results of DeLong’s tests are shown in Table 13. Here, it 
can be observed that as the observation window grew in 
length, the performance of temporal models LSTM and 
Simple RNN continued to improve up to 12 quarters. The 
non-temporal comparator MLP and RC were unable to 
leverage additional context beyond 8 quarters to improve 

its prediction. Interestingly, RC (aggregated)’s perfor-
mance deteriorated with longer observation window. 
These results confirm that a more distinct advantage of 
using LSTM can be demonstrated by lengthening the 
observation window.

Discussion
The results of the adherence prediction experiments 
show that for predicting adherence to lipid-lowering 
medication over a 5-year period based on a 2-year (8 
quarters) observation window it is beneficial to use 
the full sets of features across the observation window. 
With RC and LR, both models perform significantly 
better than their aggregated and last quarter counter-
parts despite the strong presence of multicollinear-
ity. There is also evidence of nonlinear relationships 
among the predictor variables as shown by the superior 
performance of MLP in contrast to the linear models. 
Additionally, the observed ROC AUC of Simple RNN 
is higher than that of MLP, but the result is not statisti-
cally significant with the adjusted significance level (it is 
worthwhile to mention that the Bonferroni adjustment 
is conservative and can lead to a high rate of false nega-
tives [83]). Overall, LSTM is the superior model, out-
performing all comparators. These results demonstrate 

Table 11  pvalues of pairwise comparison of models performance on adherence prediction using DeLong’s test

Using significance level of 0.05, values under the Bonferroni adjusted significance level of 0.00139 are in bold

Simple RNN MLP RC RC (aggr) RC (last) LR LR (aggr) LR (last)

LSTM  3.479e−6 5.025e−12 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16 < 2.2e−16
Simple RNN 0.01353 7.639e−14 < 2.2e−16 < 2.2e−16 7.966e−16 < 2.2e−16 < 2.2e−16
MLP 8.937e−7 < 2.2e−16 < 2.2e−16 1.538e−8 < 2.2e−16 < 2.2e−16
RC < 2.2e−16 < 2.2e−16 2.741e−3 < 2.2e−16 < 2.2e−16
RC (aggr) 0.829 6.967e−14 0.02915 0.9102

RC (last) 3.405e−15 0.6371 0.001774

LR 1.666e−15 < 2.2e−16
LR (aggr) 0.8881

Table 12  p values of pairwise comparison of models performance on 1000 (repeats) randomly resampled with replacement test sets 
(10,096 samples) using Kolmogorov–Smirnov test

Using significance level of 0.05, values under the Bonferroni adjusted significance level of 0.00139 are in bold

Simple RNN MLP RC RC (aggr) RC (last) LR LR (aggr) LR (last)

LSTM  3.581e−149 1.366e−298 0.0 0.0 0.0 0.0 0.0 0.0
Simple RNN 5.819e−62 0.0 0.0 0.0 0.0 0.0 0.0
MLP 2.441e−255 0.0 0.0 0.0 0.0 0.0
RC 0.0 0.0 3.683e−19 0.0 0.0
RC (aggr) 0.01960 0.0 2.029e−3 0.08690

RC (last) 0.0 2.462e−7 7.336e−5
LR 0.0 0.0
LR (aggr) 0.1641
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that for the problem of adherence prediction, explicitly 
modelling history sequentially and learning to “remem-
ber” and “forget” influential and unimportant events 
in the past is valuable for predictive performance. Our 
findings of the strengths of deep learning models when 
compared with regression based models are consist-
ent with observations in other recent studies in the 
biomedical domain, including for the task of adher-
ence prediction among hypertensive patients [84], and 

specifically the advantage of LSTM for the tasks of in-
hospital mortality, decompensation, length of stay and 
phenotyping prediction for ICU patients using clinical 
time−series data [85].

In our experiments using data after the PREDICT 
assessment with varying lengths of observation window, 
it is observed that only certain models’ performance 
improved with longer observation windows, namely 
LSTM, Simple RNN and RC (See Fig.  9). Additionally, 

Fig. 9  Model performance on the Post-PREDICT adherence prediction with varying observation window lengths

Table 13  Post-PREDICT adherence prediction

Qtrs are the number of quarters in the obervation window. The resulting p-values of pairwise comparison using DeLong’s test. Using significance level of 0.05, values 
under the Bonferroni adjusted significance level of 3.333e− 3 are in bold

Qtrs Simple RNN MLP RC RC (aggr) RC (last)

4 LSTM 0.6711 0.4094 0.648 1.807e−2 < 2.2e−16
Simple RNN 0.6883 0.9242 4.674e−2 2.84e−15
MLP 0.7797 0.1005 1.475e−14
RC 2.368e−2 < 2.2e−16
RC (aggr) 2.734e−10

8 LSTM 9.606e−3 1.169e−4 2.48e−2 5.847e−13 < 2.2e−16
Simple RNN 5.614e−2 0.7944 2.469e−9 < 2.2e−16
MLP 7.817e−2 7.099e−5 2.448e−11
RC 7.365e−10 < 2.2e−16
RC (aggr) 1.4444e−3

12 LSTM 7.864e−2 2.818e−8 2.351e−3 < 2.2e−16 < 2.2e−16
Simple RNN 2.207e−4 0.124 < 2.2e−16 < 2.2e−16
MLP 8.743e−3 2.936e−11 1.16e−9
RC < 2.2e−16 < 2.2e−16
RC (aggr) 0.8463

16 LSTM 6.124e−2 1.799e−6 5.112e−3 < 2.2e−16 < 2.2e−16
Simple RNN 6.84e−4 0.1974 < 2.2e−16 < 2.2e−16
MLP 9.566e−3 < 2.2e−16 2.737e−9
RC < 2.2e−16 < 2.2e−16
RC (aggr) 1.063e−2
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it can be observed that the method of aggregating data 
from the past, with equal weight, is detrimental to the 
prediction of regression based models. From Table  13, 
results of DeLong’s tests show LSTM and Simple RNN 
are able to leverage additional contexts of patient his-
tory to produce predictions that are statistically signifi-
cantly better than the performance of MLP (LSTM from 
8 quarters and Simple RNN from 12 quarters). For this 
specific task, 12 quarters of observation window seems 
to be the most effective context for LSTM, allowing it to 
perform significantly better than RC. Our findings aligns 
with other studies that showed the capacity of explic-
itly sequential models to improve with longer context of 
observation [86, 87]. However, in contrast to [87] MLP 
did not benefit from longer observation windows in our 
experiments, and aggregating data across the tempo-
ral dimension negatively impacted the performance of 
regression based models as shown in RC (aggregated).

The results demonstrate the advantage of lengthening 
the observation window for LSTM and Simple RNN mod-
els that take explicitly sequential data as input for the task 
of adherence prediction. Interestingly, the ability to model 
nonlinear relationships does not give MLP an advantage 
over RC. This could be due to the length of the predic-
tion window. To predict adherence behaviour over 1 year 
is a much easier task than to predict adherence behaviour 
over 5 years. The results suggest there are complex non-
linear relationships in adherence prediction that become 
important when the prediction window is longer.

There are a number of limitations of the current study. 
It is not uncommon in the course of a chronic condition 
for patients with the condition to also suffer from one or 
more comorbidities. Some of these comorbidities can 
have consequential effects on the risk and outcome of 
the patient. In the case of CVD, diabetes and renal dis-
ease are known independent risk factors that contrib-
ute to an increased risk of a CVD event [3, 88]. While 
covariates that indicate the presence of comorbidities 
are included in the current study (e.g. eGFR and HbA1c) 
the effects of the combination of multiple drugs or poly-
therapy and by extension the complexity of treatment 
regimen on adherence has not been addressed. Addi-
tionally, the effects of medication titration and known 
side-effects of statins such as myopathy, elevated creatine 
kinase levels, and diabetes [3] have not been explored in 
the context of adherence prediction. Further, research-
ers of CVD therapy have pointed to the knowledge gap 
that exists between the evidence from randomised clini-
cal trails, typically only lasting a few years, and the effect 
of long-term medication treatment (where it is common 
for therapy to continue for decades) in secondary preven-
tion [89]. The study design used in this thesis was unable 
to capture the long-term (defined in the scale of decades) 

effect of disease progression and treatment trajectory. 
While preserving a useful number of cases, the data con-
struction used in this thesis was only able to achieve a 
7 year window to divide between observation and predic-
tion. In the future, however, this will change as routinely 
collected electronic health records lengthen year on 
year. LSTM, like other NN models, is a class of black box 
models where the influence of and interactions between 
predictor variables cannot be readily explained. Consid-
erable research has been carried out investigating meth-
ods to interpret and explain neural models [90, 91], and 
some specifically for RNNs such as through the use of an 
attention mechanism [92] or deriving feature attribution 
from Learned Binary Masks and KernelSHAP [93]. These 
methods are clearly worthy directions of future work as 
they hold the potential for aiding risk communication. 
Finally, the study was limited to patients in the PREDICT 
cohort; while PREDICT is widely-used in New Zealand 
general practice, the cohort is not identical to all users of 
lipid-lowering therapy in the general population. With-
out having external validation conducted, the generalis-
ability of the findings are limited.

The current study confirms the hypothesis that inte-
grating patient history through temporal modelling is 
beneficial to the prediction of medication adherence. This 
has implications for the monitoring of long-term statin 
therapy as well as other similar diseases where the man-
agement and treatment of the disease is long-term. In 
this study we have refrained from exploring in depth how 
the model would be operationalized in clinical decision 
support (e.g. in terms of specific operating thresholds 
or forms of alerts). However, the observed ROC AUC 
of 0.805 on 5-year adherence indicates that 80% of pair-
ings of adherent and non-adherent patients are correctly 
ordered in terms of predicted risk [94]. Practical medi-
cation adherence promotion strategies include reminder 
packaging, reviewing a patient’s total set of medications 
and simply practicing more effective communication 
[95]. The performance of the LSTM model presented 
herein would provide a reasonably-accurate adherence 
risk stratification to help prioritise such efforts.

Conclusions
The current study provides evidence that routinely col-
lected health data can be leveraged for the task of adher-
ence prediction. Our findings show integrating patient 
history using temporal deep learning models is beneficial 
to predictive performance. LSTM’s performance com-
pares favourably against other model comparators and is a 
promising model for identifying individuals within a popu-
lation who might be at risk of medication non-adherence.
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