Table 4.
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
Layers | Parameters | Parameters | Parameters |
Layer 1—FullyConnected | Input layer | Input layer | Input layer |
Layer 2—FullyConnected | 30 | 80 | 80 |
Layer 3—FullyConnected | 10 | 70 | 70 |
Layer 4—FullyConnected | 2 | 40 | 50 |
Layer 5—FullyConnected | – | 10 | 20 |
Layer 6—FullyConnected | – | 2 | 10 |
Layer 7- FullyConnected | – | 2 |
The number of layers and the number of neurons in each layer can vary. Moreover, the hyper-parameters can be tuned to improve the final performance. The number of trainable and non-trainable layers can vary, but transfer learning does not perform well if all layers are trainable and the performance is improved