Skip to main content
. 2022 Nov 29;23:511. doi: 10.1186/s12859-022-05036-8

Table 4.

Model 1, 2, 3 architecture

Model 1 Model 2 Model 3
Layers Parameters Parameters Parameters
Layer 1—FullyConnected Input layer Input layer Input layer
Layer 2—FullyConnected 30 80 80
Layer 3—FullyConnected 10 70 70
Layer 4—FullyConnected 2 40 50
Layer 5—FullyConnected 10 20
Layer 6—FullyConnected 2 10
Layer 7- FullyConnected 2

The number of layers and the number of neurons in each layer can vary. Moreover, the hyper-parameters can be tuned to improve the final performance. The number of trainable and non-trainable layers can vary, but transfer learning does not perform well if all layers are trainable and the performance is improved